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FIG. 5.4 Three different rectangles sharing the same stochastic features.

wree different rectangles are depicted. Although these rectangles lock quite dif-
rent, they all share the same stochastic features. As a consequence, the PAT
wnot distinguish between these different images.

6
OPTIMAL LINEAR REGISTRATION

In this chapter we investigate the question of how to find an optimal linear regis-
tration based on a distance measure D. An analytical solution cannot be expected
for the images from our applicatior. Thus, we have to lock for a numerical solu-
tion. Moreover, since the images under consideration are of high resolution, we
focus on fast and efficient schemes, which typically exploit derivatives. Thus, an
important property of the distance measure to be discussed is its differentiability.

The choice of an appropriate distance measure is & difficult task. Popular
choices to be discussed in the subsequent sections are based on intensity (see,
e.g., Brown (19892)), correlation (see, ¢.g., Collins & Evans (1997)), or mutual
information (see, e.g., Viola (1995) or Collignon et al {(1995)).

For some particular applications, modifications of these similarity measures
have been investigated; see, e.g., Studholme et al (1996) or Roche et al (1999).
In addition, the distance measure used in the registration may also be based on
particular image features, e.g., edges or surfaces.

We start by introducing a set of feasible transformations, which here are
supposed to be affine linear maps, ie., ¢ € I¢(R%*); cof, Definition 3.6.
A mathematical formulation of the registration problem then reads as follows.

Problem 6.1 Find ¢ € [T§(R%) such that D] = min.

The essential point here is that the set € [I{(R%) can be parameterized. For
a specific element ¢ of € [I$(R?), we make use of the notation ,, where

d

Dare(x) = ago + Z ag ;s £=1,...,4d.
=1

The parameters ag,; are gathered together in a vector,
o= (Q‘.l,o, U S0 PR 2, .,ad,d)T eR™, n=d(d+1).

Moreover, we set
D(a) :=Dlp,] and Tg:=Top,. (6.1)

Thus, Problem 6.1 may be reformulated in terms of a parameterized finite-
dimensional optimization problem.
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Problem 6.2 Find a € R", such that D{a) = min.

Since differentiability is a major point for the development of fast nurmerical
schemes, we require the template image to be differentiable.

In principle any minimization technique can be used for the minimization
of D. However, on the one hand it turns out that direct methods or steepest
descent methods are not fast enough, while on the other hand, second order
derivative-based Newton-type methods are not stable for real-life applications.
This is because the derivatives of the images have to be approximated from the
discrete data. Since these data are typically corrupted by noise, estimating a
derivative becomes & delicate matter.

6.1 Intensity-based registration

A straightforward approach is based on the minimization of the so-called sum of
squared differences (SSD); ¢f., e.g., Brown (1992) or Capek (1999).

Definition 6.1 Let d € N and R,T € Img(d). The sum of squared differ-
ences (SSD) distance measure DD is defined by DD : Img(d)? — R,

DSPRT) = 51T - Rl = 5 [ (0(0) - R(a)) .

For o transformation ¢ : R% — R we also define
- D¥PIR, T; 0] = DSSPIR, T o ¢, (6.2)

and for a parametric transformation @, we set

DSP(R,T;a) = DSSPIR, T o ). (6.3)

In order to make Newton-type methods applicable, we compute the derivat-
ives of D; cf., eqn (6.3). Elementary computations give

BajDSSD(R, T: CE} = ((Ta. - R)1 3&,-TG>L2 )
Ba;a, DP(R, T10) = (8,, T, 00, Ta),, +{(Ta — R), Ba;,0.Ta )y, -

Note that we could also work with subderivatives if the images are non-smooth.
However, in all our applications, the images are given in terms of discrete data,
and we obtain the continuous images by using an interpolation scheme. It is this
interpolated image which has to fulfill the smoothness constraints. Thus, the
smoothness restriction is less severe as it might appear at first right.

"
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As already pointed out, a second order derivative-based approach might not
be the method of choice. Here, we take advantage of the so-called Gauss—Newton
method, where, roughly speaking, the linearization step is performed within the
norm. However, Levenberg—-Marquardt techrniques are also used in the literature;
cf., e.g., Thévenaz et al (1998).

