Chapter 5

The Spherical Harmonic
Descriptor

5.1 Spherical harmonics

There are many possibilities for choosing a set of basis functions which
are defined on the sphere. The spherical harmonic functions are a popu-
lar choice because they are relatively simple and have a number of nice
mathematical properties. They are introduced e.g. by Greiner [18].

5.1.1 Definition

Y™ denotes the spherical harmonic function of degree [ and order m.
The following definitions agree with [31]. The variable w is a scalar and
will correspond to uo below.

Legendre polynomials
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Spherical harmonic functions
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A list of the spherical harmonics up to degree 3 (in table 5.1) ex-
emplifies these definitions. Both polar coordinates (6, ¢) and Cartesian
coordinates (ug,u1,us) are used. The Cartesian notation reveals that
spherical harmonics are just polynomials, in spite of the 2 exponent,
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which means a square root if m is odd.
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Figure 5.1: Plots of ¥,(f = arccosw,$ = 0) up to degree 4. These
diagrams are scaled plots of the associated Legendre polynomials.

Figure 5.1 plots Y;™(arccosw,0) for 0 < m < [ < 5. The functions
Y™ take real values for ¢ = 0. The graphs give a quantitative impression
of the zonal amplitude variation of ¥;™. At the same time, they are plots
of the associated Legendre polynomials, except for a scaling constant (cf.
(5.3)). The leftmost column corresponds to the Legendre polynomials
themselves. Figure 5.2 gives a more qualitative impression of our basis
functions and their signs. The real parts of the spherical harmonics up
to degree 5 are displayed as gray levels on the surface of the unit sphere,
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Table 5.1: Explicit expressions of the spherical harmonics up to degree
3, in both polar and Cartesian form. The last part of the table gives the
common normalizing constants, e.g., Y = 1/3/4m us.
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Figure 5.2: The real parts of the spherical harmonic functions Y;™, with
[ growing from 0 (top) to 5 (bottom), and m ranging from 0 (left) to
[ in each row. The function value is mapped on the spheres, light grey
representing positive values and dark grey negative values.



which is the domain of ¥;™. The real-valued functions Y;° appear by
themselves in the left column (m =0). For m > 0, the imaginary part is
the same as the real part, rotated by —5.

A spherical harmonic function of degree [ is a polynomial of degree
l in ug, u1 and us. It can be written as a homogeneous polynomial of
degree [ (using the identity up? + u1? + u2? = 1, on Q3).

In some cases, we have to adopt an indexing scheme j(l,m) that
assigns a unique index j to every pair [, m, like e.g. j(I,m) := 12+ 1+ m.
When the degree of the spherical harmonics is limited, i.e. 0 <[ < ng, j
is also limited by j < n; = n?.

5.1.2 Expressing surface shape

With spherical harmonics the series (2.3) takes the form

00 l
=0 m=—
The coefficients
g =11
o’

in this series are three-dimensional vectors. Their components, ¢, ¢/}
and cj%, are complex numbers for m # 0 in general; they are real numbers
for m = 0.

For convenience, the real and imaginary parts of the complex basis
functions ¥;™ can be used as independent real valued basis functions. The
set of functions {Y,°, Re(Y;™),Im(Y;™)} (where I > 0 and 0 < m <) is
orthogonal but not normalized. For m > 0, § Re(Y;™)? = § Im(Y;")? =
%. The real functions might be scaled by v/2 for m # 0. There is the
same number of functions as with the complex basis, namely 2/ + 1 for
any non-negative [, or n? in total.

5.1.3 Variability of spherical harmonic surfaces

All of the following shapes are defined as spherical harmonic surfaces of
degree up to three, i.e. n; = 4. Each of x¢, 1 and x5 are defined by
the 16 coefficients in the corresponding series. They illustrate the wide
variability that can be achieved even with a low degree. Typically only
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Figure 5.3: Smooth rotational geometrical objects: vector valued series
of spherical harmonics represent a sphere, and they approximate a cone,
a double cone, and a cylinder.

a few (like 5 or 9) of the 48 coefficients are different from zero in the
examples.

