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Abstract

This paper presents a nowvel, parameter-free tech-
nique for the segmentation and local description of line
structures on multiple scales, both in 2-D and 3-D.
The algorithm is based on a nonlinear combination
of linear filters and searches for elongated, symmet-
ric line structures, while suppressing the response to
edges. The filtering process creates one sharp maxi-
mum across the line-feature profile and across scale-
space. The multiscale response reflects local contrast
and is independent of the local width.

The filter is steerable in orientation and scale do-
main, leading to an efficient, parameter-free imple-
mentation. A local description is obtained that de-
scribes the contrast, the position of the center-line, the
width, the polarity, and the orientation of the line.

FExamples of images from different application do-
mains demonstrate the generic nature of the line seg-
mentation scheme. The 3-D filtering is applied to mag-
netic resonance volume data in order to segment cere-
bral blood vessels.

1 Introduction

The famous Greek mathematician and philosopher
Euclid defined a line as “what has a length, but no
width”. The quotation illustrates the most significant
feature of a line: it is extended in one direction and
its width is small: a line is a 1-dimensional manifold.

Early algorithms for the detection of such struc-
tures tried to find roads in aerial imagery with nonlin-
ear small pixel operators [4, 13] by looking at sequences
of pixels which were brighter or darker than the back-
ground. Haralick [7] proposed to fit the pixel intensi-
ties in local neighborhoods by a continuous parametric
surface and to evaluate its derivatives. These methods,
however, did not sufficiently take into account that
line structures can be represented at different scales.
A river on a local map will be a wide band, but on a
large scale map it might be a thin line.

Canny [1, 2] proposed an ‘optimal’ ridge detector
and introduced scale as an essential parameter, but he
could not solve the problem of integrating the filter
responses from different scales.

The simultaneous detection of edges and lines was
approached by proposing energy filters [11, 12]. Dis-
crimination between the two types of features can be
done by calculating the phase information, but this
is much more sensitive to noise than the filter itself.
Multiscale properties of quadratic edge detectors were
studied by Kube et al. [9, 10].

Another class of papers studied the properties of
multiscale ridges [6], generating watersheds on multi-
ple scales followed by ridge detection in the n + 1 di-
mensional space. Structures were sought by multidi-
mensional differentiation in scale space.

Subirana et al. [14] proposed an interesting con-
cept for multiscale ridge analysis. They achieved scale
integration of 1-D ridge segmentation by looking at the
minimum of two shifted filter responses. They applied
the 1-D filter on 2-D images, but did not develop 2-D
directional filters on multiple scales.

This paper proposes a new technique for the seg-
mentation of lines at multiple scales. The basic idea
comes close to the approach of Subirana et al., but
is extended to 2-D and 3-D and aims at multiscale
structure detection. The nonlinear combination of fil-
ters allows a true integration of scales as a projection,
avoiding complex heuristic search strategies. It fur-
ther suppresses filter response to single discontinuities
completely and thus focuses on curvilinear features.
The new line filtering scheme achieves more than only
a characterization of line centers; it also extracts local
shape attributes.

2 Multiscale line detection in 1-D
A simple line model

The goal of the filtering process is to detect curvi-
linear structures of arbitrary shape and not to attempt
to distinguish between different line-like profiles, such
as bars, roofs and smooth ridges. Additionally, the
filtering should derive the width and height of the de-
tected structures.

In the following discussion of the new line-filtering
technique we use the bar-profile and will show later
that the method works for other profiles as well. The
bar-profile for a line centered at z = 0 with height 1



and width w can be expressed using the step-edge func-
tion O(x).
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We first discuss linear filtering and derive an ap-
propriate scaling to perform scale integration. Based
on these results we can then develop the nonlinear seg-
mentation scheme.

Scale integration with linear filtering

Canny [1] proposed to take the second derivative

of the Gaussian function
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as a filter and locate lines at points where the convo-
lution of the function with the line profile has a max-
imum. G,(z) denotes the unscaled Gaussian function
Go(z) = e 37, G' () and G”(x) its first and second
derivatives in z, and ¢, a normalization function de-
pending on o. The convolution with a bar of width w

gives the sum of two edge responses
w

Rlineq(z) = o (Gl (z + %) - Glo = ).

