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Abstract

The paper presents a novel method of robust skele-
tonization based on the Voronoi diagram (VD) of
boundary points, which is characterized by correct Eu-
clidean metrics and inherent preservation of connec-
tivity. The regularization of the Voronoi medial axis
(VMA) in the sense of Blum’s prairie fire analogy is
done by attributing each component of the VMA with
a measure of prominence and stability. The resulting
Voronoi skeletons (VSK) appear largely invariant with
respect to typical noise conditions in the image and ge-
ometric transformations. Hierarchical clustering of the
skeleton branches, the so-called skeleton pyramid, leads
to further simplification of the skeleton. Several applica-
tions demonstrate the suitability of the Voronoi skeleton
to higher order tasks such as object recognition.

1 Introduction

During the last decades, skeletonization or thinning
has been a constant research topic. The concept of
skeletonization denotes a process, which transforms a
2D object into a 1D line representation, similar to a
stick figure. A concise definition of the skeleton or me-
dial azis (MA) in the continuum was given by Blum [1],
who postulated the well-known prairie fire analogy. In
spite of its apparent simplicity, the implementation of
Blum’s definition in the discrete world without losing
important properties such as connectivity or Euclidean
metrics has turned out to be surprisingly tedious (for
a survey, see [2]). Recently, an implementation of the
fire front propagation in the discrete plane was proposed
in [3]. However, this algorithm is based on regular met-
rics and therefore inherits several of the typical draw-
backs of common thinning methods. Basically, we can
distinguish between two substantially different variants
of generic (i.e., which do not presume a very specific ob-
ject representation, e.g., polygonal shapes) skeletoniza-
tion algorithms: Topological thinning and medial azis
extraction from a distance map.

A large class of thinning algorithms examine the
topological relevance of object pixels rather than the
metric properties of the shape. Typically, object pixels
are repetitively tested and subsequently deleted, when-

ever their removal does not alter the topology of the
thinned shape. While working fast and relatively reli-
ably for elongated silhouettes, thinning of shapes char-
acterized by a large diameter can often strike the hu-
man observer by counterintuitive results. The topology
of the rectangular grid implies that this sort of thinning
leads to regular metrics. On one hand, topological thin-
ning can guarantee connected skeletons, on the other
hand, we pay for retaining connectivity with the loss of
Euclidean metrics.

The alternative approach requires the evaluation of
a distance map. The use of regular metrics leads to
very simple algorithms, but the resulting skeletons are
usually incongruous with the fire front paradigm. On
the other hand, efficient methods to obtain correct Eu-
clidean distance maps have been published (e.g., [4]).

However, the next step, namely the extraction of
the MA imposes severe difficulties. If we compute the
skeleton as the set of endpoints of shortest intrusion
paths [5], the skeleton will be characterized by a large
number of redundant elements. Conversely, the compu-
tation of the centers of largest inscribed disks leads to a
skeleton consisting of more or less sparsely distributed
points. Therefore, other methods apply differential ge-
ometry to extract the skeleton. In that case, pseudo-
Euclidean or Euclidean metrics may be used, but the
problem of connectivity remains unsolved. A promis-
ing approach seemed to be the combination of thinning
and a method, which explicitly extracts skeletal pix-
els [6]. Although it was possible to let the thinning
process make the connections between disjoint actual
skeleton points, the previously mentioned deficiencies of
thinning algorithms influenced the quality of the results.
Still, the outcome was only a rough approximation of
Blum’s concept. So other approaches try to complete
the skeleton by tracking the ridges in the distance map
(e.g., [7]). However, even in case of regular metrics, the
algorithms have to handle specific situations such as the
occurrence of saddle-points.