A first order Taylor expansion gives

DSP(R,Tia+b) = 3| Tuts — R,

l
= 2Ty~ R+ VT, 0|3, (6.4)
Minimizing the term on the right hand side with respect to b, we discover a linear
least squares problem. Thus, for a fixed a, the optimal solution is characterized
by the normel equations

M(a)b = fla),
where M (a) := (m;x(a)) € R™*", fla) = (f;(a)) € R?, with
fi(e) = (To — R, 06T} » (6.5)
Mye(a) = {80y Ta, 80, Ta) )y, - (6.6)

The overall algorithm for computing an optimal parameter ¢* is summarized
in Algorithm 6.1. The computationally expensive parts are the d(d + 3)/2 inner
products for the computation of f(a) and M{a) and the computation of T" o ¢,.
Here, an interpolation scheme has to be exploited. From a theoretical point of
view, this approach requires at least a quadratic interpolation scheme. However,

Algorithm 6.1 Gauss—Newton method for the minimization of DSSP; ¢f,
eqn (6.3). :

Set k = 0, choose initial guess a(®.
While not STOP,
compute f(a®)) and M(a*)),
ef., eqns (6.5) and {6.6), respectively;
solve the system of linear equations
M(a®)b = f(a'®);
update o) = g 4 b, ko k-1
end.

The iteration is stopped once the norm of the update b is brought below
a certain tolerance (here, tol; = 107%) or the relative decrease in the
objective function is too slow, f{a®)) — flalkt¥) < tolaf(a®*+H). In our
implementation we used tolp = 1078,
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numerical experience provides evidence that d-linear interpolation schemes as
introduced in Section 3.1.3 can be used with success, too.

In the case of discrete images, it is more stable to replace the normal
equations by the solution of the finite-dimensional least squares problem using
a QR~decomposition; cf., e.g., Golub & van Loan (1989, §5.3.4).

Trom a mathematical point of view, the type of parameterization of the
transformation ¢ is of no particular iruportance. Thus, any of the restricted
models introduced in Section 3.3.1 can be treated in a similar fashion.

6.2 An example of intensity-based affine linear registration

The results of an optimal intensity-based affine linear registration are shown in
Fig. 6.1. Here, the intensity values of the template image have been médified and
the minimization is performed with respect to both the geometrical parameters

F1c. 6.1 Optimal intensity-based affine linear registration; reference {(TOP LEFT),
template (TOP RIGHT), template after rigid registration (BOTTOM LEFT)
template after affine linear registration (BOTTOM RIGHT).

3
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and the parameters of an affine linear model for the gray values. T'wo registration
results are shown, one for a rigid registration and one for a general affine
linear map.

6.3 Correlation-based registration

Registrations based on modifications of the so-called eorrelation have been stud-
ied by vartous authors; see, e.g., Collins & Evans (1997). Here we use the
definition introduced by Gonzales & Woods (1993, p. 583).

Definition 6.2 Let d € N and R,T € Img(d). The correlation between R
and T is given by

Corr : Img(d)? x R* = R, Corrgr{y) = / R{z)T(z — y)dz.
R4

-

The correlation may also be viewed as the Le-inner product between R and
T{ — ). If, in particular, R and T are normalized, such that they are of unit
length, the correlation is the cosine of the angle between the two images. Max-
imization of the correlation with respect to y gives an image T'(- — y) which is
close to R in the sense that R and T'(- — ) are maximally linearly dependent.

The usual normalization (see, e.g., Gonzales & Woods (1993, p. 583) is by
statistics of the first kind. To this end, we assume that the support of all images
under consideration is contained in a region Q C R¥. For simplicity and without
loss of generality we assume Q =0, 1[* and thus || := [, do = 1.

Definition 6.3 Let d € N and B & Img(d) be an image. The expectation
value i and the standard deviation o of B are defined by

u(B) = || [Q Bl@)s and o(B) = u((B - u(B)?).