The basis functions are smooth. The objects described by a truncated
series of the form (5.5) tend to be smooth as well (Fig. 5.3). But they can
have sharp edges or cusps as well, as Figure 5.4 illustrates. The first three

Figure 5.4: The lens has high curvature at the rim, and the top has a
sharp edge and points. Yet they are composed of low degree spherical
harmonics.

platonic polyhedra (Figure 5.5) can be modelled with the truncated set of
basis functions. The polyhedra in Figure 5.5 have rotational symmetries
of order two and three, and the cube and the octahedron have even fourth
order symmetry. More generally, an object using spherical harmonics up
to degree n; — 1 can have at most n;-ary rotational symmetry. Examples
for ny = 2...4 appear in Figure 5.6.

There is no reason to limit ourselves to star-shaped objects. Figure 5.7
lists a few that are not. The Dodecahedron and the Icosahedron would
need higher harmonics: but the tetrahedron uses only degree one and
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Figure 5.5: The tetrahedron, the cube or hexahedron, and the octahedron
are the three simpler ones of the five platonic polyhedra.

Figure 5.6: Objects involving spherical harmonics up to degree 1, 2 and
3 can have a 2-, 3- and 4-fold rotational symmetry.

two. The cube and the octahedron have no second degree component.
They only differ in the sign of the third degree contributions: starting
from a sphere, the points that move out on the cube move in on the
octahedron, and vice versa. The upper signs in (5.6) correspond to the
cube, the lower ones to the octahedron.

o —0.7071 Re(Y7) = 0.0745 Re(Y3) & 0.098 Im(Y33)
21| = | —0.7071 Im(Y{) £ 0.0745 Im(Y3) + 0.098 Re(Y3) | (5.6)
B 0.5 Y% ¥ 0.0863 Y0

Objects with symmetries have been used in the examples up to now be-
cause their whole shape can be perceived or at least guessed from a single
view. The chosen objects are special cases with respect to symmetry and
not representative in that sense for shapes expressable with spherical
harmonic descriptors. Figure 5.8 gives an example of a general object.



Figure 5.7: Neither of these is star-shaped: A monkey saddle, a croissant
and a vase. In the last image, the vase is cut open to reveal the folding

in of the surface.

Figure 5.8: A “random” asymmetric blob shaped object




5.2 Harmonic shape descriptors

Section 3.4 introduced the parametrization of the surface of a simply con-
nected object. The parametrization provides a correspondence between
any surface vertex x; and its parameter u;, which can be interpreted as
the sampling of a function z(u), i.e. u[i] — z(ufi]) = z[i]. Now z(u)
is expanded into a series of spherical harmonics as in (5.5), or into any
other set of basis functions

The coefficients of the spherical harmonic functions of different de-
grees provide a measure of the spatial frequency constituents of the struc-
ture. Partial sums of the series (5.5) for the “duck” test object are plotted
in Figure 5.9. The sums are truncated by limiting [ to 0 < [ < n;, where
n; = 2,4, 8. As higher frequency components are included, more detailed
features of the object appear.

(a) (b) (c)

Figure 5.9: Global shape description by expansion into spherical har-
monics: The figures illustrate the reconstruction of the partial spherical
harmonic series, using coefficients up to degree 1 (a), to degree 3 (b) and

7 ().

5.2.1 Integration over the sphere

The use of orthonormal basis functions is convenient for the calculation
of the expansion coefficients. Formally, the coefficients are calculated by
forming the inner product of z with the basis function in question:
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The parametrization defines the function z(6, ¢) only for the parameter
coordinates of the vertices. Only z(0;, ¢;) = z, is defined, where i is the
index of a vertex, 0 < i < nyert. For the evaluation of the integral (5.7)
we would have to define an interpolating function between these sample
points; an adaptation of bilinear interpolation could be used for this pur-
pose. But this would introduce an artificial sub-voxel resolution that is
not supported by the input data. On the other hand, the straightforward
discretization of the integral is

Nvert—1

o~ Y nY(6e)AQ (5.8)
1=0

with the finite AQ replacing d2 = d¢ sin 6’d0 There are two possibil-
ities for choosing A€). Setting A2 = -
evenly over all vertices. But it might be argued that the area of a facets
is relevant, and hence should be distributed to its four corners. Then
AQ = 41;"“”’5 , where count; is the number of neighbors of vertex i.
But neither of these schemes in general gives the precise coefficients of a
series representing our object. The reason is that although the functions
Y,/™ are orthonormal, their values evaluated at some set of parameter
pairs (6;, ¢;) will generally not form an orthonormal set of vectors.