In [8], it is pointed out that a major weakness of the
“symmetric (or medial) axis transform (SAT or MAT)”
is its sensitivity to details of the boundary. Several
methods have been proposed to avoid this deficiency.
A pruning approach used in [9] is based on the analysis



of disk radii along a skeleton branch (“propagation ve-
locity”). However, the pruned skeletons do not preserve
their initial connectivity. Insensitivity to artefacts can
be obtained by smoothing the boundary with a lowpass
filter [10] or by blurring the shape [8]. The drawbacks
of these methods are twofold: First, skeletonization has
to be computed afresh for numerous levels of resolution,
in order to obtain a hierarchical description. Second,
postprocessing is needed to establish correspondences
between segments of the MA pertaining to different lev-
els. Still another way is to attribute each point of the
MA with a measure of “prominence” of the associated
boundary [11]. Consecutively, after thresholding, less
essential sections of the MA are disconnected from the
“backbone”. However, the straightforward application
of the above method to complex shapes can lead to
several disjoint “backbone” sections, which intuitively
should be connected. In [12] the local curvature of the
boundaries of the original object and successive erosions
thereof controls the preservation of potentially stable
skeleton branches. Similarly, in [13], curvature extrema
lead to the set of initial control points for the simula-
tion of the “dynamic grassfire” using the snake model
Two questions arise with respect to the general scope
of this approach. First, a ragged boundary may prema-
turely initiate skeleton branches, which at a later stage
turn out to be irrelevant to the overall shape descrip-
tion. Second, the computation of the correct curvature
cannot be transferred in a straightforward way to the
discrete plane.

2 The Voronoi Medial Axis

Since the distance map reflects the proximity rela-
tions among boundary points, the evaluation of a dis-
tance map is closely related to the notion of proximal
polygons within a point set. According to [14], such
problems can be seamlessly solved with the help of the
Voronoi diagram (VD) of the boundary points. The
computation of a distance map can then be defined as a
mapping of the Voronoi polygons onto the rectangular
grid.

It is well-known that the medial axis of polygonal
shapes can be obtained by computing the VD of the
boundary line segments (e.g., [9], [15]). Such Vorono:
medial azes (VMA) consist of segments of straight lines
and parabola. However, any convex locus on the bound-
ary such as the vertex of a polygon induces an additional
skeleton branch. Thus the proper polygonal approxima-
tion of a shape becomes crucial for the complexity and
topology of the skeleton. Unfortunately, robust polyg-
onal approximation of arbitrary shapes turned out to
be fairly difficult. Natural shapes require a rather large
number of vertices for an accurate polygonal approxima-
tion. Numerous additional skeleton branches are thus
introduced, which do not contribute essentially to the

overall representation.

Despite these obstacles, the VD of the boundary
points lays the foundation of the Voronoi skeleton. In
order to support symmetrical treatment of foreground
and background, the course of the boundary is expressed
using a symbolic description, namely as a chain of pizel
raster cracks, i.e., elementary vectors, which separate
object pixel and non-object pixel. The VD is computed
based on the raster crack endpoints.

The doubly-connected-edge-list (DCEL) has been
proposed as the data structure of choice for the VD
in [14]. We adapt the DCEL to related data struc-
tures as the VSK by attributing the DCEL compo-
nents with supplementary information, e.g., regulariza-
tion data and labeling information.

The resulting VMA represents the medial axis in the
sense of Blum’s proposal, if each point site initiates a
concentric fire front. However, the difficulty lies in the
still huge number of edges, which (a) are not relevant
for the basic form of the skeleton (see, e.g., Figure 3(b))
and (b) react very sensitively to even the slightest dis-
turbations among the point sites. Consequently, the
description or identification of shape by means of the
complete VMA is most likely an ill-posed problem un-
less a regularization method is proposed.

3 Regularization

(©
Regularization of the VMA: Different Resid-

ual Functions.

Figure 1:
(a) Potential and circularity residual. (b)
Bi-circularity residual. (c) Chord residual.

We observe that those parts of the medial axis, which
lie deeply inside an object are less sensitive to changes
among the boundary points than are the outer parts.
Skeletal segments, which describe rather global topolog-
ical relations (and therefore should be preserved) were
created during the last phase of fire front propagation,
when the fire fronts were approaching the quench locii
from nearly opposite directions. In the case of the VMA,
each Voronoi edge represents the local symmetry axis
of exactly two boundary point sites, henceforth named
the anchor points of an edge. The length of the short-
est path from one anchor point to the other, measured



along the boundary B, is a strong probability indicator
for the location of an edge within the shape. If this dis-
tance is large, the edge (and therefore this portion of
the MA) is very likely to lie deeply inside the object.
Based on these observations, the following four variants
of a residual function are derived.