-

Definition 6.4 Let d &€ N. The correlation coefficient is defined by
v : Img{d)? x R¢ — R,

o o { B ) Ty — pl(Ty)
7(Ra T= y) . < O'(R) i O'(Ty) >L2 )

where Ty{z) = T{x—y) and u(B) and 0(B) are defined in Definition 6.3.




60 OPTIMAL LINEAR REGISTRATION

Using this normalization the correlation coefficient is just the cosine of the
angle between R — u(R) and T, ~ u(T,).

Definition 6.5 Let d € N and R,T € Img{d). The correlation-based
distance measure D 45 defined by D : Img(d)® — R,

cory . R"#(R) T—“(T)
o= (SE AT

where p and o are defined by Definition 6.8. For o transformation
i : R = R® we also define

DR, T ] = D[R, T o ¢, (6.7)
and for o porametric transformation p, we set

D% (R, T;a) = D[R, T o ,]. (6.8)

Since

D3RR, T) = [R|}, +IT)3, - 2(R,T),,
and
o(R)o(T) - D[R, T) = (R — u(R), T ~ u(T));,
= (RTYy, ~ w(R)u(T)

we see that there is a strong connectior between the minimization of DSSP
and the maximization of D, If in particular the transformation is restricted
to pure translation, we have det{V¢) = 1 and the approaches coincide. This
follows from || R|\r,, o (R), and u(R) and |T|r,, 0 (T), and 4(T) being constant,
respectively.

6.4 DMutual information-based registration

Since 1995, mutual information has been used in image registration. This
approach was proposed independently by Viola (1995) and Collignon et al (1995)
and has been used since then by many authors, e.g., Kim et al (1997), Maes et al
(1997), Gaens et al (1998), Meihe et al (1999), or Abram (2000}.

§.4.1 Mutual information

The basic idea is the maximization of the so-called mutual information of
the images with respect to the transformation. Mutual information is an
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entropy-based measure with a widespread use in information theory. The pre-
cise definitions of the distance measure D, the mutual information MI, and the
entropy H are summarized as follows.

Definition 6.6 Let ¢ € N and p be a density on R?, de., p: RY— R,
p(z) = 0, end fp, p(z) dx = 1. The (differential) entropy of the density is
defined by

H(p) = ~E,logp] =~ fm plog p dg.

Definition 6.7 Let d € N, R,T &€ Img(d). The mutual information (MI)
distance measure DM is defined by DM : Tmg(d)? — R,
DMUR,T] := H(pr) + H{pr) - H(pr,r),

where pr, pr, and pr denote the gray-velue densities of R, T, and the
joint gray-value distribution, respectively.
For a transformation @ : R% — R¢ we also define

DR, T; 0] = DMUR, T o o, (6.9)
and for a parametric transformation @, we set

DMYR,Tya) = DMUR, T o). {6.10)

The basic idea of mutual information is illustrated by Fig. 6.2. Here, the
transformed templates 1" o i, where @ is essentially a rotation of degree o, and
the joint gray value density prme, are displayed. This Sgure shows that the
density is very “sharp”, when T, = T and becomes “smeared out” when o
increases. Since the mutual information essentially measures the entropy of the
joint density, it is maximal if the images are maximally related.

The entropy is the expectation of the negative logarithm of the density. Thus
we may also write

DMIR, T] = ~E {10 "RT]
[ ] pRT gPRPT



=0, Ml~1.709 P 6.46%107

o=1, Mi=1.024 B=6.25% 107

=5 MI=0.798 p195%10™

3. 6.2 LEFT: deformed template, RIGHT: log-plot of the joint density pr .,
where ¢ is a rotation of o, = 0,1, and 5 degrees, ML:=DM[T, T o ], p 1=
|| log(1 + pr.z,)ileo- For illustration purposes, the density has been re-scaled
and background values have been neglected.
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since

Zpnr log 221 |

= fm 2(10gPR,T(91192) — log prig1) — log pr(ge))orr (g1, 92) dg1, 92)
= ~H{pgrr) ~ fm /ﬂ; prr(g1,92) dga log prig1) do:
- fm /R prr(91,92) doy log pr(ge) dgs

= —H(prr) ~ fm pr(g1)log pr(gr)-dgy — /R prigz)log pr(g2) dga,

where Fubini’s theorem has been used.