We can arrange all needed values of our basis functions in a nyert X 1
matrix B where b; jq.m) = Y™ (0;,¢;). In the usual case where n; is
significantly smaller than ne;¢, the columns of B are approximately or-
thogonal. We further arrange the object space coordinates of all vertices
in an Nyery X 3 matrix X = (zg,2,...2, ._;)" and all coefficients in
the n; x 3 matrix C = (cJ,¢; ', ¢y...)T. The equations (5.8) for all [
and m take the compact form C ~ n4” BT X. But what we really want
is a spherical harmonic series that passes near the real positions of our
vertices, i.e. X = BC + E where the error matrix £ should be small.
These so-called normal equations are solved with least square sums over

the columns of E by

C = (B'B)"'BTx . (5.9)

The formula 5.9 mathematically states the use of the pseudo-inverse of
B: it does not imply a numerical evaluation of the matrix expressions on



the right. The global approximation error is the square of the Frobenius
norm of £ = BC — X, which is also minimized. This is not too different
from (5.8) because the symmetric n; x n; matrix n4—7’tBTB is close to
the identity matrix. -

5.2.2 Invariant descriptors

The coefficients obtained thus far still depend on the relative position
of the parameter net of the object surface and on the orientation of the
object in space (Figure 3.6). We can get rid of these dependencies by
rotating the object to canonical positions in parameter space and object
space. This needs three rotations in parameter space and three rotations
in object space, when rotations are described using Euler angles. All
rotations result in new linear combinations of the components of the
harmonic descriptors.

The relations between the Cartesian and the spherical coordinates of
the parameter space are ug = sin € cos ¢, u1 = sin sin ¢ and us = cos#.
To define a standard position we consider only the contribution of the
spherical harmonics of degree [ = 1 in equation (5.5).

z,(0,9) = c* Yi"(0, ) (5.10)
m=—1
. . . . -1 \/g o 0o __
This sum involves the basis functions Y7~ = ¥z (ug —iuy), Yy° =
%UQ and Y = — 2\{%(% + du1). Any three real valued linear com-

binations ! of these, interpreted as Cartesian coordinates in the object
space, will always describe an ellipsoid(see Figure 5.9 a). We rotate the
object in parameter space so that the north pole (6 = 0, on the us axis)
will be at one end of the shortest main axis of this first order ellipsoid
and the point where the Greenwich meridian (¢ = 0) crosses the equator
(6 = 5, on the ug axis) is at one end of the longest main axis.

This paragraph explains how I determine the main axes. At the three
main axes, the length of the vector z,(,¢) is stationary: it reaches
a maximum, a saddle point, and a minimum, respectively. Measuring
FEuclidean lengths becomes simpler when we transform the component
vectors to a Euclidean, real valued form. Applying the definitions of the

1 . . . . . —1\* _ 1 0 3
The combination z, is real if and only if (91 ) =-crandc; € R



Y™ yields

U
z,(u) = Au = A|luw | = ayup+ayus +azus , (5.11)
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where
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We are looking for the unit vectors 4, @, and @5 that maximize or
minimize the length of the vector. The solutions are the eigenvectors
of AT A, with nonnegative eigenvalues I3 > I3 > 12. Their roots 1, lo
and [3 represent half the lengths of the main axes of the ellipsoid. At the
middle eigenvector, @, ||z,|| has a saddle-point rather than an extremum.
The normalized eigenvectors form the rotation matrix RL = (i, s, G3),
which is applied to the parameters u[i] associated with each vertex i:
uli] = Rf u;. This new parametrization results in new coefficients g}"'
and hence in the new coefficient matrix A’ = AR,. Its three column
vectors @'y, d’, and a5 are the main axes of the first order ellipsoid in
object space.

All rotations are determined based on the values of QTI (m'=-1...1)
of the ellipsoid only, but they are applied to all components of the descrip-
tor {¢/*}. The parameter space rotations result in a different description
of the same object in the same position, just parametrized in a standard
way.

