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On Image Analysis by the Methods of Moments
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Abstract—Various types of moments have been used to recognize im-
age patterns in a number of applications. This paper evaluates a num-
ber of moments and addresses some fundamental questions, such as
image representation ability, noise sensitivity, and information redun-
dancy. Moments considered here include regular moments, Legendre
moments, Zernike moments, pseudo-Zernike moments, rotational mo-
ments, and complex moments. Properties of these moments are ex-
amined in detail and the interrelationships among them are discussed.
Both theoretical and experimental results are presented.

Index Terms—Image analysis, image reconstruction, image repre-
sentation, invariance, moment invariants, moments, pattern recogni-
tion,

I. INTRODUCTION

OMENTS and functions of moments have been uti-

lized as pattern features in a number of applications
to achieve invariant recognition of two-dimensional im-
age patterns [1]-[9]. Hu [1] first introduced moment in-
variants in 1961, based on methods of algebraic invari-
ants. Using nonlinear combinations of regular moments
(regular moments will be referred to as geometric mo-
ments), he derived a set of invariant moments which has
the desirable properties of being invariant under image
translation, scaling, and rotation. However, the question
of what is gained by including higher order moments in
the context of image analysis has not been addressed, and
the recovery of the image from these moments is deemed
to be quite difficult,

Teague [10] has suggested the notion of orthogonal mo-
ments to recover the image from moments based on the
theory of orthogonal polynomials, and has introduced
Zernike moments, which allow independent moment in-
variants to be constructed easily to an arbitrarily high or-
der. Other orthogonal moments are Legendre moments,
making use of Legendre polynomials. In [11], rotational
moments are used to extend the definition of moment in-
variants to arbitrary order in a manner which ensures that
their magnitudes do not diminish significantly with in-
creasing order. More recently, the notion of complex mo-
ments [12], [13] has been introduced as a simple and
straightforward way to derive moment invariants. The def-
initions of these various types of moments and a summary
of their properties are presented in Section II.
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From the point of view of pattern recognition, moment
invariants are considered reliable features if their values
are insensitive to the presence of image noise. The effects
of sampling, digitizing, and quantization noise on mo-
ment invariants have been addressed in [14]. In Section
IIT of this paper, the effect of image noise on various types
of moments is analyzed using stochastic images. Second-
order statistics of various moments are related to those of
the image noise so that the impact of noise can be esti-
mated and compared. In Section IV, information redun-
dancy among different orders of moments is derived for
various moment types as an indication of their informa-
tion content.

It is well known that, in principle, most of the image
information can be recaptured by using a sufficiently large
number of a particular set of image moments. In Section
V, the question of how well an image can be characterized
by a small finite set of its moments is investigated by first
reconstructing the image from its moments and then eval-
uating the mean-square reconstruction error. Theoretical
results for stochastic images under both noise-free and
noisy conditions are derived. The error is expressed as a
function of the statistical properties of the image function
and the noise process. Experimental results for a set of
chosen test images are also presented.

II. MOMENTS
In this section, the various types of moments are de-
fined and their properties briefly summarized. We assume
that the real image intensity function f(x, y) is piecewise
continuous and has bounded support.

A. Geometric Moments (GM)

The geometric moments of order (p + ¢q) of f(x, y)
are defined as

Sio xPyif(x, y) dx dy (2.1)

= |
where p, ¢q =0, 1,2, + -+, oo, The above definition has
the form of the projection of the function f(x, y) onto the
monomial x”y?. However, the basis set {x?y?}, while
complete (Weierstrass approximation theorem [15]), is not
orthogonal.,

B. Legendre Moments (LM)

The Legendre moments of order (m + n) are defined
as '
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(2m + 1)(2n + 1)
4

Sw g Po(x) Pa(y) F(1 ) dxdy (2.2)

)\mn =

where m, n = 0, 1, 2, +, o, The Legendre polyno-
mials {P,(x)} [15] are a complete orthogonal basis set
on the interval [ -1, 1]:

1
|| Py o) =
The nth-order Legendre polynomial is

n n
= Z a,,jxj = d
j=0

2

2—"1—‘;—{ 6mn' (2'3)

Pn(x) (x2 - 1)" (24)

2'n! dx"
! By the orthogonality principle, the image function f(x,
. ¥) can be written as an infinite series expansion in terms
- of the Legendre polynomials over the square [ —1 < x, y
=11

flxy) = ,,,Zo nZ NnP(¥) Pa(y) (25

where the Legendre moments { \,,, } are computed over
the same square, If only Legendre moments of order <N

‘are given, then the function f(x, y) can be approximated
by a continuous function which is a truncated series:
N m

Z Z >\Iﬂ n, n Ill "(x) P (Y) (2'6)

m=0n=0

f()

Using (2.1), (2.2), and (2.4), the Legendre moments and
geometric moments are related by
n

2m + 1)(2n + 1
)‘mn = ( 21_( )12 Z amj nkM (27)
Thus, a given Legendre moment depends only on geo-
metric moments of the same order and lower, and con-
versely.

