Only vertices are stored in the data structure, but information about
edges and faces of the surface is also present in the lists of neighbors. For
instance, vertex 7 in Figure 3.2 has the neighbor list {6, 0, 1, 2, 8,
11, 10, 9}. Taking every second number in this list — 6, 1, 8, 10 — reveals
that edges to nodes 6, 1, 8 and 10 emanate from node 7. Overlapping
triples of neighbors — {6, 0, 1}, {1, 2, 8}, {8, 11, 10} and {10, 9, 6} (by
wrapping around to the first neighbor) — give the four faces {7, 6, 0, 1},
{7, 1, 2, 8},{7, 8, 11, 10} and {7, 10, 9, 6}, all written counterclockwise.
In this way, every face of the surface is mentioned four times, once by each
corner. QOur algorithm, however, requires an additional table that lists
every face exactly once. We generate it by visiting all vertices, putting a
face in the table only when it is defined from the corner with the smallest
id, i.e. when it is mentioned for the first time.

As the object lies completely within our data volume, we always find a
closed surface. All vertices in the list are inner vertices of the surface, and
therefore they all have an even number of neighbors. The data structure
generalizes in a very natural way to the case of open surfaces, or surface
patches, where vertices on the border of the surface have an odd number
of neighbors. This possibility is not exploited here, but only later in the
parametrization of surface patches (cf. section 3.5).

The correspondence between the surface net and a graph becomes
clear when a vertex is interpreted as a node in the graph, an edge as an
arc, and a face as a mesh (four-cycle)[40]. For a simply connected object
we get a planar graph with the following topological properties: Four
edges bound each face, and each edge bounds two faces and is bounded
by two vertices. Depending on the local connectivity, each vertex bounds
three to six edges. There are exactly two more vertices than faces; this
follows from Euler’s relation.

A surface with its two degrees of freedom is characterized by a polyg-
onal description based on vertex coordinates with three spatial coordi-
nates. Seeking for an appropriate parametrization, however, requires a
description based on two parameters.

3.4 Parametrization of closed surfaces

A key step in the description of the form of a surface is the mapping of
the surface to the parameter space, in our case the sphere. A one-to-
one mapping must be constructed, i.e. any point on the surface has to
map to exactly one point on the sphere, and vice versa. The location on



the sphere corresponding to a surface point defines the parameters of the
point. It can be represented in a computer as two polar or three Cartesian
coordinates. Mapping a surface to the sphere assigns parameters to every
surface point; therefore I also call it parametrization. The mapping must
be continuous, i.e. neighboring points in one space must map to neighbors
in the other space. It is possible and desirable to construct a mapping that
preserves areas. The use of the cuberille notion gives special importance
to case of square facets, which map to spherical quadrilaterals. Figure 3.5
symbolically illustrates this mapping of a selected facet from the object
surface to a portion of space U. We recall from subsection 2.1.3, and in
particular from example 6, that the parameter space U = (23 is a subset
of of R3, but that it could be related to the rectangle [0, 7] x [0, 27) C R?
through the bijection (7.4(appendix)). It is not possible in the general
case to map every surface facet to a spherical square. Distortions cannot
be avoided, but they should be minimal.

It emerges that the parametrization, i.e., the embedding of the ob-
ject surface graph into the surface of the unit sphere, is a constrained
optimization problem. The following paragraphs define the meaning of
variables, objective (goal function), constraints and starting values in this
context.

Variables The coordinates of all vertices can vary in the optimization.
Using two (e.g. spherical) coordinates per vertex would be the most eco-
nomic representation with respect to storage space, but this would make
the equal treatment of all spatial directions difficult and pose the prob-
lem of discontinuity and singularities in the parameter space. Therefore
we prefer Cartesian coordinates (ug,u1,us) for representing a location
on the sphere, introducing one virtual degree of freedom per vertex. The
number of variables is three times the number of vertices.

Constraints Two kinds of equalities and one kind of inequalities con-
strain the values that the variables can take.

1. The Euclidean norm of the coordinates of any vertex must be 1.
This constraint compensates for the virtual degree of freedom and
forces every vertex to lie on the unit sphere in parameter space.

2. We ask for area preservation, which in our context means that any
object surface region must map to a region of proportional area on
the sphere. To satisfy this requirement, we include one constraint



Figure 3.5: Every single face on the object’s surface is mapped to a
spherical quadrilateral. The sides of a spherical polygon are geodesic
arcs on the sphere surface. As the sphere has unity radius, the length
of a side s; is equal to the corresponding center angle (in radian). The
quadrilateral in this illustration is special in that its four sides sg - - - s3 are
equal and its four angles ag - - - ag are equal: it is the spherical analogue
of a square.

for each elementary facet (see Figure 3.5): the area of the corre-
sponding spherical quadrilateral must be 47 divided by the total
number faces.

3. No angle aj of any quadrilateral on the sphere must become nega-
tive or exceed .

Objective Function The goalis to minimize the distortion of the sur-
face net in the mapping. It is conceptually similar to angle preservation,
and it must tend to make the shape of all the mapped faces as similar
to their original square form as possible. To fulfill this goal perfectly, a
facet should map to a “spherical square” (see Figure 3.5). This can never
be reached exactly for all faces except when the object has a very special
form, e.g., consists of one single voxel. There are several ways to trade off
between the distortions made at different vertices. We observe that the
ideal shape of any face, a spherical square, minimizes the circumference
Z?:o s; of any spherical quadrilateral with a given area. At the same
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time it maximizes ) ;_,coss;. These two measures are similar, but not



equivalent if summed over the whole net, as they trade off among distor-
tions differently. The second measure punishes too long sides more and
honors too short sides less than the first one, which is a desirable effect.
It is also simpler to calculate; the cosine of a side - and of the respective
central angle - is the dotproduct of the vectors from the sphere center to
the endpoints of the side.

Starting Values The variables in our optimization are the positions on
the unit sphere to which the vertices are mapped. Therefore, initial values
in this context means an first rough mapping of the object’s surface to
the sphere. It is important for the optimization algorithm that the sphere
be completely covered with faces and none of them overlap, even in the
beginning.

Chapter 4 describes the construction of an initial parametrization
satisfying the last requirement, and it elaborates on the technical details
of the optimization procedure. Figure 3.6 anticipates the parametrization
result for the small object from Figure 3.5, called “duck” in the sequel.
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Figure 3.6: The parametrization achieved by the optimization is visual-
ized three different ways. (a) The surface net is plotted on the spherical
parameter space. Thick lines depict the edges of the original square faces.
The equidistance for both § and ¢ is §. (b) Cartesian interpretation of
(¢, cosB) gives an equal-area cylinder projection. The horizontal lines at
+1 are the poles. (c¢c) Conversely, the polar coordinate grid is drawn over
the object.

For comparison, one vertex is marked with a black dot in all diagrams.