Now, the ellipsoid is rotated in the object space to make its main
axes coincide with the coordinate axes, putting the longest ellipsoid axis
along z¢ and the shortest one along 2. The ob ject space rotations require
only the matrix multlphcatlon "’ = Ry ™. The object space rotation

chiler +ef),V2eh) . (5.12)

matrix is R, = dlagonal(l : l i Ly. A", It rotates the main axes of the
ellipsoid into an axis- parallel posmon and makes the coefficient matrix
A” = R, A" = R, AR, diagonal. The elements of the diagonal are

the lengths of the main axes of the ellipsoid.

Parameter Visualization

This subsection introduces a specific surface pattern. The pattern is
gray valued and covers the whole surface of an object. It always stays
fixed with relation to the parameter space {23. This makes it possible to
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Figure 5.10: The components of the pattern are a sawtooth function of
0 (left), and a ramp plus a rectangle function of ¢ (right).

estimate the parameter value associated with a location on the surface
from the shading of is neighborhood. The pattern makes visible the
parameter space rotations described above.

The brightness of the pattern varies with 6 in a sawtooth fashion,
cf. Figure 5.10a, and with ¢ in a ramp and rectangle function, cf. Fig-
ure 5.10b. The whole pattern is the additive superposition of the 8 and
¢ contributions; Figure 5.11 presents it. The diagrams of Figure 5.10
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Figure 5.11: This pattern, when mapped to an object surface, reveals
the pose of the parameter space. The 6 axis points down to preserve a
right handed coordinate system. The top border § = 0 corresponds to
the north pole, the bottom border # = 7 is the south pole.



illustrate that the functions interpolate linearly between sample points

spaced g7 apart and that there are no discontinuities (jumps). Even the

descent in the wrap around for ¢ extends from 1%% to 2r = 0 and is

continuous.

(a) (b)

Figure 5.12: The simplest object, a sphere, exemplifies the interpretation
of the surface pattern. The specular highlights don’t belong to the pattern
but are added for a better 3D impression. (a) The north pole is visible
from the standard view point. We perceive it as the center of a bright
circular zone in spite of its dark center (the pole itself). (b) The region
of the south pole, on the contrary, appears as a dark zone, although the
pole has actually a light shade.

In Figure 5.12 the surface pattern covers the sphere x = u. This is the
simplest possible object, because here only first degree terms contribute,
and the object space coordinates are identical with the parameter space
coordinates. Figure 5.12 might be called a “picture of the parameter
space”. It should help the interpretation of the following pictures that use
the same pattern for parameter coding. The sphere is striped lengthwise
with 16 sectors, each 8 lighter and darker ones. The stripes meet at the
poles. The shading becomes slowly brighter as ¢ increases, i.e. towards
east (cf Fig. 5.10b). With the normal (right handed) orientation of the
parameter space, this gives a positive or counterclockwise increase of the
brightness around the north pole and a negative or clockwise increase
around the south pole. After one turn, the intensity leaps back from
brightest to reach the darkest value on the Greenwich meridian. When
moving southward, i.e. with increasing 6, the shading gradually becomes
lighter, only to drop back to the same dark level every g (cf Fig. 5.10a).
The slow brightening from the north pole to the first maximum at 7 /8
is less visible than the rapid drop that follows, so that the north pole



appears as the center of a bright disk (but this center is dark!). The
opposite is true at the south pole, which is the bright center of circle
with a dark border?.

Figure 5.13: This nine voxel object will illustrate the standardization
of descriptors and their comparison, including symmetry considerations.
The object itself is completely asymmetric. Two steps of a stair sit on
top of a 3 by 2 base plate. We call the object “stair”.

To illustrate the descriptor and its rotations in parameter and object
space, a test object should be very simple, but it must not have symme-
tries with respect to any plane, straight line, or point. Symmetries are
frequent in few-voxel objects, but they would make the pose ambiguous
and interfere with the symmetry discussions below in subsection 5.3.1.
The nine voxel object in Figure 5.13 is fit for the purpose.

Parametrization of the surface and expansion into the spherical har-
monic basis yields a descriptor for the object. Partial series of (5.5) define
surfaces of increasing levels of detail. They visualize the descriptor in Fig-
ure 5.14, and they illustrate its hierarchical organization from coarse to
fine. Thanks to the surface pattern, the relation to the parameter space
Q3 is visible.