'C. Zernike Moments (ZM)

The complex Zernike moments of order n with repeti-
tion [/ are defined as

n+1 (% &)
Ay = So S [an(r’o)]*

s 0

« f(rcos 8, rsin 0)rdrdo (2.8)

wheren = 0, 1,2, + + +, o and / takes on positive and
negative integer values subject to the conditions
n—|l{—even |l| (2.9)

e nah

£
The symbol * denotes the complex con)ugate The Zer-
nike polynomla}/s [16] ~Vilno) |
va(x, ¥) = Wyu(rcos 8, rsin 8) = Ry(r) ™ (2.10)

are a complete set of complex-valued functions orthogo-
nal on the unit disk x> + y* < 1

497

Szw Sol[ Vu(r, 0)] Vi (r, 6)r dr df

0

= 6mn 6“

2.
n+1 ( 1)

The real-valued radial polynomials { R, (7)} satisfy the
relations

. .
1
SO Rnl(r) le(r)r dr = m 6mn (212)

and are defined as

gty %
{

, (n=11)/2
Rnl(r) = ; (——1)
. (fl - S)' | s
s! ___Lln U "— s ! ro L ‘UL— s ! Gefy
2 2
n
= B,
k§:| nle? (2.13)
n—k=even

The function £ (x, y) can be expanded in terms of the Zer-
nike polynomials over the unit disk as

f(x’ y) = n§0 I=Z——oc AnIan(x’ y) (2'14)

n—}l| =even
[H=n

where the Zernike moments {4, } are computed over the
_unit disk. If the series expansion is truncated at a finite
“order N, then the truncated expansion is the optimum ap-
proximation to f (x, y)'

flxy) = Z 2

n=0

Aannl(x, y) (215)

n- |I| even
[|<n

Note that because of the orthogonality of the Legendre
and Zernike polynomials, both the Legendre moments
{ Ny } in (2.5) and the Zernike moments {4, } in (2.14)
are in each case independent. It can be shown that Zernike
moments and geometric moments are related by

n q |

n+1
20 2w
m k=l j=0m=0
n—k=even

a\ (!l
) <j><m>Bn]l|kMk—2j—m,2j+m (216)

{—i >0
w =
+i

| <0,
q=3%(k—]I]),andi=+v-1.

D. Pseudo-Zernike Moments (PM)

Zernike polynomials were first introduced in 1934 [17]
and were later derived from the requirement of orthogo-

AnI =

where

(2.17)
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nality and invariance properties by Bhatia and Wolf [18].
Zernike polynomials, being invariant in form with respect
to rotations of axis about the origin, are polynomials in x
and y. A related orthogonal set of polynomials in x, y,
and r was derived in [18] which has properties analogous
to those of Zernike polynomials. This set of polynomials,
which we shall call pseudo-Zernike polynomials, differs
from that of Zernike in that the real-valued radial poly-
nomials are defined as

n—|I|

Ru(r) (-1)°

5=0
’ (2n + 1 — s)!
sti(n ~ 1] = s)1(n + [1] +1 - s)!

n

n—=s

Pyt Sn]l!krk (2-18)
where nown =0, 1,2, + ++ | o and [ takes on positive
and negative integer values subject to |{| < n only. By
simple enumeration, this set of pseudo-Zernike polyno-
mials contains (n + 1)* linearly independent polynomials
of degree <n, whereas the set of Zernike polynomials
contains only 3(n + 1)(n- + 2) linearly independent
polynomials of degree <n due to the additional condition
ofn — |I| = even. )

The Zernike moments in (2.8) become pseudo-Zernike
moments if the radial polynomials {R,(r)} in (2.18),
which also satisfy the relations in (2.12), are used to com-
pute the polynomials with the condition n — |1 | = even
eliminated. Since the pseudo-Zernike polynomials are also
a complete set of functions orthogonal on the unit disk,
both the series expansions of f(x, y)in (2.14) and (2.15)
hold with the condition n — [l] = even eliminated, and
{4y} and {¥,;(x, y)} are now the pseudo-Zernike mo-
ments and the pseudo-Zernike polynomials, respectively.
In addition, the pseudo-Zernike moments are indepen-
dent. It is shown in Section III that pseudo-Zernike mo-
ments are less sensitive to image noise than are the con-
ventional Zernike moments.

E. Rotational Moments (RM)

The rotational moments of order n with repetition / are
defined as

2r poo
Dnl = S S
0 0

wheren = 0,1,2, . » % and [ takes on any positive
and negative integer values. From (2.8), (2.10), (2.13),
and (2.19), it can be shown that Zernike moments and
rotational moments are related by

n

r"e”"f(r cos 0, r sin 0)r dr df (2.19)

n+1
T

(2.26)

Ay = k§|'1l Buj11xDu

n—k=even

from which it follows that rotational moments can also be
obtained from geometric moments by

K
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]

m

()0
J

where w is given by (2.17) and ¢ = 4(n — |/|). Unlike
Legendre and Zernike moments, the rotational moments
{D,} are not generally independent.

Mn—2j—m,2j+m (221)

F. Complex Moments (CM)

The notion of complex moments was recently intro-
duced in [12] as a simple and straightforward way to de-
rive moment invariants. The complex moments of order
(p + g) are defined as

oo

- L, L, (¥ + )" (xr = ) (x, y) dx dy

(2.22)
wherep, ¢ =0,1,2, - -

Cpq

+, 0, andi = v/—1. The com-
plex moment of order (p + q)-is a linear combination
with complex coefficients of ‘the geometric moments
{M} satisfying r + s =p +q:

4 <p> <§>i,,+q-<r+s> \3

!\ s=0 \r
S Sl D £ S

P
Cog = ;0

q=(rts) MJ (2.23)

In polar coordinates, the complex moment of order (p +
g) can be written as
=]

-1

M"‘{% o= of Zf
thus, it is related to the rotationfi7 moments as
o .
- Dy = Ciat-ny1/2n41y = Cp{? (2.25)

from which it also follows that Zernike moments and
complex moments are related by

C rPraeiP=0f (1 cos 0, 1 sin 8)r dr do;

pq

(2.24)

n

n+1
T

A, =
nl k=111
n—k=even

-

+
From (2.24), the repetition of Cpq is defined as p — gq.
Like the rotational moments, the complex moments {Co}
are not independent.

