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1. Introduction

The importance of multi-scale descriptions of images has been recognized
from the early days of computer vision e.g. Rosenfeld and Thurston [309]. A
clean formalism for this problem is the idea of scale-space filtering introduced
by Witkin [386] and further developed in Koenderink[187], Babaud, Duda
and Witkin[24], Yuille and Poggio[396], and Hummel[163, 164] and reviewed
in the earlier sections of this book.

The essential idea of this approach is quite simple: embed the original image

;ncfgn;)?;?i in a family of derived images I(z,y,t) obtained by convolving the original
about 10% image Io(z,y) with a Gaussian kernel G{z,y;t) of variance :

I((L’,y,t) = Iﬂ(msy) * G(fﬂ,y,t)

L rgé_l_' values of ¢, the scale-space parameter, correspond to images at coarser
esolutions (see Fig. 3.1 and 3.2).
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Figure 8.1. (Left) A family of 1-D signals, [ (x,t), obtained by convolving the original
one (lowest one) with Gaussian kernels whose variance increases from bottom to to
(Right) ‘Fingerprint’ of [(z,t); it is the locus of the zero crossings of V2I(z,t). The ze
crossings that are associated to strong gradients may be used to represent the boundaries
of the main regions at each scale. Notice, however, that their position changes with SCA
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family of derived images may equivalently be viewed as the solution of the
heat conduction or diffusion equation

I = V2T = Iy + Iy (3.2)

with the initial condition I (z,v,0) = lo(z,y), the original image.
Koenderink motivates the diffusion equation formulation by stating two
criteria :

1. Cousality : Any feature at a coatse Jevel of resolution is required to
possess a (not necessarily unique) “cause” at a finer level of resolution
although the reverse need not be true. In other words, no spurious
detailshould be generated when the resolution is diminished.

9. Homogeneity and Isotropy : The blurring is required to be space invariant.

These criteria lead naturally to the diffusion equation formulation. It may
be noted that the second criterion is only stated for the sake of simplicity;
if blurring was allowed to be data-driven and space-varying one would have
useful degrees of freedom to play with.

Tt should also be noted that the causality criterion does not force uniquely
the choice of a Gaussian to do the blurring, though this is perhaps the
simplest. Hummel [163] has made the important observation that a version
of the maximum principle from the theory of parabolic differential equations
is equivalent to causality, therefore one would expect that a number
of (possibly nonlinear) differential equations would satisfy causality and
possibly have useful behaviours for vision applications.

Is the standard scale-space paradigm adequate for vision tasks which need
‘semnantically meaningful’ multiple scale descriptions?

Qurfaces in nature usually have a hierarchical organization composed of a .

small discrete number of levels [247]. At the finest level, a tree is composed
of leaves with an intricate structure of veins. At the next level, each leaf’
is replaced by a single region, and at the highest level there is a single :
blob corresponding to the treetop. There is a natural range of resolutions
{intervals of the scale-space parameter) corresponding to each of these levels:”
of description. Furthermore at each level of description, the regions (leaves;
treetops or forests) have well-defined boundaries. .
In the linear scale-space paradigm the true location of a boundary at
coarse scale is not directly available at the coarse scale image. This can be
seen clearly in the 1-D example in Figure 3.1 and in the 2D example in
Figure 3.2. The locations of the edges at the coarse level are shifted fro:
their true locations. In 2-D images there is the additional problem tha
edge junctions , which contain much of the spatial information of the edg
drawing, are destroyed. The only way to obtain the true location of the
edges that have been detected at a coarse scale is by tracking them acros
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the scale-space to their position in the original image. This technique proves
to be somewhat complicated and expensive [31, 62].

The reason for this spatial distortion is quite obvious — Gaussian blurring
does not ‘respect’ the natural boundaries of objects. Suppose we have the
picture of a treetop with the sky as background. The Gaussian blurring
process would result in the green of the leaves getting ‘mixed’ with the blue
1 of the sky, long before the treetop emerges as a feature (after the leaves
have been blurred together). In Figure 3.2 the boundaries in a sequence of
coarsening images obtained by Gaussian blurring illustrate this phenomenon.
With this as motivation, we enunciate the criteria which we believe any
candidate paradigm for generating multi-scale ‘semantically meaningful’
descriptions of images must satisfy:

1. Causality : As pointed out by Witkin and Koenderink, a scale-space
representation should have the property that no ‘spurious detail’ should
be generated passing from finer to coarser scales.