Potential Residual: In Figure 1(a), the anchor points
of edge e are py and pp. Consequently, e is at-
tributed with the length of path w. The distance
w = dist? (pa,pp) (superscript B denotes that the dis-
tance is measured along the boundary) for arbitrary
pairs of points can be computed efficiently, if we in-
troduce a boundary potential function W(p) for every
boundary point p. In order to create W(p), it is nec-
essary to track each boundary chain and assign to each
point the current length of the path relative to an ar-
bitrary origin. For example, for a closed boundary, we
obtain w from

dist®(pa,pp) = min{|W(pa) — W(ps)|, (1)
Lp —|W(pa) = W(ps)l},
where Lp denotes the total length of the boundary. If
pa and pp belong to disjoint boundary segments (typi-
cal for objects with holes), w is assigned an “infinitely”
large distance value.

Since w denotes the length of that fraction of the
boundary, which is spanned by the anchor points, we
define a potential residual ARp(e) (constant for every
point of edge )

ARp(e) € w = dist” (pa, p), 2)
which attributes each Voronoi edge. Skeleton extraction
then boils down to simple thresholding. Every edge with
a residual value greater than a specific threshold T is
assumed to be a stable part of the skeleton.

The following three variants of residual functions are
closely related to the potential residual.
Circularity Residual: According to the definition of
the MA | every point m of an edge e is the center of the
largest inscribed disk. By comparing w with perime-
ter b of the disk we obtain a measure for how well the
boundary segment is approximated by a circular arc
(Figure 1(a)). Again, we assume that if the circular-
ity residual ARc(e,m) (different for every disk center
m)

ARc(e,m) e w—b= ARp(e)—b (3)
is large, the edge is likely to be a stable part of the
skeleton.

Bi-circularity Residual: In order to overcome some
of the shortcomings of the circularity residual such as
the undue suppression of circular forms, we modify its
definition by multiplying w with 7/2. The so-called bi-
circularity residual ARp(m) expresses the approxima-
tion of a chain of semi-circles w* by perimeter b of the
inscribed disk (Figure 1(b)). w* itself is an approxi-
mation of a vertex-based reconstruction of the shape,

namely by drawing the largest inscribed disk at each
vertex of the VD . We define ARg(m) as

of 2,7 2. 7
ARp(e,m) = —(gw—b) = Z(FARp() =b). (4)
The factor 2/7 assures that for elongated shapes, i.e.,
b€ w, ARg ~ ARc ~ ARp.
Chord Residual: The chord residual (Figure 1(c)) is
obtained by replacing perimeter b with the length s of
chord papsm:

ARp(e)  w—s=ARp(e) — 5. (5)

Thus, ARg(e) is a measure for the degree of approxi-
mation between the original shape and a subset of its
Delaunay triangulation, the straight line dual of the VD.

It can be shown [16] that skeleton extraction by
means of our residual functions preserves the connectiv-
ity of the skeletons. Thus, no additional postprocessing
steps are mandatory to connect disjoint portions of the
MA as in [17].

Having attributed the edges of the VMA with one of
the residual functions, we need a reasonable threshold,
which suppresses the effects of noisy artefacts. With the
help of Figure 2, we derive such an estimate for the case
of a spike-shaped disturbation along the boundary.

o Vertex s
e Point Site

Figure 2: Estimation of a Good Threshold.

I' denotes the spurious skeleton branch induced by
the spike. We would like to suppress I' for an arbitrarily
large extent of the object. First, we obtain I = v/2na,
where n symbolizes the size of the protrusion in terms
of the number of raster cracks and a denotes the length
of a raster crack. Consequently, for a point ¢ on I,
which lies very far away from the location of the spike,
we obtain (d.: Euclidean distance)

limg,(Qpa)—ce ARP(Q) = 2na
limg,(Qpa)—cc ARC(Q) = na(2-V?2) 6
limg, gy o ARB(Q) = na(2—2v2) (O
limg (g pa)—mee ARE(Q) = na(2—2).
This set of estimates can be extended by analogous anal-
ysis of other types of artefacts.