The condition that the response RLine has a maximum
at £ = 0, the center of the line, is o > %w.

Only an appropriate normalization allows a calcu-
lation of the height and width of the line from its filter
response. With a polynomial ¢, = a-0” as the normal-
ization function, the response at © = 0 is maximal if ¢

w

satisfies o0 = :I:,,m. A solution exists only if n < 2.

We substitute the optimal o back into f to get
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as the response at x = 0 for the optimal o,p;. This
expression is independent of w if and only if n = 1.
Setting a = % finally gives a value of h to a bar of
height h.

This linear filter also gives a response to step-
edges. The response is proportional to G, and has
extrema at +o, where the value is half the height of
the step edge. Further, a line profile generates two side
lobes of opposite sign to its main response near posi-
tions —% + 0 and § — 0. These multiple responses
to lines and the sensitivity to step-edges does impede
the application of a simple scale integration scheme, a
problem that occurs for every linear filter.

f(oopt) = aw™™

Nonlinear multiscale line filtering

Although the linear filtering discussed above is not
suitable for multiscale line detection, we can derive a
new scheme from it. Since the second derivative of a
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Figure 1: The responses of the left and right edge detec-
tors R; and R, to a bar of width 10 (a). The nonlinear
combination R;(x) of the responses gives a sharp peak
at the center of the bar (b).

function can be rewritten as a discrete derivative of
the first derivative, the filter becomes
Gl (z+h)— G (x—h)
o
2h

FlLine(z) = —a +O(h?)

with h = o
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The first derivative of the Gaussian GL(z) is a
well known edge detector [2]. The edge detectors E; =
—Gl(z+ ¥)and E,. = G (z — ¥) detect the left and
right edge of the bar profile at location # = F3 and
place the output with a maxima at z = 0. After scaling
and summing the outputs we get the response FLine =
$(E1+E,). Since ¢ is only a proportionality constant
it will be omitted in the ensuing discussion.

To overcome the multiple line response and the
sensitivity to edges, the convolution responses of the
two shifted edge filters must be combined in a nonlin-
ear way. The function F(R;, R.) that calculates the
final response must be large, if both R; and R, are
large and zero if either R; or R, is zero. We choose the
minimum operation F(R;, R,) = min(R;,R,). An-
other possible choice would be the geometrical mean
F(Ri,Ry) = VRi- R,

Here, we come close to Subirana and Sung [14],
who developed a “ridge detection scheme” based on a
nonlinear combination of two shifted filters. However,
they designed two asymmetric filters in order to handle
regions with narrow adjacent regiouns.

The detectors E; and E,. will also detect the op-
posite edges of a bar, but with inverse sign. Therefore
we combine only the positive parts of R; and R,. for
the detection of positive bars. Introducing the func-
tion Pos(z) = z - O(z), (= =z, = > 0) and the shift s
as a separate parameter we can write the result of the
line filter at location x for a profile f(x) as

Rs(z) = min(Pos((E; @ f)(z)),Pos((Er @ f)(z)))
E(z)=-G (z+s) and E.(z)=G,(z—s).

The o in this equation affects only the SNR of the
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Figure 2: Scale space response of the nonlinear filtering
to a bar of width 10 (a). The scale increases from front
to back. Plots (b) and (c) show the maximum projection
of the scale axis and the response at the center of the
bar as a function of scale.

edge detectors E; and E,., whereas the shift s depends
on the width w of the line. Consequently we want to

w

choose o as large as possible, but not larger than
to keep the support of the filter inside the line. We
set 0 = s to get a filter with one scale parameter s.
The multiscale response of the nonlinear filtering to a
bar of width 10 is shown in Fig. 2. Scale integration
is done by maximum projection which gives a sharp
peak at the center of the bar (Fig. 2b).

Properties of the multiscale line filter

The nonlinear combination of filters that take
measurements at both sides of a line profile together
with the appropriate scaling result in a powerful line
detection scheme.

Suppression of step edge response Depending
on the direction of the slope of the edge, either the
response for the edge filter Ej, or the response for
E, is negative for all z and s. The combined filter
response therefore becomes R;(z) = 0.