2. Immediate Localization: At each resolution, the region boundaries
each resolution, the region boundaries should be sharp and coincide
with the semantically meaningful boundaries at that resolution.

3. Piecewise Smoothing: At all scales, intra-tregion smoothing should
occur preferentially over inter-region smoothing. In the tree example
mentioned earlier, the leal regions should be collapsed to a treetop

before being merged with the sky background.

2. Anisotropic diffusion

There is a simple way of modifying the scale-space paradigm to achieve the
objectives that we have put forth in the previous section. In the diffusion
equation framework of looking at linear scale-space, the diffusion coefficient
- ¢ is assumed to be a constant independent of the spatial location. There
is no fundamental reason why this must be so. To quote Koenderink [187],
‘(pg. 364, left column, 1. 19 from the bottom) “.. I do not permit space
variant blurring. Clearly this is not essential to the issue, but it simplifies
the analysis greatly”. We argue that a suitable choice of space- and scale-
varying c(z,y,1) (¢t indicates the scale) will enable us to satisfy the second
ind third criteria listed in the previous section. Furthermore this can be
done without sacrificing the causality criterion.

consider the “anisotropic diffusion” equation [291, 293]

I, = div(e(e,y,t)VI) = ¢(z,y,t)V* I + Ve VI (3.3)

here we indicate with div the divergence operator, and with V, and V2
he-gradient, and Laplacian operators with respect to the space variables.




3. Anisotropic Diffusion

It reduces to the isotropic heat diffusion equation Iy = eV2I if c(z,y,t) is
a constant. Suppose at the ‘time’ ¢ (the scale is in this chapter sometimes
called ‘time’ as time is the physical evolution parameter of the diffusion),
we knew the locations of the region boundaries appropriate for that scale.
We would want to encourage smoothing within a region in preference to
smoothing across the boundaries. This could be achieved by setting the
conduction coefficientto be 1 in the interior of each region and 0 at the
boundaries. The blurring would then take place separately in each region
with no interaction between regions. The region boundaries would remain
sharp. Of course, we do not know in advance the region boundaries at each
scale (if we did the problem would already have been solved!). What can
be computed is a current best estimate of the location of the boundaries
(edges) appropriate to that scale.

Let E(z,y,t) be such an estimate: a vector-valued function defined on the
image which ideally should have the following properties:

1. E(z,y,t) = 0 in the interior of each region. 3. Im

2. B(z,y,t) = Ke(z,y,t) at each edge point, where e is a unit vector '

normal to the edge at the point, and K is the local contrast (difference Equatic

in the image intensities on the left and right) of the edge. fZSSOCia‘

Note that the word edge as used above has not been formally defined — we usei—:ne
mean here the perceptual subjective notion of an edge as a region boundary.

A completely satisfactory formal definition is likely to be part of the solution, Iztj-

rather than the problem definition!
If an estimate B(z,y,t) is available, the conduction coefficient ¢(z,y,t) can
be chosen to be a function ¢ = g(||E|)) of the magnitude of E. According to the mu
the previously stated strategy g(') has to be a nonnegative monotonically - - subscril
decreasing function with g{0) = 1 (see Fig. 3.3). This way the diffusion the sym
process will mainly take place in the interior of regions, and it will not :
affect the region boundaries where the magnitude of E is large. '
It is intuitive that the success of the diffusion process in satisfying the
three scale-space goals of section 1 will greatly depend on how accurate thi
estimate E is as a “guess” of the edges. Accuracy though is computationally
expensive and requires complicated algorithms. Fortunately it turns out that,
the simplest estimate of the edge positions, the gradient of the brightnes
function i.e. B(z,y,t) = VI(z,y,t), gives excellent results in many usefu

cases

- where |

e(z,y,1) = g(IVI{z,y,t){[)

There are many possible choices for ¢(-), the most obvious being a binaz
valued function. In the next sections we argue that in case we use the ed
estimate B(z,y,t) = VI(z,y,t) the choice of g(") is restricted to a subclas
of the monotonically decreasing functions and that g should be smoot
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Figure 3.3. The qualitative shape of the nonlinearity g(-).