III. Noise SENSITIVITY

Moment invariants using various schemes [2], [8]-[11]
based on the different moment types as defined in the pre-
vious section have been shown to provide perfect invari-
ance properties under noise-free condition. However, in
the presence of noise, the computed invariant moments

are expected not to be strictly invariant. Thus, it is im--

portant to investigate which invariance scheme is less vul-
nerable to image noise. In this section, the various types
of moments, and hence their corresponding moment in-
variants, of noisy images are analyzed and compared.
Theoretical expressions relating the second-order statis-
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tics of the various types of moments and those of additive
noise are derived to estimate the impact of noise.

In the following, we assume that f (x, y) is a real ho-
mogeneous (i.e., wide-sense stationary) random field de-
fined over a region { of the xy plane, and for convenience,
we assume that the random field f (x, y) has zero mean:

E{f(x,y)} =0 (3.1)

where the operation of expectation is ensemble averaging.
Experimental evidence [19]-[21] indicates that a reason-
able autocorrelation function for f (x, y) is of the form

Kip (x, 9, u, v) = Ky (0, 0) e7e!lx 7wl =cdy=vl (3 2)
where ¢ and ¢, are positive constants and
2

Ky (0,0) = E{[ f(x, )]’} (3.3)

is the average energy of the random field. By choosing
different values for ¢; and c,, the above autocorrelation
function can be used to model images with different
, amounts of correlation in the horizontal and vertical di-
rections. In general, the greater amounts of detail in the
image, the larger the values of ¢, and c, that should be
chosen. We also assume that the noise process n (x, y) is
of zero mean and is white with autocorrelation function

Ku(x, y,u,v) = 628(x —u,y —v) (3.4)

where 6(x — u, y — v) is the two-dimensional Delta
function and o2 is the two-dimensional spectral density of
ithe noise process.

It is noted that each of the moment sets defined in the
previous section has the following general form:

)

o= [ en s ey G3)
;

where ¢,,(x, y) is the moment weighting kernel (i.e.,
{dpg(x, ¥)} is the basis set) and ®,, is the moment of
order (p, q) of f(x, y). The moment of order (p, q) of
the noise process n(x, y) can be defined in a similar form
as '

N,, = (3.6)

Pq

] s 30 me ) ey
§

Note that both ®,, and N,, are zero-mean random vari-
ables. The covariance of any two moments of the noise
process can be expressed as

cov {N,g, Ny} = E{N, N}
[V 11 6 2t
[

* K (%, y, u, v) dx dy du dv. (3.7)

]

In order to evaluate the effect of noise on moments of
different orders and to compare how various types of mo-
ments are affected by noise, we define the unnormalized
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and normalized signal-to-noise ratios of order ( p, ¢) as

var {(qu}
SNR,, = ——— 3.8
P var {Npq} (3:8)
and
_ o2
SNR,, = SNR,, m (3.9)

where var { @, } and var {N,,} are the variances of ®,,
and N,,, respectively. For computational and comparison
purposes, we take the random field to vanish outside the
square [—1 =< x, y < 1]. The SNR’s for different mo-
ment sets are evaluated and listed in Table I.

The following observations follow from Table 1.

1) The radial polynomials {R,(r)} in (2.13) depend
only on the absolute values of repetitions (/). Thus, Zer-
nike moments A,; and 4, _; have the same SNR’s. This is
also true for pseudo-Zernike moments, rotational mo-
ments, and complex moments.

2) A,, (both Zernike and pseudo-Zernike moments) and
D,, have the same SNR’s since R,,(r) = r" (for both
Zernike and pseudo-Zernike polynomials). '

3) Rotational and complex moments of the same order
and with zero repetition have the same SNR’s. In this
case, n = even and [ = 0 for rotational moments, p = ¢
for complex moments, and n = p + g = 2p for rotational
moments and complex moments.,

4) C,q and C,, have the same SNR’s since C,, = C%,
for a real image function.

5) If the random field f(x, y) has equal correlation in
the horizontal and vertical directions, i.e., ¢; = ¢, in
(3.2), then M, and M,, have the same SNR’s, which is
also true for A, and A,,,.

For illustration purposes, we choose ¢; = ¢, = 1. Based
on the above observations, the SNR’s as defined in (3.9)
are plotted for

D {M,, Ay, Cppop =0,1,2, -+, 13;A,,,n =0,
2,4, ++-,26}inFig. 1, and

2) {A, forboth ZM and PM, D,;, n =0, 1,2, + <,
13;/ =0forn =evenand / = 1 forn = odd} in Fig.
2.

Both figures show the general trend that higher order
moments are more sensitive to image noise than are lower
order moments. In addition, Fig. 1 shows that complex
moments of a particular order are slightly less affected by
noise than are geometric moments of the same order, and
Legendre moments are more severely affected by noise
than the rest of the moments. Fig. 2 shows that pseudo-
Zernike moments are less affected by noise than are ro-
tational and Zernike moments.