Multiscale response The scale space of the filter is
the 2-D function RScaleSp(s, ) = Rs(z) (Fig. 2a).
The multiscale response to the filter is the maxi-
mum over all scales s:

Rmulti(z) = maxs{RScaleSp(s,x), s, < s < su},
which has a maximum at = 0 (Fig. 2b).

Optimal scale Given a line of width w, the scale s
for which the response of the line detector has a

maximum at = 0 is sep; = 0.83356%.

Minimum of scale at x=0 The scale has a local
minimum at the center z = 0 of the multiscale
response [14].

Different line profiles Figure 3 shows a roof and a
Gaussian profile with the resulting multiscale re-
sponse of the filter. The filter is not sensitive to
the type of profile and the multiscale response still
creates a sharp peak.

Figure 3: A roof (top) and a Gaussian (bottom) profile
and the multiscale filter response (right).

Detection of noisy profiles Figure 4 shows the bar
profile with added Gaussian noise with a standard
deviation equal to the height of the bar. The mul-
tiscale response still shows a clear maxima near
the center of the bar.

Figure 4: A bar profile of height 1 and width 10 corrupted
with Gaussian noise. The multiscale response has a sharp
maxima near the center of the bar.

3 The multiscale line detector in 2-D

We can extend the method for finding lines to 2-D.
Let us assume that the lines have a bar profile, and are
locally straight compared to the width of the line. We
apply the multiscale filtering as a detection function
in the direction d,, of the profile, which is orthogonal
to the line direction cil The response along (Z} will be
integrated by using Gaussian smoothing.

Given a direction « with d, = (cosa,sin ar), and
the 2-D rotation matrix R, we define the edge detec-
tors at & = (w1, 22) as

Ei(7) = Ra(Gl(z1 +5) - Ga(m2)) Ra"
E(#) = Ro(G (w1 — 5) - Gy(2)) Ra”
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Figure 5: Detection of line-like structures in an aerial scene (a). The filter response is shown in (b). Nonmaximum
suppression yields the center-lines of curvilinear structures (c). Image (d) shows the scale attributed to each point.

The variance of the integrating Gaussian function has
been set equal to the scale parameter s. The 2-D multi-
scale line filter response of a function f(#) becomes

R.(F) = min(Pos((E: ® f)(F))., Pos((E, ® [)(7))).

Integration of multiple orientations and
multiple scales

The filter defined above is steerable in the param-
eters o and s [5]. We first consider the direction pa-
rameter « to find the direction which gives maximal
response. Basically there are two possibilities:

a) Apply the filter in a discrete number of directions,
calculate the output for every direction and take
the direction with the maximal value.

b) Calculate the local orientation of a line structure
and then steer the filter to this direction.

The second method is preferred since it avoids dis-
cretization artifacts and speeds up calculations. An
estimate for the line orientation can be found by us-
ing the analysis of directional derivatives at the ap-
propriate scales (see [3, 7]). We look for the di-
rection where the second derivative of the function
fs(Z) = (f ® G4)(T) is maximal. It satisfies

0 f f  O*f

L2

tan 1 (20) = 2
an ( O/) 8@181’2 0.1"/% 8.1‘%

The 2 solutions in {0,#} give the directions d,, and

dy. Integration in scale-space is realized by taking the
maximum across all scales, identical to the 1-D proce-
dure.

Implementation

We can write a computationally more efficient
scheme by changing the order of differentiation and
convolution. We first calculate the scale-space image

fs of f. and then take the first and second deriva-
tives to calculate the direction and the edge filter re-
sponses:

e Calculate f, = f ® G,
¢ Calculate the gradient V f
e For all points #

e Calculate the direction d:).
e Calculate the edge responses as:
Ri = Dofs(Z+sd) =V f(Z+sd)-d
Ry = —Dafo(# — sd) = =V fo(Z + sd) - d
(D, is the first directional derivative)
e Calculate the filter response as:

min(Pos(R;), Pos(R.))

We apply this procedure for the range of scales in
which we are interested in and take the maximal value
at each point as in the 1-D case. We also keep track
of the scale value at which the maximum occurred and
the local orientation of the line. Non-maximum sup-
pression is done by detecting local maxima in the di-
rection d, [2].