3. Implementation and discrete maximum principle

Equation (3.3) may be discretized on a square lattice, with brightness values
associated to the vertices, and conduction coeflicients to the arcs (see Fig. 3.4).
A 4-nearest-neighbours discretization of the Laplacian operator may be
used:

Ifjl =1If;+Ney-AnT+es - Asl+cg-Apl+ew-Awll;  (3.5)

cwhere 0 € A < ;’1— for the numerical scheme to be stable, N,5.F W are
‘the mnemonic subscripts for North, South, East, West, the superscript and
subscripts on the square bracket are applied to all the terms it encloses, and
the symbol A indicates nearest-neighbour differences:

AnTi; =T,y — 1
Apli; =L - L

Agli;=Liy1;— iy
Awl ;=151 — L (3.6)

The conduction coefficients are updated at every iteration as a function of
he brightness gradient:

vy =9V ) sy =9V Dy 1)
¢k, = 9UI(VD ;41D cw,; = gV, 4 ll) (3.7)

e value of the gradient can be computed on different neighbourheod
Iuctures achieving different compromises between accuracy and locality.
he simplest choice consists in approximating the norm of the gradient at
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each arc location with the absolute value of its projection along the direction
of the arc:

chvi, = 9(ANTE) c,, = 9(Asii;])
¢, = 9(128L 51 dy,, = 9(1AwIi;]) (3.8)
N IN“:J‘ = lrl'g

by, ; = Lij— 5& Igi; = Lijn
i, » I P ) )
@ CWi,j W CEz',j @

CS:5

@IS;',;' = dit1,)

Figure 3.4. The structure of the discrete computational scheme for simulating the
diffusion equation. The brightness values I;,; are associated to the nodes of a lattice, the
conduction coeflicients ¢ to the arcs. One
and South neighbours are shown.

This scheme is not the exact discretization of equation (3.3), but of a similar

" diffusion equation in which the conduction tensor is diagonal with entries
g{| I; |) and g(| I, |) instead of g(|[V11)) and g(}{VI|]). This discretization

scheme preserves the property of the continuous equation {3.3) that the total

amount of brightness in the image is preserved. Additionally the “flux” of
brightness through each arc of the lattice only depends on the values of the

brightness at the two nodes defining it, which makes the scheme a natural

choice for analog VLST implementations [292, 149]. :
Less crude approximations of the gradient yielded perceptually similar results
at the price of increased computational complexity.

It is possible to show that, whatever the choice of the approximation of the

gradient, the discretized scheme still satisfies the maximum (and minimu
principle provided that the function g is bounded between 0 and 1.

node of the lattice and its 4 North, East, West,

function [

lambda = 0
outimage =
rowC = [1:
colC = [i:
for i=1:it.
deltaN = o
deltaE = o
fluxN = de
£1uxE = de
ocutimage =
(fluxN - £
end;

Figure 3.5. A
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: the direction o function [outimage] = anisodiff (inimage,iterations,K)

lambda = 0.25;

outimage = inimage; [m,n] = size(inimage);
(3 8) rowC = [1:m]; rowN = [1 1:m-1]; rowsS = [2:m m];
) colC = [i:n]; colE = [1 4i:n-13; colW = [2:n m];

for i=i:iterations,
deltalN = outimage(rowN,colC) - outimage (rowC, colC);
deltaE = outimage(rowC,celE) - outimage(rowC,colC);

fluxN = deltaN .* exp( - (1/K) * abs(deltaN) );
fiuxE = deltaE .* exp( - (1/K) * abs(deltaE) );

I :
outimage = outimage + lambda * el ;"1\;3\7— 3
(fluxN - fluxN(rouwS,colC) + fluxE - f1luxE(rowC,colW}); W :

Figure 8.5. A Matlab implementation of anisotropic diffusion with adiabatic boundary
conditions and exponential nonlinearity.

=it

 Theorem 1 {Discrete maximum-minimum principle) Ife € [0, 1], the
mazima/minima of solutions of (5.5) on a bounded cylinder (¢,7,t) € (d0,i1) %
" (Jo,§1) % (to, t1) belong either to the bottom’ face (3,5,1) € (io,41) X (o, J1) X
to or to the sides (j = jo x (to,11), J = J1 % (to,t1) ete).
Proof 1 We may show this directly from equation (3.5), using the facts
X € 10,11, and ¢ € [0,1}, and defining Int; = maz{(I,In,Is, Iz, Tw)i
nd Imij = min{({, In, I, g, Tw)i ;}, the mazimum and minimum of the
ineighbours of I; ; at iteration t. We can sce that

(Im)t; < I < (Il (3.9)
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+AImE,j(CN +eg+ e+ CW)E,j ; The con

= Inmi; (3.11) for its ¢

and muy

The numerical scheme used to obtain the pictures in this chapter is the one : impleme

, (3.8), using the original image as the initial
condition, and adiabatic boundary conditions, i.e. setting the conduction
coefficient to zero at the boundaries of the image (see in Fig. 3.5 the Matlab
implementation that was actually used). A constant value for the conduction
coefficient ¢ (i.e. g(-) = 1} leads to Gaussian blurring.