INote that we have introduced an additional vertex in the mid-
dle of each raster crack. This approach is useful to define a proper
separation into exoskeleon and endoskeleton and to explain the
meaning of ARp, but not required in practical applications.
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Figure 3: The Effects of Different Residual Functions. (a) Binary silhouettes (b) VD of “raster crack” endpoints. (c) ARp,
T =9.0. (d) ARy, T = 3.0. (e) Section of the VD. (f) Same section after regularization, AR¢c, T'=3.0. (g) ARc, T = 3.0.
(h) All 9 skeletons of (g) brought to the same scale and arranged side by side.
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Figure 4: 3D Rendering of Circularity Residual.

In a typical configuration, an error on the order of 1
pixel results from the binarization of a nonpathological
gray-valued image and a similar error is introduced by
an affine transformation of the object. A useful thresh-
old is obtained by setting the extent na of the spike to
a value of 2a or, for the sake of security, 3a. Since we
are working with pixel raster cracks, we set ¢ = 1 or
a =2 (The latter can be used to “cut off” corners).
We insert these values, e.g., into Equation 6 in order to
obtain a threshold estimate. The effects of thresholding
are exemplified in Figures 3(c¢) to 3(h).

Further insight into the properties of the residual
functions may be gained by using 3D visualization tech-
niques. In Figure 4, the values of the circularity residual
are rendered as the height of each Voronoi edge. The
illustration is dominated by several high ridges running
along the object, which can be interpreted as the main
skeleton or the main medial axis of the shape. Appar-
ently, the circularity residual discriminates very well be-
tween these portions of the skeleton, which are related
to the general outline of the shape and those, which
stem from tiny details.

4 Endoskeletons & Exoskeletons

The symbolic (1D) description of the boundaries re-
sults in perfect symmetry between foreground and back-
ground. Since the definition of the VMA does not refer
to an explicit distinction between foreground and back-
ground, the skeletons of the foreground (endoskeletons)
and of the background (exoskeletons) can be computed
simultaneously. FEndoskeletons describe the topology
and metrics of an object, while exoskeletons depict ad-
jacency relations between an object and its neighbors
(see, e.g., Figure 6(d)). Thus the exoskeleton can be ex-
ploited for operations such as grouping of objects, edge
map completion (gap closing), or path planning.

5 The Skeleton Pyramid

Albeit the pruning yields fairly stable skeletal rep-
resentations, it does not solve a fundamental prob-
lem of skeletonization as will be explained next. If
skeletonization should be able to handle complex com-
pound objects, complex scenes, or objects with a signif-
icantly ragged boundary, a method to handle the still
large number of skeleton branches i1s mandatory. A
basic example of this problem is depicted in Figure 6,
showing the silhouettes of three different maple leaves.
After computing their Voronoi diagrams and circular-
ity residual values, simple thresholding with 7" = 3.0
does not remove several branches, which appear to be
less relevant to the general outline of the shape (Fig-
ure 6(b). Increasing further the threshold will cause
these branches to disappear eventually, although at the
cost of all other branches being trimmed as well. It
should be noted that neither the distance of the skeleton
points from the boundary nor the length of a branch are
reliable measures to decide whether a skeleton branch is
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an important or rather spurious element.

In order to establish a topological hierarchy of the
skeleton branches, the complete attributed VMA is
passed on to a skeleton traversal algorithm. In the se-
quel, the VMA is split at the locations where it inter-
sects with the contours into several endoskeletons and
exoskeletons. Fach (pruned) skeleton is attributed with
a unique label, which in turn is propagated to all of its
edges. Simultaneously, the largest residual value AR, 44
and the corresponding edge is determined. Thereafter,
the skeleton is traversed a second time according to the
strategy of least steep descent (Figure 5).

Let us assume that the traversal algorithm has pro-
ceeded up to edge e;. Next, the algorithm performs a
counterclockwise rotation around vertex v. So the edges
es, e3, and ey are visited in order and both their re-
spective residual values at vertex v and their reference
numbers are inserted into the so-called residual table.
Afterwards, the table is sorted in descending order with
respect to the residual values, so that the ordering of
the edge references obeys the criterion of least steep de-
scent. Instead of continuing the traversal according to
the originally counterclockwise orientation of the edges,
the process is now controlled by the sequence of edge ref-
erences in the table. Referring to the values in Figure 5,
the traversal will continue in edge eq4, then proceed to
es, and finally to es.