Figure 5.15 shows the descriptor ¢ before any standardization. The

2The intensity drop that should happen exactly at the south pole is suppressed.
The isolated dark spot would be distracting.
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Figure 5.14: The “stair” object, reconstructed from its descriptor. The
numbers indicate the maximum degree [ in the partial sum, i.e. n; — 1.
As higher frequency components are added, more and more details show
up. This is not the standard view: zg increases towards front and left, z;
towards front and right, zo upwards. The new view point gives a better
look at the north pole.




(1)

Figure 5.15: The raw descriptor of the “stair” object. Left: The first
degree ellipsoid. Right: Reconstruction up to degree 9 (n; = 10). The
edges of the original object give an impression of the accuracy of the
partial sums. Standard view: zg increases towards the right and front,
x1 to the back and right, and z5 increases upwards.

subsequent steps take as their reference the first degree ellipsoid, which
appears in the left image. Their effects on both the ellipsoid and the full
object (n; = 10) are shown in each case.

Parameter space rotation takes us to Figure 5.16, showing ¢’. The
poles (# = 0 and & = 7) end up on the shortest main axis, and the
Greenwich meridian (¢ = 0) passes through the longest main axis. The
resulting descriptor still represents exactly the same geometrical surface.
The superimposed wireframe of the original “stair” object confirms that
the object has not moved in object space. The object space rotation now
leads to a descriptor ¢’ in canonical position (Figure 5.17). The edges of

3
the cube [0, V3/ 8%} are overlaid as a reference of size and orientation.

The main axes of the ellipsoid and of its parametrization line up with
the coordinate axes. The final scaling makes the coefficient of Re(Y7),
which corresponds to the longest main axis, equal to 1. The half length
of the longest axis becomes —Y{'(%,0) = —f{((1,0,0)") = /3/8x. For
the descriptor of a reasonably sized object, this is a shrmkmg by several
orders of magnitude.



Figure 5.16: The descriptor of the “stair” object after parameter space
rotation. Left: The first degree ellipsoid. Right: Reconstruction up to
degree 9 (n; = 10). Standard view. The wireframe of the original object
is overlaid again.

(1)

Figure 5.17: The descriptor of the “stair” object in canonical position.
Left: The first degree ellipsoid. Right: Reconstruction up to degree 9
(nl = 10)



¢’ are now invariant under rotation of the object,

except mirrorings (rotations by 7). Including information from higher
degree coefficients could eventually disambiguate these cases. Subsection
5.3.1 presents an alternative approach, which considers all possible mir-
rorings. Ignoring ¢ results in translation invariance. Scaling invariance
can be achieved by dividing all descriptors by /1, the length of the longest
main axis.

The descriptors ¢

5.2.3 Importance of uniform parametrization

This thesis thus far assumed that a homogeneous density and a minimal
distortion of the parameter net would be important for shape character-
ization, especially for obtaining an invariant description. Similarly, the
2-D expansion of contours s(t) into series of harmonics [23] was based on
the model of tracing a curve with constant velocity, i.e. assigning same
lengths AL to equivalent parameter steps At. A non-uniform distribution
of parameters on an object surface, e.g. by clustering at certain locations,
seems to be suboptimal with respect to a uniform representation of the
whole surface. One would expect an over-representation of some parts at
the expense of other regions, resulting in a distorted shape description.

The importance of a parametrization with minimal distortion can be
demonstrated with an experiment. The expansion into a series of spheri-
cal harmonics is calculated for both the non-uniform initial parametriza-
tion (bypassing the optimization step for this part of the experiment)
and the result after optimization. A manifestly non-star-shaped form
was chosen: the original object consists of 11 voxels and is shaped like
the character E. Its initial and optimized parametrizations are given in
Figure 5.18 for comparison. The diagrams correspond to Figures 4.2a
and 3.6a.