Different functions may be used for g{*) (see Eq. (3.4)) giving anisotropic
diffusion behaviour. The images in this chapter were obtained using

g(v1) = e F’ (3.12)

given by equations (3.5), {3.6)

erala

however there are other good possibilities, e.g.

1
VI= ——sm—
9( ) 1+(n¥{1 )2

The scale-spaces generated by these two functions are different: the first
privileges high-contrast edges over low-contrast ones, the second privileges
wide regions over smaller ones. The role of the nonlinearity g in determining
the edge-enhancing behaviour of the diffusion is studied in a later section. It
may be worth noticing that the discrete and the continuous model may have
different limit behaviours unless the nonlinearity ¢ is modified in one of the
two cases. Since the initial condition is bounded (images are bounded below
by 0 - negative brightness does not exist — and above by the saturation of the
sensors) and this, in turn, bounds the scale-space, the maximum value for
the discrete gradient is bounded above by the dynamic range of the image.
divided by the spacing of the sampling lattice. Therefore the conduction
coefficient will never be zero if the nonlinearities g defined above are used.’
This will not be the case for the continuous model, where the magnitude
of the brightness gradient may diverge and conduction may therefore stop:
completely at some location. :
The constant I may either be set by hand at some fixed value, or set using
using the “noise estimator” described by Canny [51]: a histogram of th
absolute values of the gradient throughout the image is computed, and K
is set equal to the, say, 90% value of its integral at every iteration.
A model of the primary visual cortex due to Cohen and Grossberg [67]:
aims at achieving the same no-diffusion-across boundaries behaviour. The
model contains an explicit representation of the boundaries and is muc
more ambitious and sophisticated than the simple PDE scheme that We

discuss in this chapter.
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The computational scheme described in this section has been chosen
for its simplicity. Other numerical solutions of the diffusion equation,
and multiscale algorithms may be considered for efficient software
implementations.
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ure 3.6. (Top A family of 1-D signals, I{x,t), obtained by running anisotropic
fusion (code in figure 3. 5) on the original one (lowest one}. (Bottom) Fingerprint of
the ‘anisotropic diffusion family. It is the locus of the zero crossings of V2(x, t). Notice
that the zero-crossings corresponding to high brightness gradients (i.e. edges) have no
ift- in scale {they are located at positions 300, 350, 550, 555). Around scale 100 the
IO f:l‘ossmg at position 550 undergoes a transition: it ceases having edge value and its
osition starts drifting in scale-space. Compare with figure 3.1
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Figure 3.7, Sequence of images produced by anisotropic diffusion. The code pre’ser'_lf_ie F igtire 3.8
in figure 3.5 was run on the image at the top-left corner for 10, 20, 30, 60, 100 iterations liages in fiy
The original image has pixel values between 0 {black) and 255 (white) and had a size: of

100 x 100 pixels. The coeflicient K was set equal to K = 10.
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jure 3.8. Sequence of boundary images obtaining by thresholding the gradient of the
ages in figure 3.7. The threshold was equal to (. Compare with figure 3.2.
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4. Edge Enhancement

With conventional low-pass filtering and diffusion the price paid for
eliminating the noise, and for performing scale-space, is the blurring of edges.
This causes their detection and localization to be difficult. An analysis of
this problem is presented in [51].

Edge enhancement and reconstruction of blurry images can be achieved by
high-pass filtering or running the diffusion equation backwards in time. This
is an ill-posed problem, and gives rise to numerically unstable computational
methods, unless the problem is appropriately constrained or reformulated
[165].

If the conduction coefficient is chosen to be an appropriate function of the
image gradient we can make the anisotropic diffusion enhance edges while
running forward in time, thus enjoying the stability of diffusions which is
guaranteed by the seen in the previous section.

We may study the problem in 1D and model an edge as a step function
convolved with a Gaussian. This corresponds to a straight 2D edge that
is aligned with the y axis (for curved edges the notation becomes more
complicated).