It is clear from both figures that higher order moments
are more vulnerable to white noise. This makes their use
undesirable in image representation and pattern recogni-
tion. On the other hand, it is shown in Section V that only
moments of higher orders carry the fine detail of an im-
age. These two conflicting factors generally put a limit on
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TABLE I
COMPARISON OF THE SIGNAL-TO-NOISE RATIOS FOR DIFFERENT MOMENT SETS

Type of .
Moment Signal-to-Noise Ratio SNR,,
2p + 1)(2¢ + 1
GM M,, LL%I___) 5555 (xu)p(yv)qu/ (x, y, u, v) dx dy du dv
M A, (ot DO 2 D TTT 20 Pati) Pa() 2200 53, 0) ey o
jSSS Ro(r) Ru(p) cos [1(6 — ¢)] Ky (%, y, u, 0) dx dy du dv
ZM, PM A4,
2
a2 SS [R,,,(r)] dx dy
SSSS (rp)" cos [1(8 — @)Ky (x, v, u, v) dx dy du dv
RM D,
¢2 SS r¥ dx dy
SSSS (r0)" " cos [(p = @) ~ )]Ky (%, y, u, v) dx dy du dv
oM G,

ol SS r¥ PO gy dy

All the integration limits are from —1to 1.
x =rcos(9),y = rsin(8).
u = pcos($), v =psin(s).

[}
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Fig. 1. Comparison of the normalized signal-to-noise ratios for different
moment sets (¢; = ¢, = 1) (lines connecting data points are for illus-
tration purposes and y axis is in log scale).
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Fig. 2. Comparison of the normalized signal-to-noise ratios for different
moment sets (¢; = ¢; = 1) (lines connecting data points are for illus-
tration purposes and y axis is in log scale).

the optimal number of moments which are useful in any
given problem. This fact is demonstrated in Section V, in
which for a specific noise level, an image is best charac-
terized by using moments of up to certain high orders.

IV. INFORMATION REDUNDANCY

Of the various moment types defined in Section II, only
the Legendre, Zernike, and pseudo-Zernike moments are
orthogonal. This implies that except for the LM, ZM, and
PM kemnels, the moment weighting kernels are correlated.
Correlation between kernels is directly related to infor-
mation-theoretic redundancy [12] showing how informa-
tive the moments are. In this section, the redundancy
properties of geometric, rotational, and complex mo-
ments are investigated through their connections with Le-
gendre and Zernike moments. To make the analysis fea-
sible, a zero-mean, unit variance white noise process n (x,
y) is used instead of f (x, y) for moment calculations. The
“nalysis for the case of f (x, y), with autocorrelation func-
Jon of the form given by (3.2), can be shown to lead to
the same results. The covariance of any two moments of
the noise process as defined in (3.7) is evaluated over the

appropriate region for various moment types; the results
are listed in Table II.

Table II shows that Legendre, Zernike, and pseudo-
Zernike moments are uncorrelated moment sets, whereas
only those geometric moments with the special conditions
ofp + r = odd or ¢ + s = odd are uncorrelated. In the
cases of rotational and complex moments, only those with
the same repetition (! = kforRMandp — g = r — s for
CM) are respectively correlated, which are also respec-
tively statistically in phase. It is also noted that the vari-
ance of Zernike, pseudo-Zernike, rotational, and complex
moments of the noise process depends only on the order
and not on the repetition.

A. Information Redundancy of Rotational and Complex
Moments .

Zerike and rotational moments are related by (2.20),
which we rewrite here for convenience: :
n+1 <

s k=1
n—k=even

Au By 114Dy (4.1)

Note that for a given repetition /, the rotational moments
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TABLE II
COVARIANCE OF MOMENTS OF WHITE NOISE PROCESS FOR DIFFERENT MOMENT SETS

cov {N,g, N, }, Assuming o2 = 1

502
Region of
Type of Moment Integration
Square
GM My  [—1=xys=1]
Square
LM b [—1sxy=1]
ZM, PM A, Unit Disk
RM D, Unit Disk
CM C Unit Disk

cov {N,,, N,} =

~ [1 _ (__l)pi-r+l][l _ (~1)q+s+l]
(p+r+D(g+s+ 1)
Cm + 1)(2n + 1)

cov {[vmm Nrs} = 4 6'"'6""
cov {N,,,, N,,,k} =2 : ! By O
2
cov {N,, Ny} = ;#H S

27 5
ptg+r+s+2 P

oV (N N} =

{ Dy} have the same repetition, and hence are correlated.
If Zernike moments of order <2N, {4, n = [, 1] +
2, +++, 2N} are given, then the set of rotational mo-
ments {Dy, k =|I[,]I| +2, -+ ,2N} can be obtained
recursively by

2 g
T k||

Dy=—"—- 4, - —— D,

¢ (k * I)Bklllk ¢ k—jj==|<l:Len Bklllk !
k=l +2,[l] +4,-+,28 (42)

with
Dy, = il Ay (4.3)
(11 + 1) By

The second term in (4.2) is actually a function of all Zer-
nike moments of order <k — 2 with repetition [, Thus,
(4.2) can be rewritten as

k-2
™
Dy=-—"" A, — St
ki (k + 1)By “ k_n::lé!/en "
k=il +2, il +4,--- 28 (4.4)

where the coefficient {«,}, which is a function of
{Bujijx}, can be determined easily from (4.2) and (4.3).
The rotational moment Dy, in (4.4) can be viewed as con-
sisting of two components; the first component (the sec-
ond term) contains information which is already con-
tained in the rotational moment Dy, _,,, and the second
component (the first term) contains new information which
is uncorrelated with the first component. In terms of in-
formation redundancy, the first component is redundant.
We define the ratio between the informative part and the
redundant part as ‘

k=l +2,]l| +4,--- 2N (4.5)

where var {Ay} is the variance of the Zernike moment
Ay, of the process. In the case of a Zero-mean, unit vari-
ance, white noise process n (x, ¥), we have from Table
11,

k+1

var {4y} = ——=. (4.6)
The ratio v (k) is plotted in Fig. 3 for the case of [ =
and k = 2,4, -+ - | 20. Notice how this ratio becomes
very small for large values of k. This implies that the in-
formation contained in the rotational moment Dy, which
is already provided by Dy _,;, dominates the new infor-
mation. _