Figure 5.19 illustrates the expansion in a spherical harmonic series up
to degree ten and the truncated reconstruction up to degree one (top),
four (middle) and ten (bottom) for the initial (left) and optimized (right)
parametrization. (A five-fold oversampling was applied to the surface to
represent it accurately. This may be viewed as a rough form of numerical
integration.) Comparing the expressive difference, one can conclude that
a uniform parametrization is absolutely essential to obtain useful spher-
ical harmonic descriptors. Even from the distorted initial parametriza-
tion, descriptors can be derived, that are necessarily “optimal” in the
least squares sense, but the series of harmonics does not reflect the shape
properties of the surface. Using the optimized parametrization, coeffi-



Figure 5.18: Two different parametrizations of the “E” object. Left: The
initial parametrization is the starting point of the optimization. Right:
The optimized parametrization.

cients of higher degree add information about details of higher spatial
frequency; this is desirable. The first degree harmonic approximation
(Figure 5.19b) covers the whole object and comprises information about
the major size and elongation, whereas the three “legs” of the E-shape

appear in the reconstruction using harmonics up to degree four (Fig-
ure 5.19d,f).

5.3 Comparison and Recognition of Shapes

The main purpose of invariant spherical harmonic descriptors is to trans-
form the task of comparing the shape of two objects to the simpler com-
parison of their descriptors.

In the truncated series, [ takes the n; different values 0,1,...n; — 1.
The descriptor presents itself as "12 three-vectors or as one flat 3 n?—vector.
Thanks to the invariance properties of the descriptors, the similarity be-
tween the feature vectors of two objects measures the similarity between
their shapes. One of the simplest dissimilarity measures is the Euclidean
distance between the feature vectors. This is the same as the Ly norm
of the difference of the two vectors. The square of this quantity is the
sum of the squared differences between corresponding entries in the two
vectors.



Figure 5.19: Homogeneous parameter distribution is important for shape
description. The “E”-shaped object surface, indicated by a wireframe,
is expanded into a series of spherical harmonics. The Shaded surfaces
depict the reconstructions of the series up to degree 1 (a,b), 4 (c,d), and
10 (e,f). The initial, non-uniform parametrization yields a poor shape
representation (a,c,e); its optimization achieves a significant improvement
(b,d,f). ||E||r measures the error quantitatively; n;elréz |E||F gives the
RMS distance in pixel units (a: 1.143, b: 0.884; c: 0.729, d: 0.250; e:
0.313, and f: 0.102).



5.3.1 Symmetries of the Ellipsoid

The symmetry of the first degree ellipsoid allows for four different stan-
dard orientations of the object. Each of them results from the other three
by mirroring (rotating by 7) about one of the three main axes. The four
pose transformations form a commutative group with respect to concate-
nation. The group is known as Klein’s four-group. The concatenation of
two mirrorings results in identity if they are about the same axes, and in
a mirroring about the third axis if they are different. An object can flip
in this way in parameter space and in object space independently, which
gives rise to sixteen combinations. In the comparison of two descriptors,
the minimal distance resulting from any of the sixteen relative flips is
relevant as the dissimilarity measure.

Any 7 flip leaves the magnitudes of all coefficients constant, however
it changes the sign of some of the ¢}, where 0 < k < 3 enumerates the
object space coordinates. A mirroring (7 flip) at the zx axis in object
space flips the sign of ¢} if k' # k. For example, a flip around the z
axis changes the signs of all ¢} and ¢]%. The situation is less simple for
flips around the parameter axes. The definition of the spherical harmon-
ics Y, (eqn. 5.3) is helpful to determine which coefficients change sign
in response to parameter space flips. (ug? — 1)’ is an even symmetric
polynomial of degree 2/ in us. Its [ + m-th derivative is a polynomial of
degree 2l — (I +m) = | — m. This derivative is even symmetric when
[ — m is even, and odd otherwise. Multiplying it with the even function
(1 — u32)™/2 does not change its symmetry and yields a multiple of P™.
Constant factors are insignificant for the present symmetry considera-
tions. Y;™ (up to a constant factor) results from the multiplication by
e'™? = (up + iuy)™. The real part of the latter is m-symmetric in ug
and even in uy. The imaginary part is (m — 1)-symmetric in ug and odd
in wy; it vanishes for m = 0. In terms of symmetry, ¥, is equivalent
to ub ™ ult (1 4+ iuguy) (only the parity of the exponents is relevant).
Table 5.2 summarizes the sign changes.