However, we are interested in a differentiable distance measure, and for non-
smooth gray value densities, the mutual information is not differentiable. In
order to circurmvent this disadvantage, we approximate the joint density by a
smooth, i.e., differentiable, approximation using Parzen window techniques.

Here we summarize the approach presented in Wells et al {1996). The basic
idea is to estimate the density ps using a given sample X = (Xi,...,Xn)
and the entropy Hg given a sample ¥ = (¥1,...,Yn), where X; € £ and
Y, € Q are independently and identically distributed (i.i.d.) on . The mutual
information, which is not directly accessible, is computed in terms of these
estimates.

In the first step, the densities pg, pr, and prr are estimated using the so-
called Parzen window method (see, e.g., Duda & Hart (1973)),

p3(2) % p3(5, X) = = 3 5(Zs. (2~ 5(,)), (611)

=1
where g, : R%%? x R? — R is chosen to be a g-variate Gaussian density
00(5, ) == (2m)~Y2(det )~V 2 exp(—2z" £ 2/2), (6.12) "

ie, T eR¥*?and z ¢ RY. For § = R, T, we have ¢ = 1, and for S = (R, T)7,
we have ¢ = 2. The question of how to find the optimal values for = is discussed
later. Note that Xg, 7, and Zp 7 are the covariance of the Parzen window
and not of the density to be estimated.
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In the second step, the euntropies are estimated using a Monte Carlo
method, i.e.,

-
'

H(ps) = Bog [— loops]'u——Zlogps(S(Yk))
k=1

Combmmﬂr these two approximation steps, one obtains the following estim-
ates Hps; X Y) for the entropies H(pg),

H(ps)m —— Zlog ps(S(¥e))
k....

~ Zlog s (S X)
k 1

= --i— ilog (% i1 9a(Bs, (S(¥e) — S(X.?'))))
k=1
= I?(S;X, Y.

In Viola {1995, p. 49f.) it is argued that a measure for the quality of the
Parzen estimate is to evaluate the standard deviation normalized by the mean.
Viola gives the estimation

o(P(zX)) [k k=P (z,X)
EP*(z X)) Vol P(z,X)

where P* is the Parzen window approximation based on the sample X, n is the

length of the sample, and k is a normalization constant, chosen such that P*.

integrates to one; ¢f., Viola (1995, p. 50). Note that this estimate neglects the
dependence of the density on the bandwidth o. Considering also this depend-
ency, the rate of convergence is only n~%°, following standard arguments; cf.,
Diimbgen (2001).

Estimating a univariate density p from the i.id. sample X;,7 = 1,...,n,
using the kernel estimator

: 1
Pr,o{y) = Ezg(gay - X5),
J=1

MUTUAL INFORMATION-BASED REGISTRATION 65

where g = g1, we have

E,D [:on 0'(3: '—]E Zg O’ T - X; ) =E,O Lg(cr,x-—Xl)]

j=1

= [ storz—s)ota)ey
- / L (/20 o\ iy
R V2w

= \/—;_;Le“fﬂp(:c —/o2)dz

- *\/}5—7—1' R e (o(a) = Vap' @)z + 0p(x — 62)2%)dz

= o(z) + 0(0),

Ve, a0 (3)] = - Varyla(e, = K1)

- % fR (o, —y)2p(y)dy

e lf e e (@—1)® /% p(y)dy
=7 g e v
= O((nV/3)™).

Hence,

Ep [(pryola) — p(2))2] 2
= ((Bp [puc (@)] = p(@))? + Var,[fn,o (2)])
= (0(6?) + O(nv/a)~ 1)) ™H? |

= O(n=%/%), for optimal o = C - n~%/5.

-1/2

In Viola (1995), no analysis with respect to the approximation order of the Monte

‘Cazlo approach for the entropy estimation is given.