For complex moments, we have from (2.26) for a given
repetition /,

n

n+1
Ay = 'ﬂ_ k=ZI:II BujikCiag=1y,1 /2041y (4.7)
n—k=even .
“wheren =[], [I] +2, -, . The complex moments

{Ci/at6-1).1 /2(k+1y} have the same repetition, and hence
are correlated. But from (2.25),

(4.8)

thus, we get the same results as in the case of rotational
moments,

Ci/2te-1,1/20e+1) = Dy

B. Information Redundancy of Geometric Moments

Let us consider the case of m = 0 and n = even in
(2.7); then
‘ 2n+1) &
Aor = (‘n4—) /Z:o B Mo, (4.9)

k=even
In this case, the geometric moments { My} are corre-
lated. Given { Ny, n = 0,2, + -+, 2N}, {My, k =0,
2, +++, 2N} can be expressed as
k
MOk = Z Bn>‘0n
n=0

n=even

(4.10)
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Fig. 3. Illustration of information redundancy of rotational and corplex
moments and geometric moments (lines connecting data points are for
illustration purposes and y axis is in log scale).

where the coefficient { 8,} is a function of {a,.}. Now
the ratio between the informative part and the redundant
part is defined as

var { :Bk>\0k}

v(k) = T3 >
var ZJO Bn)\On
nt'—-;ven
k=2,4,-++ 2N (4.11)
where from Table 1I,
2k + 1
var { )\Ok} = T. (412) )

The ratio v (k) is plotted in Fig. 3 for k = 2, 4, + -+,

20, from which it is observed that geometric moments
have information redundancy similar to that of rotational
moments.

V. IMAGE REPRESENTATION BY MOMENTS

In this section, the questibn of how well an imagc can
be characterized by a small finite set of its moments is
addressed. The mean-square error between an image and

its reconstructed version from a finite set of its moments
is considered to be a good measure of the image represen-
tation ability of the moments. This mean-square recon-
struction error measure is applied to both deterministic
image functions and real homogeneous random fields to
determine the dependence of the accuracy of reconstruc-
tion on the number of moments used fot the representa-
tion. Through this investigation, the information content
of higher order moments becomes apparent. '

A. Reconstruction Error of Deterministic Image
Functions

Let f(x, y) be a deterministic image function defined
over a region { of the xy plane and let f(x, y) be the
reconstructed version of f(x, y) when moments of order
= N are used to characterize the image function. Then the
mean-square reconstruction error is defined as

éw) = || 1) - fenPar . (1)
¢ .

For convenience of performance comparison, we normal-
ized ¢*(N ) by the total image energy and define the nor-
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malized reconstruction error as
&(N)

SS [f(x, }’)]2 dx dy'

¢

e}(N) = (5.2)

Note that
0 <2*N) = 1. (5.3)
For the case of discrete data processing, (5.2) becomes
[} I3 A . . 2
2 11‘3 [, )) = F(i j)]
= 2
2 %J [ £ )]
By substituting (2.6) and (2.15) into (5.1), the reconstruc-
tion errors when Legendre and Zernike moments of order

= N are used to characterize the original image function
are evaluated to be

ez(N) - Sil sil

Z*%(N) (5.4)

[£(x, y)]" dx dy

N m 4)\2
_ Z mn 5.
m=0n§0 (2m - 2n + 1)(2’1 + 1) ( 5)
and
2 pl )
e(N) = So So [f(r,0)]'rdras
N ™ 2
B n§0 Zl: n+1 [Aul” (5.6)
n—|/|=even
[{l=n

respectively, where { \,,,} and {4,,} are the respective
moment sets. By simple enumeration, the number of in-
dependent moments in each of the above moment sets is
the same and is equal to

(N + 1)(N + 2)
5 .

For the case of pseudo-Zernike moments, the reconstruc-
tion error is given by (5.6) with the condition n — [/| =
even eliminated, and the set {4,,} which is now pseudo-
Zernike moments of order < N is computed as described
in Section II-D. The number of independent moments in
the set {A,,} is equal to

2
Notar = (N + 1) . (5'8)

For the case of nonorthogonal moments, which in-
cludes geometric, rotational, and complex moments, the
reconstruction errors can be obtained from (5.5) and (5.6)
through their connections with Legendre and Zernike mo-
ments. If moments of order < N are used to chardcterize
the image function, the reconstruction errors of nonor-
thogonal moments can be shown to be equal to those of
Legendre moments and Zernike moments with the image
function being restricted to the square [ -1 < x, y = 1]
and the unit disk, respectively.