The formulas in this table cause the sign change pattern that table 5.3
makes explicit. Any flip around one axis is the concatenation of the flips
around the other two axes, and the condition for any one sign change is
the exclusive disjunction of the other two.

Object recognition tries to match a given object with a similar one
out of a collection of known model objects. If it is to use some form
of descriptors, it has to describe all model objects and collect their de-
scriptors ahead of time. The recognition then takes two steps. First it



A flip changes | multiply multiply
around axis | signs of | Re(¢;*) by | Im(c*) by
uo U1, Us (_1)l—|—m (_1)l—|—m+1

Uy Up, U2 (—1)l (_1)l+1

u9 Ug, Uz (—1)m (—1)m

Table 5.2: The sign changes that parameter space flips cause.

Il | m=0 1 2 3 4
Re Im Re Im Re Im Re Im

O _

1 01 12 02

2 — 02 12 - 01

3 01 12 02 01 - 12 02

4 — 02 12 - 01 02 12 - 01

Table 5.3: The formulas in table 5.2 evaluate to this sign change pattern.
A “0”, “1” or “2” entry means this coefficient changes sign when the
object is mirrored on the ug, u; or uo axis, respectively. The sign of an
coefficient marked “—” will never change due to a 7 rotation about any
parameter axis.

describes the unknown object. Then it compares that descriptor with
all the descriptors of the models. If any distance is less than a preset
dissimilarity threshold — or tolerance —, the unknown object is considered
to match the corresponding model. A particular strategy might pick the
closest match if several existed. For a large model database, indexing
can give significant savings compared to the comparison with all model
descriptors.

When the task is not only to recognize an object but also to estimate
its pose, the parameters of the transformation to standard position, ori-
entation and size must be stored along with each descriptor. The trans-
formation has 7 degrees of freedom, divided in 3 for translation (in cJ),
3 for rotation, and one for scale.



5.3.2 Limitations

A word of caution is in order. The descriptors introduced above are prone
to serious quantization artefacts. These can lead to the undesirable situ-
ation where two copies of the same object produce different descriptors,
although they are only rotated, translated and/or scaled with respect to
each other. When the object is too small, i.e. of the order of a few voxel
units, a sampled voxel version cannot represent it adequately. Sampling
the object thus misses shape aspects that cannot be recovered from the
voxel collection. This leads one kind of quantization artefacts which can
be corrected by sampling the object at sufficient resolution.

The parametrization by its construction assigns exactly the same
amount of parameter space to each surface facet. But there are situ-
ations that do not justify this. The same planar area on the surface of an
ideal object corresponds to a varying number of facets, depending on its
orientation. When the planar surface is parallel to one of the coordinate
planes and is sufficiently large, it is discretized into a number of facets ap-
proximately equal to its true area, measured in square grid units. When
we rotate the surface by 7 /4 around one of the two coordinate directions
it is parallel to, its quantization turns into a stair, and the number of
facets for the same area multiplies by v/2. When the surface is orthog-
onal to (1,1,1)7 (diagonal in space), the number of facets is even /3
times the true area. The various regions of an object’s surface can claim
different amounts of parameter space with respect to each other, depend-
ing on the rotational position of the object. This leads to a different
parametrization and hence to different descriptors, which cannot made
invariant. If there is an object that presents this problem, the problem
will persist, no matter how fine the discretization is.

5.3.3 Experimental results

In a student project, Matteo Frapolli compared the spherical shape de-
scriptors for a number of small test objects. Table 5.4 presents the
objects he prepared for these experiments. He calculated invariant de-
scriptors for all the test objects. Table 5.5 lists all the distances between
the descriptors of any two shapes. Spherical harmonics up to degree 7
have been used, i.e. n; = 8. As a metric, this matrix must be symmetric.
The most similar objects are “c” and “c2”, as expected. Discretization
artefacts cause the remaining differences; the small objects are at the
limit of the resolution.