For the choices of the variances in the Parzen window functions, Viola sug-

gests a cross-velidation approach based on the sample X. However, concrete
formulas and the approximation order of these estimations are missing. Moreover,
‘the assumption that the covariance matrix Lz 1, of the Parzen window for the
joint density § = (R,T,)" is diagonal is a severe restriction on the images under
‘consideration.
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It is worthwhile noticing that modifications of the mutual information ma
also be used. Studholme et al (1996} for example use

H(prr)

MIN
PR T = H{pr)+ H{pr)

6.4.2 Grodient of mutual information

For the computation of the Gateaux derivative of the Parzen window estimation
based approximation of the mutual information DM[R, T ¢] with respect to
perturbation 3, we intreduce the following abbreviations:

Tlpl:=Toyp, o:=Xg,¢eR, Hrlg=H(T]),
a5le] = g1 (o, (Tlel (Vi) — Tl (X)),
= DprenT € R#%2, Hrrlp] = H((R:T[‘P])T)a

Gyxle] = 92 (5, (R(Y) — R(G), Tlol(Yi) = TIol(X)) 7).

where ¢ and 2 are assumed to be independent on . Hence

dTlpv] = (VT],.%)

¢l = = - xp (= (TIRI(¥h) = T (X,))%/ 20)),

dg;kls ] = —g5, 1} (Tle] (Ye) = Tlel(X5)) - o™ (dT (o3 ] (Yie) — dTleps (X))

1 me
¢)==73 log —Zgg,k[so :

) i=1

dg; k03 ¥
dHze; TR
L ?;1 ; 2= 9e.k[0)

1

Cikliel = 27+/det(%)

N (__1“( R(Y:) - R(X;) )T'E__l( R(%:) - (X)) ))
\72 i) - Tlel %) Tle)(Ye) = Tlel (X5)
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o R(Y:) - R(%;) \ '
4G (0] = ~Giile] (T[go] (Ye) = Tyl (Xj))

_ 0
= (mcp;w(m —alpiui(c)

Hr ol = mz ZG, ] |,
forl J—-—l
‘wm on - dG.- {p
dHr o Sk
RT (lo ;; ng GE."\. 1

suming that £ = g 7 is also diagonal, & = diag(oy,02), we finally
- dDMU(R, T; 93 9] = dHrlp; 9] ~ dH g rle; 9]

_ 3 dg;.r; ;] dG; k03 9]
- ZZ( Zz‘:lae,k[«,o])

oS\ 9ek ]
_l<n¢ 93,4 1¢] Gj:[o]
T m El; ( Sopi ekle] o2 S g Ge,k[w])

- (Tle}(Ye) — Tlel (X)) (dT o3 ] (Yi) — dT[eos ¥1(X5)) -

f in particular the transformation ¢ is parametric, i.e., ¢ = &,, the derivatives

an be computed explicitly.

xample 6.1 For an affine linear registration based on mutual information
e set
: _ (a1 a2\ [z a,
walz) = (aé a4> (x;) + (az)
ad with
’lf}]_(x) = (blxl,O)T, ’sz (ﬂ?) = (bzxzvo)T: "/)3(‘7’.) = (O: b3xl)T:
¢4($) = (01 b4$2)T: 7:b5 (.’1’:) = (bsao)T: ({[)6("3) = (0: bG)T:

Giklea] Gkl
Ty ey Qek(Pa]l 02 % ey Gorlivs)

ATjr(a) = T(2a(¥k)) — T{®alX;)),

Aw; pla) =
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¢ thus have

82, DM(R, T; 6) = dDM'[R, T 0,91 d

= —r% i i Aw; 1 (@) AT 4o(0) (8, T (00 (Ya)) Yoo, — Oy T(2( X)) X51)
k=1 j=1

82, DMY(R, T; a) = dDMY R, T 0, 2]

LS Ay (0) AT () (B T () i ~ By T ) 5.2,

k=1 7=l
8,,3 .DMI (R, T, G) B dDMI [R: Ta Par 1/)31
1 ™moon -
= :]:.Y'?: Z Z A'{Uj’,l; (G)AT',k (a) (8:;2 T(‘Pa, (Yk))}/kgl - aﬁQT(W{XJ))XJal) ?
k=1 j=1
30 DM (R, T 0) = DM R, T; 0y, 44

=2 i ) Awj (@) AT;5(a) (82, T (0 (Ya)) Y 2 — Oy T(2(X5)) Xi12) s
m kel g1

aas DM (R> T; CL) = gpMI [R: T 04, ¢5]

— S S A @AT 0 Gu T8 — 2 T,
k=14=1

8es DB, T;.0) = dDM B, T g, i
= 2 AT, BT 8) ~ BT (),
==

‘here X = (X1, X;,2)7 and Yi = (Yi,1, Ya2) T, respectively.