The expression for the divergence operator simplifies to:

div(c{z, t)VI) = -é%(c(a:, 0)1,)

We choose ¢ to be a function of the gradient of I: ¢(z,t) = g(L:(z, t)) asin
the previous sections. Let ¢([z) = g([s) - I» denote the flux ¢ I;.
Then the 1-D version of the diffusion equation (3.3) becomes

J .
I = 5-9(0) = $() - Les (3.13)

We are interested in looking at the variation in time of the slope of the edge:

(T%(Ia;). Tf the function I(-) is regular enough the order of differentiation may.

be inverted:

J
55(

Suppose the edge is oriented in such a way that I; > 0 (see Fig.3.9). At

the point of inflection Iy, = 0, and Ipze < 0 since the point of inflection
corresponds, to the point with maximum slope (see figure 3.9).

Then in a neighbourhood of the point of inflection %(Lﬂ) has sign opposit
to ¢(1). ¥ ¢(Ia,) > 0 the slope of the edge will decrease with time; if, on
the contrary ¢(I,) < 0 the slope will increase with time. :

? o0 i . |
Iﬂ?) == 5;;([?5) = B—mu(égqs(]x)) =¢- I:cxz + ¢ lose (3'14)-'

Figure

* Notice
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Figure 3.10. A choice of the function ¢(-) that leads to edge enhancement. See sec. 4.

Notice that this increase in slope cannot be caused by a scaling of the
- edge, because this would violate the maximum principle. The edge becomes
sharper.
There are several possible choices for ¢(-), for example, g(l;) = C(1 +
(I/K))~(+) with o > 0 (see fig. 3.10). Then there exists a certain threshold
value related to K, and «, below which ¢(-) is monotonically increasing, and
-beyond which ¢(-) is monotonicaily decreasing, giving the desirable result
f blurring small discontinuities and sharpening edges. Notice also that in
-neighbourhood of the steepest region of an edge the diffusion appears
> run ‘backwards’ since qi)( ) in equation (3.13) is negative. This may
a source of concern since it is known that constant-coefficient diffusions
unning backwards are unstable and amplify noise generating ripples. In our
ase this concern is unwarranted: the maximum principle guarantees that
1pp1es are not produced. Experimentally one observes that the areas where
(L) < 0 quickly shrink, and the process keeps stable.
:tice that while no ripples are created in [, this is not true for I;. As
iscussed above the derivative of the image does diverge at some points.
his is necessary for the edge sharpening behaviour to happen (contrary
the intuition that informs the initial discussion in [57]). If the regions
whete ¢(I,) < 0 are broad these will tend to segment into portions where
iverges, separated by portions where I, — 0. We call this behaviour
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staircasing, it is rather rare in common images, however one may notice it on
very blurry images where the brightness gradient varies slowly. Staircasing
arises when at the steepest point of the edge the curvature does not have
maximum rate of variation; in this case sharpening of the edge may stop
after a while because Iz, might cease to be negative at the inflection point.
At that point I starts decreasing. Of course in this case I, will have other
zero-crossings, and |I;| starts increasing at those points. The edge will not
disappear, but it can be split into multiple edges.

One may reproduce the staircasing behaviour using a Gaussian-smoothed
step edge (o = 100 pixels, say) as a starting condition (better if some white
noise is superimposed to it) and setting the parameter K of the diffusion
to a fraction (e.g. 10%) of the maximum of the gradient. The blurry edge
slowly converges to a sequence of steps, rather than a single step. A way
to prevent this from happening is to use smoothed versions of the gradient,
rather than the gradient itself, in Eq. (3.4), this solution was independently
proposed by Catté et al [57], and by Nitzberg and Shiota [271] (see also
chapter by Niessen et al. on discrete implementations in this book).

5. Continuous model and well-posedness question

In this section we consider issues of stability, existence and uniqueness of
solutions of the anisotropic diffusion scheme that uses the magnitude of
the gradient as an estimate of the local ‘edginess’, i.e. equation (3.3) with
conduction (3.4). '

We will study a continuous model, although a discrete one gives a better
approximation of the algorithm. The analysis of discretized schemes poses
additional problems since discretization introduces another scale parameter
(the lattice spacing) and directionality (e.g., vertical and horizontal edges

may be preferred to slanted edges). Such effects may be reduced by making _.

the grid size fine enough, #f the continuous model is well-posed and stable.

lil-posed problems often appear in applied mathematics, e.g., as inverse
problems in control theory. For example, the initial value problem, instead

of the boundary value problem, for the laplacian:
02 0*
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