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Introduction (1)

• The active contour model, or snake, is 
defined as an energy-minimizing spline.

• Active contours results from work of 
Kass et.al. in 1987.

• Active contour models may be used in 
image segmentation and understanding.

• The snake’s energy depends on its 
shape and location within the image.

• Snakes can be closed or open
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Aorta segmentation using active 
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Introduction (3)

• First an initial spline (snake) is placed on the 
image, and then its energy is minimized.

• Local minima of this energy correspond to 
desired image properties.

• the snake is active, always minimizing its 
energy functional, therefore exhibiting 
dynamic behavior.

• Also suitable for analysis of dynamic data or 
3D image data.
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Modeling
• The contour is defined in the (x, y) plane of an image as a 

parametric curve
v(s)=(x(s), y(s))

• Contour is said to possess an energy (Esnake) which is defined as 
the sum of the three energy terms. 

• The energy terms are defined so that the desired final position of the 
contour will have a minimum energy (Emin)

• Therefore our problem of detecting objects reduces to an energy 
minimization problem.
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What are these energy terms which do the trick for us??



2

Internal Energy (Eint )
• Depends on the intrinsic properties of the curve.
• Sum of elastic energy and bending energy.

Elastic Energy (Eelastic):
• The curve is treated as an elastic rubber band 

possessing elastic potential energy.
• It discourages stretching by introducing tension.

• Weight α(s) allows us to control elastic energy along 
different parts of the contour. Considered to be 
constant α for many applications.

• Responsible for shrinking of the contour.
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Bending Energy (Ebending):

• The snake is also considered to behave like a 
thin metal strip giving rise to bending energy.

• It is defined as sum of squared curvature of the 
contour. 

• β(s) plays a similar role to α(s).
• Bending energy is minimum for a circle – for a 

closed snake, or a line for an open one.
• Total internal energy of the snake can be defined 

as
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External energy of the contour (Eext)
• It is derived from the image.
• Define a function Eimage(x,y) so that it takes on its smaller 

values at the features of interest, such as boundaries.

Key rests on defining Eimage(x,y). Some examples

•

•
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Energy and force equations

• The problem at  hand is to find a contour v(s) that minimize 
the energy functional

• Using variational calculus and by applying Euler-Lagrange 
differential equation we get following equation

• Equation can be interpreted as a force balance equation.

• Each term corresponds to a force produced by the respective 
energy terms. The contour deforms under the action of these 
forces.

2 21 ( ) | | ( ) | | ) ( ( ))
2snake s ss image

s

E s v s v E v s ds= (α +β +∫

0ss ssss imagev v Eα −β −∇ =

Elastic force
• Generated by elastic potential energy of the curve.

• Characteristics (refer diagram)

elastic ssF v= α

Bending force

• Generated by the bending energy of the contour.
• Characteristics (refer diagram):

• Thus the bending energy tries to smooth out the curve.

Initial curve
(High bending energy)

Final curve deformed by 
bending force. (low 
bending energy)
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External force

• It acts in the direction so as to minimize Eext

Image External force

ext imageF E= −∇

Zoomed in

Discretizing

• the contour v(s) is represented by a set of control points 

• The curve is piecewise linear obtained by joining each 
control point.

• Force equations applied to each control point separately.

• Each control point allowed to move freely under the. 
influence of the forces.

• The energy and force terms are converted to discrete 
form with the derivatives substituted by finite differences.
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Solution and Results
Method 1:

• γ is a constant to give separate control on external force.
• Solve iteratively.
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Method 2:

• Consider the snake to also be a  function of time i.e.

• If RHS=0 we have reached the solution.
• On every iteration update control point only if new 

position has a lower external energy.

• Snakes are very sensitive to false local minima which 
leads to wrong convergence.
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•Noisy image with many local minimas
•WGN sigma=0.1
•Threshold=15
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Weakness of traditional snakes (Kass model)

• Extremely sensitive to parameters. 
• Small capture range.

• No external force acts on points which are far away 
from the boundary.

• Convergence is dependent on initial position.

Weakness (contd…)
• Fails to detect concave boundaries. External force 

cant pull control points into boundary concavity.

Gradient Vector Flow (GVF)

(A new external force for snakes)

•Detects shapes with boundary concavities.
•Large capture range.

Model for GVF snake

• The GVF field is defined to be a vector field 
V(x,y) =

• V(x,y) is defined such that it minimizes the 
energy functional
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f(x,y) is the edge map of the image.

• GVF field can be obtained by solving 
following equations

∇2 Is the Laplacian operator. 

• The above equations are solved iteratively 
using time derivative of u and v.
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Traditional 
external force 
field v/s GVF 

field

Traditional force

GVF force

(Diagrams courtesy “Snakes, shapes, gradient vector flow”, Xu, Prince)