Wells et al (1996) proposed a gradient-based steepest descent method with
xed step size « for the minimization of D; ¢f., Algorithm 6.8.

Algorithm 6.8 Stochastic mazimization algorithm of Wells et al (1996).
Repeat:
Collect sample X = (X7,..., X, ) from Q.
Collect sample ¥ = (¥1,...,Yy,) from Q.
Update a — a + AV, D(a).
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The steepest descent method in Algorithm 6.8 is based on different samples
in different iteration steps. This implies that the ob jective function changes from
step to step. A convergence proof for the modified algorithm is missing. Firally,
as is well-known, the convergence rate of the steepest descent method might be
arbitrarily slow, a fact that has already been observed for quadratic optimization
problems; cf., e.g., Fletcher (1987). .

Our implementation is based on a Levenberg-Marquardt-type technique;
cf., Algorithm 6.9. To this end, let f : R* — R, fla) = —DM{(R, T;0,).
For a given a and A, we replace f by the quadratic model

gu{A\a) = f(a) + Vf(a)Da+ 3 AalVF(a)VF(a)T] A,

where [V f(a)Vf(a)] gives an approximation to the Hessian matrix V2 fla).

Remark 6.1 Let f: R® — R™ be a function and h : B® — R be defined by
h(a) = 3]If(a)||&. The (p,q)* entry of the Hessian matrix of A is given by

&h_ o\~ (8, (8 8%
T aORDY (5;;-@5@—;(@) + i) 5@

If | f(a)||lp= is small enough, we have V2h(a) ~ V f(a)VF {a)T; see also Nocedal
& Wright (1999, §10.2).

The next step is the minimization of the quadratic model, subject to
|Aallgn < h. The restriction results in

V@)V F(a)" + M]Aa = ~Vf{a),

where h and A are related, and for a meaningful choice of k we have that
[VF(a)VF{a)T + M, is positive definite; see, e.g., Fletcher (1987, §5.2). The
next iterate is given by o’ := a + Aa. We denote the iterates in the k% iteration
by ol and A®), respectively. If f(a®+D) > f£(a(¥)), the k* step is not successful.
In this situation, we increase the value of A®), i.e., shrink the size h of the trust
region in our model; see Algorithm 6.9 for details.

Note that the objective function f also depends on the samples X and V¥V
which change from step to step. Thus, we measure convergence numerically by
the variance of the last m parameters a*~™+1} 4% where k denotes the
iteration and typically m = 10.

6.5 An example of mutual information-based
affine linear registration

The result of a mutual information-based optimal affine linear registration is
shown in Fig. 6.3. Here, the intensity values of the template image have been
modified. The gray values of the initial image have been re-scaled and inverted.



Algorithm 6.9 Minimization of Parzen window approzimation of mutual
information f(a) == —DM(R, T;w,) with respect to the parameter a using
o Levenberg—Marguardi-type technique.

Set = 1, set 8 > 1, eg., 8 = 5. Choose initial ¢ € R", e.g,
@ ={1,0,0,1,0,0)7 for affine linear registration.
Repeat

Compute f{a) and Vf(a), set A = p.

Compute A, from [Vf(@)Vf(a)T + AL]A, = =V f(a).

While f{a+ Aa) = fla),

A= B :
Compute A, from [VF(a)VF{a)T +A,]A, = -V f{a),
end.

Set u=A/0, a=a-+ Dg.
Until convergence.

Fic. 6.3 Optimal mutual information-based affine linear registration; reference
(LEFT), template (MIDDLE), template after registration (RIGHT).