(5.7)

Ntotal =
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B. Reconstruction Error of Homogeneous Random
Fields

When f (x, y) is a real homogeneous random field, the
mean-square reconstruction error when averaged over the
random field is defined as

) = £ [[ Lo = Fnf wrar] 59
g

= E{¢(N)} (5.10)
and its normalized version as
E(N) = H 82(N>7 (5.11)
E{ VY [f(xy)] dxdy
il J
£(N) (5.12)

4K, (0, 0)

where we again assume that the random field is of zero
mean with the autocorrelation function of the form given
by (3.2) and A is the area of the region {. Note that et (N )
and {\,,} of (5.5) and e3(N) and {4,;} of (5.6) are
interpreted as random variables when they are substituted
into (5.10). )

Using (5.10), (5.5), and (5.6) and the definitions of Le-
gendre and Zernike moments, which are now random
variables, we obtain the respective reconstruction errors
as

e1(N) = 4Ky (0, 0)

m

~ % s (2m =20 + 1)(2n + 1)
m=0 n=0 4

¢ Sn Kff.(x, Vs U, U) Pm—n(x)

: Pm-n(u) Pn(y) P,,(Z/) d.(_L (513)

and
y n+1
ez(N) = AzKp (0, 0) — ;0 Z(] -
' n—|l| =even
[H=n
: S Ky (x, y, u, v)
{z
[Vl ] Vulu, 0) de, (5.14)

where A, = 4 and 4, = =, { is over the region [—1 <
X, ¥, 4, v < 1] and {7 is over the region [x* + y? < 1,
ut+ 0% < 1]. Again, in the case of pseudo-Zernike mo-
ments, the reconstruction error is given by (5.14) with the
condition n — |I| = even eliminated, and { V,,(x, ¥)}is
now the pseudo-Zernike polynomials as defined in Sec-
tion II-D,

For a given value of N, both the normalized mean-
square reconstruction errors £2 (N) / [A. Ky (0, 0)] and
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Fig. 4. Normalized reconstruction error for the case of homogeneous ran-
dom fields (¢, = ¢, = 1) (lines connecting data points are for illustration

purposes).

£2(N)/[AzKs (0, 0)] depend on ¢; and c, only. They
are shown in Fig. 4 for the case of ¢, = ¢, = 1. The
results show that the mean-square reconstruction error of
,an image function can be reduced to a relatively small
value by including enough higher order moments. The
moment sets { N, } and {4} can also be interpreted as
samples of the image function, and the reconstruction er-
rors as the sampling errors. From Fig. 4, it is clear that
the sampling technique using Zernike polynomials or
pseudo-Zernike polynomials as basis functions is more ef-
ficient than that using Legendre polynomials as basis
functions.

C. Reconstruction Error of Noisy Images

When the image function is corrupted by noise, mo-
ments of the noisy image are expected to be erroneous,
generating large mean-square reconstruction error. Since
higher order moments are more sensitive to noise, as dem-
onstrated in Section III, it is easy to see that at a certain
aoise level, the image is best reconstructed by using mo-
ments of up to a certain optimal order. Using moments of
orders higher than the optimal order in the reconstruction
will degrade the reconstructed image quality because of

the large amount of noise contained in the higher order
moments.

For the purpose of illustration, we assume that the ho-
mogeneous random field f(x, y) is corrupted by zero-
mean additive white noise which is uncorrelated to f (x,

y):

E{f(x,y)n(x, y)} = E{f(x, )} E{n(x, y)} = 0.
(5.15)

It is shown in the Appendix that under this condition, the
noisy reconstruction error, when moments of orders <= N
are used, is given by :

§(N) = ¢(N) + Nowo, (5.16)

where o2 is the noise variance and £*(N) is the recon-
struction error under noise-free conditions, which is given
by (5.13) for Legendre moments and (5.14) for Zernike
moments and pseudo-Zernike moments ( with the condi-
tion n — |I| = even eliminated and { ¥, (x, y)} defined
as pseudo-Zernike polynomials). The term N,y,, which
is the total number of independent moments of order < N
used for the reconstruction, is given by (5.7) for the cases
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; Fig. 5. Normalized reconstruction error for the case of homogeneous ran-
dom fields with uncorrelated additive white noise (¢; = ¢, = 1) (lines
connecting data points are for illustration purposes).

of Legendre and Zernike moments and by (5.8) for the where the signal-to-noise ratio is now defined as the ratio
case of pseudo-Zernike moments. It follows that the ad- of the image energy per unit area to the noise variance:
ditional error term due to the additive noise, which is the :

"last term in (5.16), is the same for both Legendre and 1 S S 2
Zernike moments. If we normalized (5.16) throughout by A [f(x 0] dxdy
K;(0, 0), the average energy per unit area of the random SNR = —+F 5 (5.20)
field, we get the normalized reconstruction error as ’ Gn
=2 e'(N) ., Now ith A th f the regi Th XN) is th
EX(N) = + (5.17) wit t e area 0 the reglon.g‘. e term 'e'( ) is t'e
K;(0,0)  SNR reconstruction error under noise-free conditions and is

given by (5.5) and (5.6) for Legendre and Zernike mo-

where SNR is the signal-to-noise ratio defined as ments, respectively.

Ky (0, 0) The normalized reconstruction error as defined in (5.17)
SNR = ———. (5.18) for the case of homogeneous random fields is plotted in
O Fig. 5 and summarized in Table III for SNR = 7, 30, 200.

For a deterministic image function f(x, y), the normal- It is clear from the results that the optimum number of
ized reconstruction error becomes moments which are useful to the reconstruction process

5 depends on the noise level added. For an SNR of 30, Le-
e(N) + Ntotal (5.19) | gendre moments of order as high as 4, which amounts to
SNR **7/ 115 moments, should be used. Using Legendre moments

) = ;

2
A S S [f (x, ¥ )] dx dy higher than order 4 will, instead of improving the recon-
§ . struction, degrade the quality of the reconstructed image.
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are for illustration purposes).
TABLE III to estimate how much noise can be tolerated if moments

NORMALIZED RECONSTRUCTION ERROR FOR THE CASE OF HOMOGENEOUS
RANDOM FIELDS WiTH UNCORRELATED ADDITIVE WHITE NOISE

(ci=c=1)
Optimal Total Normalized
Order of Number of Reconstruction
Type of Moment Moments _Error
SNR Moment N Nt EXN)
7 LM Mo 2 6 2.22
M A,y 1 3 1.75
PM i 1 4 1.77
30 LM ) - 4 15 1.36
M Al 3 10 1.08
PM Ay 2 9 1.12
200 LM Apun 8 45 0.70
M al 7 36 0.57
PM nl 5 36 0.57

.