Initially, the starting edge (with maximal residual
value) is assigned a rank order value of 1. Let us assume
that this value has been propagated up to edge e;. The
next edge being traversed, namely e4, obtains the iden-
tical rank order value. For the subsequent edges es and
e3, the behavior of the algorithm is controlled by two
user defined parameters. Without these additional con-
trol mechanisms, the rank order would be incremented
by one for each subsequent edge. So edges es and es
would get assigned values of 2 and 3, respectively. The
set of all edges labeled with 1 would result in a single
chain without branching points. Henceforth, we denote
this subset of the whole skeleton as first order Vorono:
skeleton. Generally, for all n > 1 a VSK of order n de-
notes the union of Voronoi edges with label n and the

VSK of order n — 1.

Figure 6: The Skeleton Pyramid: Two First Order VSK
for Different Parameter Settings. (a) “maple leaves”. (b)
Voronoi skeletons, ARz, T = 3.0. The complex boundary
introduces numerous rather irrelevant branches. The shaded
area (as in (c) and (d)) depicts the result of a vertex-based
reconstruction of the shape, namely by drawing the largest
inscribed disk at each vertex of the VSK. (¢) The first or-
der VSK of “maple leaf” shapes. Parameters rm = 0.10,
7o = 0.10. (d) First order VSK with 7z = 0.02, 7o = 0.10.

Two new parameters are introduced to experiment
with the clustering behavior of the skeleton branches,
which otherwise would have been assigned different rank
order values. First, parameter Ty denotes a trigger level
for the build-up of the hierarchy. As long as the residual
of an edge is greater than T, a rank order value of 1
is attached to it. It proved reasonable to adapt Tx to
the individual residual maximum of each skeleton by
defining Ty = ARpar7g. The second parameter 7¢
controls the granularity of clustering within a residual
table. A value of 0.1 for 7 denotes that clusters of edges
characterized by residual values within a ten percent
interval of relative deviation are assigned the same rank
order value. It is conceivable that better estimates for
7 and T¢ can be derived by analyzing the distribution
of the values of AR.

The effect of hierarchical clustering, namely the re-
liable segmentation of the skeleton into significant and
less significant portions is depicted in Figure 6. The
second order skeleton is not shown, since it is basically
equivalent to the skeleton in Figure 6(b).

Notably, the outermost branches point at salient fea-
tures on the boundary. Together with the complemen-
tary skeleton of the background, this observation can
be employed to find a reliable simplified approximation
of the shape by primitive geometric curves. An object
recognition algorithm could preprocess the skeleton in-
put by sorting all branches, which do not belong to the
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Figure 7: Object Recognition. (a) Rigid objects. Left: gray-valued image of Christmas cookies. Right: thresholded image.

(b) Result of the recognition. Circularity residual. (c) Flexible, overlapping objects: ARg, T'= 2.0. (d) Result of subgraph

matching. The skeletal branches shown were successfully matched with a model skeleton.

first order skeleton according to their individual max-
imal residual values. The identification process first
analyzes the first order VSK, which was obtained by
noncritical parameter settings and then proceeds by ex-
amining the branches at lower hierarchical levels.

6 Applications

6.1 Separation of Abutting or Overlapping
Objects

Clusters of abutting or overlapping objects may be
separated into single objects without explicit object
identification. For simple geometric shapes, i.e.; with-
out characteristic narrowings, the presence of abutting
or overlapping neighbors results in typical bottlenecks,
which connect both neighboring shapes. Such locations
may be identified as local minima of the disk radii along
a skeleton branch. An application of this type of isola-
tion was done in [18]. Tt helped to avoid a combinatorial
explosion within an object recognition algorithm.

6.2 Object Recognition

The attributes of the VSK (disk radii, proximity in-
formation, additional contour labels) constitute a good
foundation for the recognition of both geometrically
rigid and flexible objects. Three implementations [18]
of increasing complexity have been tested on various
shapes. The fastest method only exploits the properties
of the skeleton at branching points (nodes). A more
sophisticated method considers the entire VMA (Fig-
ures 7(a) and (b)). The relevance and stability of each of
its vertices is derived from their circularity residuals. In
“critical” cases, the algorithm proceeds from the inside
towards the less stable parts (boundary) and ends up in
contour matching. The most elaborate version performs
a subgraph matching on skeleton branches (Figures 7(c)
and (d)). Each branch is attributed with additional
global information like overall length, tendency of the
change of disk dimensions etc.. Missing parts within
the object are replaced by so—called “joker”—branches.