Multiple attributes of the filter output

The multiple attributes are illustrated in Fig. 5.
The filter response (5b) is proportional to the con-
trast of a line structure and independent of the width;
the centerlines are obtained by nonmaximum suppres-
sion (5¢). The corresponding scale (5d) at the posi-
tion of the maximum response is proportional to the
width of the line structures. Each point further is at-
tributed by the local orientation . These multiple
attributes represent rich local information which can
be queried by higher level processing. The segmen-
tation of the ‘zebra’ image (Fig. 6) demounstrates the
ability of the algorithm to simultaneously detect lines
of both polarities.
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Figure 6: Detection of stripes in the ‘zebra’ image (a) using multiscale line filtering. Images (b) and (c) illustrate
the multiscale response and the non-maximum suppression of dark lines. Images (e), (f) illustrate the simultaneous
detection of dark and bright line structures, the corresponding orientation information is illustrated in image (d), with

local orientation « encoded as a gray value.

4  Multiscale 3-D line detection in vol-
ume data

The extension of multiscale line detection to 3D is
motivated by the segmentation of volume image data,
e.g. by radiological magnetic resonance (MR) or com-
puter tomographic (CT) images. In 3-D, we can use
the line detection scheme for two types of features.
‘Sheet’-like structures like bone or skin tissues have a
line-like profile along one direction. True curvilinear
structures, 1-D manifolds in 3-D, have line-like pro-
files in all directions orthogonal to the line direction
(Fig.7).

To find the sheet-like structures we first compute
the scale image fs(Z) = (f ® G5)(&) of the input data
f(Z). The direction in which the line detection filter is
applied is taken from the eigenvectors of the Hessian
matrix of f;(Z). We take the eigenvector associated
with the largest negative eigenvalue.

For the detection of lines in 3-D, we calculate the
local direction of the line from the Hessian matrix of f;
by taking the direction of the eigenvector correspond-
ing to the smallest eigenvalue. We apply the line de-
tection filter in the directions given by the other two

Al 1
o _f+ L.

Figure 7: 3-D features with line profiles

eigenvectors as these are orthogonal to the line direc-
tion. The two values are combined by taking their
minimum. So far the multiscale response could be cal-
culated from the information at two locations, but the
3-D line has an additional degree of freedom. Our
choice of evaluating the two eigenvector directions rep-
resents just one possibility.

The 3-D line detection scheme was applied to find
blood vessels in 3-D magnetic resonance angiography
(MRA) data of the human brain. Figure 8a and b
show an axial slice of the initial data set and the mul-
tiscale response of the filter. Figure 8c presents a 3-D
rendering of the segmented vascularity.



Figure 8: An axial slice from a MRA volume data pre-
senting blood vessel as bright structures (a). The multi-
scale filter response (b) marks the positions of the ves-
sels while having only little response in the other areas.
Image (c) is a 3-D surface rendering of the segmented
vascular system.

5 Conclusions

We have presented a low-level segmentation
scheme for curvilinear structures in 2-D and 3-D im-
ages. The nonlinear combination of linear filters gives
a mono-modal response for line-like structures, thus
overcoming the limitations of linear filtering [1, 2]
which creates additional side-lobes for lines and also
filter responses for edge-type discontinuities. We
achieve one maximum across scale-space at a scale pro-
portional to the width of a structure. The 2-D and 3-D
extensions follow the approach of integration along the
feature and detection across the feature profile. The
filtering is steerable in the orientation and scale do-
mains and creates a continuous set of self-similar fil-
ters. Integration of filter responses across scales and
orientation is simplified to a maximum search.

The filter creates a rich local description of line-
type structures by calculating the center position, the
constrast, the width and the local direction. These
multiple attributes can be queried for solving higher-
level image analysis tasks.

A problem is conceptually given by the integration

scheme selecting only one mazimum in the orientation-
scale domain. Higher-order geometric structures like
crossings and junctions would have to be represented
by several lines in different orientations. Further,
structures can have multiple meanings across scales
by forming new super-structures. The problem could
only be solved by processing the full orientation-scale
filter space.

An extended version of this paper is available as a
technical report[8].
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