F1G. 6.5 Four different linear registrations: reference (TOP LEFT), template (TOP
RIGHT), standard PAT registration, (MIDDLE LEFT), robust PAT registration
(MIDDLE RIGHT), affine linear SSD registration (BOTTOM LEFT), and affine
linear MI registration {BOTTOM RIGHT).

Fic. 6.4 Intensity and mutual information-based registration.
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6.6 An example of optimal affine linear registration

Four different linear registration results are presented in Fig. 6.5. In order to
compare the standard PAT, robust PAT, sum of squared differences (5D}, and
mutual information (MI) approaches, we use images sharing the same modality.
Measuring D5P(R, T a*)/DSSP(R, T), where o* is the optimal parameter set
obtained from the different approaches, we have the following results: 56% for
standard PAT, 57% for robust PAT, 51% for optimized SSD, and 62% for optim-
ized MI. Note that our MI computation is based on an approximation based on
random variables. Thus a comparison with respect to MI has a stochastic com-
ponent. For ore particular measurement of DMIR, T;a*) we get the following
results: 0.4812% for standard PAT, 0.4682% for robust PAT, 0.5106% for optim-
ized SSD, and 0.5035% for optimized MI. Thus, it is possible that the optimal
MI solution is suboptimal with respect to different samples.

A comparison of the different techniques is difficult. The intensity-based dis-
tance measure seems to appear natural to the human eye. If the gray values
of the images are related, this measure gives visually pleasing results. Elowever,
if there is no simple relation between gray values of the images, intensity-based
registration is certainly not the best choice.

The irritating point about mutual information is that it does not necessarily
match intensities. Figure 6.4 illustrates this phenomenon. Suppose we want to
register the two images displayed in this figure. Using intensity-based linear regis-
tration, we find two minima, i.e., rotation of k7/2, k = 1,3. For this solutions,
the intensities of the reference and mapped template images coincide. Using
mutual information, we find four solutions, i.e., rotations of kr/2, k =10,1,2,3.

Minimization becomes a delicate matter, since the objective function is not
convex, as illustrated by the above example. Avoiding convergence to local
minima requires additional techniques, such as a multi-scale approach. For
intensity-based registration, typically a Gauss pyramid is used. For mutual
information, one may also view the sample size &s a scale-space parameter. A dir-
ect comparison is impossible, since fast numerical schemes for mutual information
are always based on this additional scale-space parameter.
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SUMMARY OF PARAMETRIC IMAGE
REGISTRATION

Different parametric image registration techriques have been discussed. The
techniques are all based on the minimization of a certain distance measure,
and the distance measure is based on image features or directly on image
intensities. Image features can be user supplied (e.g., so-called landmarks) or
may be deduced automatically from the image intensities (e.g., so-called prin-
cipal axes). Typical exampies of intensity-based distarce measures are the sum
of squared differences (cf., Definition 6.1}, correlation (cf.,, Definition 6.5), or
mutual information {cf., Definition 6.7).

For all proposed techniques, the transformation is parametrie, i.e., it can be
expanded in terms of some parameters o; and basis functions ;. The required
transformation is a minimizer of the distance measure in the space spanned by
the basis furnctions 1, j == 1,...,n. The minimizer can be obtained from some
algebraic equations or by applying appropriate optimization tools.

Landmark-based parametric registration

s Supply features F(R,j) = ™7 and F(T,7) = 2T, 5 = 1,...,m. Choose
a set of basis functions. Find parameters o = (@,...,0m)7 € R” such
that for p = 370, oy,

D) = > IF(R, ) = o(F(T, M)l = min.
F=1

The solution is given by algebraic equations for the coefficients; cf.,
Section 4.2.

Needs landmarks.

Simple. :

Only needs the numerical solution of a linear system of equations.

Least squares matrix may not have full rank; implicit and in general
unknown additional conditions on the features.

Results might be arbitrarily awful.

*

Landmark-based smooth registration

« Supply features F(R, 7} = 27 and F(T,5) = 274, 7 = 1,...,m. Choose
a regularizer STF5 (¢f,, eqn (4.22)) and a regularizing parameter a > 0.