6.3 Extraction of Line Graphs

Image understanding is largely based on line pat-
terns. Vectorization is therefore an important process at
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Figure 8: Graph Compilation. (a) Topologically non-

deletable pixels of a line drawing. (b) Graph of (a). (c) After
deletion of extra edges. (d) The VSK adequately represents

the topology and metrics without additional postprocessing.

early stages. It transforms the raster pixel strings into a
line graph. The limitations of the raster line generating
algorithms or the inherent resolution of the underlying
grid often hinder the vectorization and require costly
postprocessing for structural simplification (e.g., [19]).
In contrast to the above, the (vector based) VSK di-
rectly yields very appealing results (Figure 8).

6.4 Interpretation of Road Maps

1 /\//\‘““\: (a)ﬁ

Figure 9: Understanding of Road Maps. (a) Section from a
road map. (b) Corresponding first order VSK. The arrows
point at skeleton branches that were used for the grouping
of ‘dashed’ and ‘para-dashed’ lines.

In map recognition a scene model can not be so
clear-cut but stores rather general information pertain-
ing to all maps of interest. As a consequence, percep-
tual grouping is an essential activity during the transi-
tion from domain-independent image primitives to more
compound entities (structured lines) representing differ-
ent road types. Figure 9 shows how the information con-
tained in both the endo- and exoskeleton of a very small
portion of a map can be used effectively to assemble lin-
early and/or laterally structured (curved) lines (parallel
lines of different width, dashed and “parallel-dashed”
lines) according to the drawing rules. The interpretation
of entire road maps has been described elsewhere ([20]).



Operation | Data Complex. | Computation Time
“Cracks” [11104 points 0.96 s ~2 11600 points/s
VD 11104 points |2.70 s ~ 4100 points/s
31381 edges
20303 vertices
ARp ” 1.14 s (& 27500 edges/s)
AR ? 2.74 s (= 11400 edges/s)
ARp ? 2.89 s (= 10800 edges/s)
ARz ? 1.66 s (a2 18900 edges/s)
Skel. Pyr. ARc, T =3.0 [0.62 s (= 50600 edges/s)

Table 1: Computation times on a SPARCstation-2 for the
“buck” silhouettes of Figure 3 (512x512 image).

7 Summary and Outlook

The drawbacks of conventional raster-based thinning
algorithms can be avoided by replacing the discrete
distance map with the Voronoi diagram of boundary
points. The introduction of residual functions allows to
assign to each Voronoi edge a measure of prominence
and stability. The resulting skeletons are characterized
by true Euclidean metrics and correct topology. Fur-
ther exploration of the properties of the residual func-
tions leads to a hierarchical clustering of the skeleton
components, the skeleton pyramid. Consequently, 1t is
possible to extract a main medial axis, which represents
the most significant features of the underlying shape.
Further analysis of the skeleton may then turn its focus
towards skeleton fragments at lower hierarchical levels.
Therefore, our regularization methods and the skeleton
pyramid establish a multi-resolution skeletal represen-
tation of a shape. The most important advantage of
this structure is that the selection of the skeleton per-
taining to a specific resolution level boils down to mere
thresholding. This clearly sets it apart from other ap-
proaches such as described in [10] and [8]. Voronoi skele-
tons were already used in several applications as shown
in Section 6.

The performance figures in Table 1 illustrate that
the evaluation and intelligent handling of complex data
structures such as Voronoi skeletons is not necessarily a
time consuming task.

The notion of VSK has been already extended to
nonclosed object boundaries of arbitrary complexity.
Therefore, it is possible to pass the (symbolic rather
than pixel-oriented) output of an edge detector to the
VSK apparatus. Moreover, the Voronoi skeletons are
eminently suitable to derive a semantic description of
objects and object relations. The ongoing research is
directed towards this goal and the results will be the
topics of following publications.
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