In general, the normalized reconstruction error for noisy
\images reaches a minimum value and then starts to in-
crease as the number of moments increases. Fig. 6 shows
the minimum normalized reconstruction error (and hence
the optimum order of moments) as a function of SNR, and
Table IV shows a summary. From the plot, it is possible

of up to certain orders are to be used.

D. Experimental Results

Fig. 7 shows examples of the reconstruction of a bi-
nary-value letter E from its Legendre, Zernike, and
pseudo-Zernike moments by including increasingly higher
order moments. The image array size is 64 X 64. It illus-
trates the fact that a relatively small finite set of moments
may characterize an image adequately, but the fine detail
can be recreated only by including higher order moments.
The normalized reconstruction errors as defined in (5.4)
are computed and shown in Fig. 8.

Next, white Gaussian noise with variances 1.0 and
0.125 is generated and added to the original letter E. The
signal-to-noise. ratios are 224 and 1792 for the case of
Legendre moments, and 284 and 2274 for the cases of
Zernike and pseudo-Zernike moments. The reconstructed
letters are shown in Fig. 9, and the corresponding nor-
malized reconstruction errors as defined in (5.19) are
computed and shown in Fig. 10. The results show that
higher order moments are less reliable because the added
noise results in degradation of the reconstructed image.
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TABLE 1V
MINIMUM NORMALIZED RECONSTRUCTION ERROR AND THE OPTIMUM
ORDER OF MOMENTS As A FUNCTION oF SNR Iy dB FOR THE CASE OF
HOMOGENEOUS RANDOM FIELDS (¢ =c¢,=1)

Minimum

Normalized Optimal
Reconstruction Order of
Type of _Error Moment
Moment 10 x log,, SNR dB EAN) N
LM Rpin 3.70 3.14 1
7.80 2.36 2
11.19 1.82 3
14.00 1.45 4
16.36 1.20 5
18.39 1.02 6
20.17 0.89 7
21.74 0.78 8
M Ay 4.74 2.33 i
9.21 1.68 2
12.72 1.28 3
15.62 1.02 4
17.85 0.86 5
19.98 0.73 6
21.41 0.65 7
23.25 0.56 8
PM Ay 5.75 2.53 1
! 11.21 1.50 2
15.33 0.99 3
18.49 0.73 4
21.00 0.56 5
23.03 0.46 6

(a) b)

Fig. 7. (a) Reconstruction of the letter E by Legendre moments. From top

row .to bottom row and left to right in each row: original input image,
reconstructed image with up to second-order moment (a total of six mo-
ments) through up to 20th-order moment (a total of 231 moments). (b)
Reconstruction of the letter E by Zernike moments. From top row to
-bottom row and left to right in each row: original input image, recon-
structed image with up to second-order moment (a total of six moments)
through up to 20th-order moment (a total of 231 moments). (c) Recon-
struction of the letter E by pseudo-Zernike moments. From top row to
bottom row and left to right in each row: original input image, recon-
structed image with up to second-order moment (a total of nine morments)
through up to 20th-order moment (a total of 44] moments):
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Fig. 8. Normalized reconstruction error of the letter ‘£’ (lines connect-
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VI. CoNcLUSION

Various moments, including geometric, Legendre, Zer-
nike, pseudo-Zernike, rotational, and complex moments,

,are examined and compared. Three fundamental issues

related to their usefulness in image analysis are ad-
dressed. They include 1) sensitivity to image noise, 2)
aspects of information redundancy, and 3) capability for
image representation. Both analytic characterization and
experimental results of the investigation are presented.

From the noise analysis, we first show that higher order
moments are more vulnerable to noise, and then we de-
termine the number of coefficients (and hence the set of
moments up to a certain order) for optimal image repre-
sentation under a given noisy condition. We also show
that the orthogonal moments (i.e., Legendre, Zernike, and
pseudo-Zernike) are better than the other types of mo-
ments in terms of information redundancy. In terms of
overall performance, Zernike and pseudo-Zernike mo-
ments outperform the others.

However, we should point out that the criterion of
mean-square reconstruction error applies only to the case
of additive random noise and does not apply to contextual
or signal-dependent noise. For example, the letter E can

be easily changed into an 8 by alteration of a few pixels.
This will not change the mean-square reconstruction error
measurement much, but will change the context of the
image substantially. In fact, if the noise level is too high,

one might want to first segment the or1g1na1 image and
then extract moments from the segmented image instead
of the entire scene.