Table 5.4: A collection of simple test objects for shape comparison, to-
gether with their working names. Object “c2” is a copy of “c”, enlarged
by voxel replication.



bott c c2 dk edif font polt trat

bott

c2
dk
edif
font
polt
trat

0 0.3957 0.3910 0.1553 0.2064 0.2588 0.1759 0.2079
0.3957 O 0.0159 0.5251 0.1811 0.5255 0.5381 0.2388
0.3910 0.0159 O 0.5296 0.1824 0.5386 0.5094 0.2412
0.1553 0.5251 0.5291 O 0.3133 0.2071 0.2779 0.2884
0.2064 0.1811 0.1824 0.3133 O 0.3237 0.2830 0.1132
0.2588 0.5255 0.5386 0.2071 0.3237 O 0.3364 0.3267
0.1759 0.5381 0.5094 0.2779 0.2830 0.3364 O 0.3239

0.2079 0.2388 0.2412 0.2884 0.1132 0.3267 0.3239 O

Table 5.5: Dissimilarity between the descriptors and hence between the
shapes of any two of the small test objects.

Larger Objects

The surfaces of the following test objects are parametrized, and their
shapes are expressed with spherical harmonic descriptors.

c4 A “c”’-shaped polyhedron made up from five 4x4x4 voxel cubes.

c8 The same object, magnified by a factor of two in all coordinate
directions.

bor A The voxels fill a rectangular box, which is not aligned with
the coordinate axes.

bor B Rotating the box A results in a completely different sampling.

patella The patella was extracted from a segmented CT scan data
set of a human knee.

ventricle The ventricular system has been segmented from a MRI
data set of a hydrocephalus patient®. We selected one lateral ven-
tricle. The data has been interpolated to compensate for the aspect
ratio of 1:1:6.4 of the original data.

For each object, Figures 5.20, 5.21, and 5.22 present the cuberille in-
terpretation of the input data, a spread-out graph of the parametrization,
and the reconstruction from spherical harmonic descriptors. The cylin-
drical projection we chose for drawing the parametrization shows the

3Data courtesy Ron Kikinis, M. D., Surgical Planning Lab, Department of Radi-
ology, Brigham and Women’s hospital and Harvard Medical School, Boston



true area ratios. The smooth surface of the reconstruction is shaded in a
pattern that allows the estimation of the parameter values. These latter
parameter values do not coincide with the ones in the middle diagram.
They rather differ by the rotation in parameter space that makes the
descriptors rotation invariant. The object space rotation is suppressed in
the diagrams to show the spatial relation of the original data — shown as
a wireframe — with the reconstruction from the descriptor, up to degree
8. In the case of the ventricle, this shows an insufficient degree of detail,
but the same value was chosen for comparability.

Table 5.6 summarizes the sizes and differences of the various test
objects. Virtually all of the processing time for an object is spent in
the optimization. The figure for computation time must be interpreted
with caution; it qualifies only the optimization program, which is not
necessarily as efficient as possible, and which might be substituted with
an out-of-the box optimizer. Times are measured on a HP 9000/735.
The number of vertices, nert, indicates the size of the problem: the
optimization has 3 mnye+ variables, 2n ey — 3 equality constraints and
4 nyery — 8 inequality constraints.

The distance between the descriptors appears to be a valid rough
measure of shape dissimilarity. The matrix of distances is symmetric by
definition. The two “c”s are most similar to each other. The two boxes
are also quite similar. Both these examples illustrate the translation,
rotation and scale invariance of the descriptors. The patella is more
similar to a box than to a “c”, whereas the ventricle is more similar to a
“c” than to any of the other objects.
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Figure 5.20: Boxes as test objects.
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“C” letters as test objects. Left column: object “c4”; right

Figure 5.21:

From top to bottom in each column: The cuberille in-

terpretation of the input data, the parametrization drawn as a flat net
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name

box A  box B c4 c8 patella  ventricle
Nvert 628 902 354 1410 2182 37654
time 33 s 267 s 26 s 338 s 536 s 28 h
distance to
box A 0 0.0241 0.2370 0.2378 0.0673 0.3850
box B 0.0241 0 0.2796 0.2808 0.0859 0.4555
c4 0.2370 0.2796 0 0.0002 0.2309 0.2175
c8 0.2378 0.2808 0.0002 0 0.2299 0.2143
patella 0.0673 0.0859 0.2309 0.2299 0 0.2623
ventricle 0.3850 0.4555 0.2175 0.2143 0.2623 0

Table 5.6: Comparison of the six test objects, including the squared
Euclidean distances between their descriptors.