APPENDIX
DERIVATION OF NoISY RECONSTRUCTION ERROR

We consider only the case of Legendre moments here.
The derivation for the cases of Zernike and pseudo-Zer-
nike moments follows similarly. Let A,, and k,, be the
Legendre moments of the random field f(x, y) and the
additive noise process n(x, y), respectively; then the Le-
gendre moments of the noise corrupted random field are

Amn = an + Kmn (A‘l)
where

(2m + 1)(2n + 1)
4

' S-l S_lf("’ ¥) Pu(x) P(y) dxdy  (A2)

)"mn =
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(d) (&) (f)

Fig. 9. (a) Reconstruction of the letter £ by Legendre moments with white Gaussian noise of variance 1.0 added. From top row
to bottom row and left to right in each row; noisy input image, reconstructed image with up to second-order (a total of six
moments) through up to 20th-order moment (a total of 231 moments). (b) Reconstruction of the letter £ by Zernike moments
with white Gaussian noise of variance 1.0 added. From top row to bottom row and left to right in each row; noisy input
image, reconstructed image with up to second-order (a total of six moments) through up to 20th-order moment (a total of 231
moments). (c) Reconstruction of the letter £ by pseudo-Zernike moments with white Gaussian noise of variance 1.0 added.
From top row to bottom row and left to right in each row; noisy input image, reconstructed image with up to second-order (a
total of the nine moments) through up to 20th-order moment (a total of 441 moments). (d) Reconstruction of the letter £ by
Legendre moments with white Gaussian noise of variance 0.125 added. From top row to bottom row and left to right in each
row; noisy input image, reconstruted image with up to second-order (a total of six moments) through up to 20th-order moment
(a total of 231 moments). (e) Reconstructin of the letter £ by Zernike moments with white Gaussian noise of variane 0.125
added. From top row to bottom row and left to right in each row; noisy input image, reconstructed image with up to second-
order (a total of six moments) through up to 20th-order moment (a total of 231 moments). (f) Reconstruction of the letter £
by pseudo-Zernike moments with white Gaussian noise of variance 0. 125 added. From top row to bottom row and left to right
in each row; noisy input image, reconstructed image with up to seond-order (a total of nine moments) through up to 20th-
order moment (a total of 441 moments).
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Fig. 10. Normalized reconstruction error of the letter ““E"’ with additive
white Gaussian noise (lines connecting data points are for illustration

purposes).

and

(2m + 1)(2n + 1)
Ky = 4

’ S—-l S_]n(x’ y) Pm(x) P,,(y) dxa’y (A3)

The reconstructed version of f(x, y) based on the noisy
Legendre moments of order < N is

N m
Fxy) = 2 2 AuPu(x)Py(y). (Ad4)

m=0n=0

The noisy mean-square reconstruction error is defined as

e = [ [, Uty - ol ac ]
- E{ [ 1 veorfa dy}

-1

~2{ [ [ e s aca]
+ E{Sil Sil [ 0] ax dy}- (A.5)

The first term is easily evaluated to be A4, Ksr (0, 0) where
Ay is the area of the integration region and K (0, 0) is
the average energy of the random field f(x, y) as defined
in (3.3). Using (A.1)-(A.4) and the assumptions that f (x,
¥) and n(x, y) are both of zero mean and uncorrelated,
the last two terms are evaluated to be

m

% 5 (2m =20+ 1)(2n + 1)
m=0n=0 4 -

' Si, Sil Sil Sil [Kr (%, 3, u, v)

+ Kun(x, y, u, )]
“ Py y(x) Py, (u) Py(y) P,(v) dx dy du dv.
(A.6)

Substituting (3.4) into the above and using the orthogonal
property of the Legendre -polynomials, the noisy recon-
struction error becomes -

EXN) = &} + Ny 62 (A7)

where €} is the noiseless reconstruction error as defined
in (5.13) and
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N total —

is the total number of independenf]:’egendre moments of

order <N,

GM
LM
ZM
PM
RM

Kff( )
K (o t)
Ky (0, 0)
€1, C2

6(, )
¢pq(.’ .)

Pq

N

20 2 (1) =

m=0n=0 2

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 10, NO. 4, JULY 1988

(N + 1)(N + 2)

(A.8)

LisT oOF SYMBOLS

Geometric moments.

Legendre moments.

Zernike moments.

Pseudo-Zernike moments.

Rotational moments,

Complex moments.

Geometric moments of order (p +
q).

Legendre moments of order (m + n).

Zernike moments of order n with rep-
etition /.,

Rotational moments of order n with
repetition /.

Complex moments of order (p + ¢q).

nth-order Legendre polynomial.

Coeflicients of the nth-order Le-
gendre polynomial.,

Zernike polynomials of order n with
repetition /.

Radial polynomials, real part of Zer-
nike polynomials.

Coefficients of the radial polynomials
of Zernike polynomials.

Coefficients of the radial polynomials
of pseudo-Zemnike polynomials.

Deterministic ‘real image intensity
function,

Discrete version of f(x, y).

Reconstructed version of f(x, y).

Discrete version of f(x, ).

Real homogeneous random field.

Reconstructed version of f(x, y).

White noise process.

Region of f(x, y) over the xy plane.

Region[-1 = x, y,u, v < 1].

Region [x* + y? < 1, u* + % =<
1].

Area of {.

Autocorrelation function of f(x, y).

Autocorrelation function of n (x, y).

Average energy of f(x, y).

Correlation coefficients of Kee () )
in the x and y directions.

Two-dimensional spectral density of
n(x,y).

Two-dimensional Delta function.

Moment weighting kernel.

General moments of order (p + ¢) of
f(x, y).

General moments of order (p + q) of
n{x,y).

cov {N,g, N} -Covariance of N,, and N,,.

SNR,, Unnormalized signal-to-noise ratios
of order (p, q).

SNR,, Normalized signal-to-noise ratios of
order (p, q).

y(+) Information redundancy ratio.

Noowt Total number of moments of order
<N,

() Mean-square reconstruction error of
f(x, y).

z2(+) Normalized version of ¢*( - ). ‘

2(4) Mean-square reconstruction error of

f(x, ).

EX(1) Normalized version of £%( ).

g2(+) Noisy mean-square reconstruction er-
ror.

£ Normalized version of £2( - ).
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