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Abstract. In many image analysis applications there is a need to extract curves
in noisy images. To achieve a more robust extraction, one can exploit correlations
of oriented features over a spatial context in the image. Tensor voting is an ex-
isting technique to extract features in this way. In this paper, we present a new
computational scheme for tensor voting on a dense field of rank-2 tensors. Using
steerable filter theory, it is possible to rewrite the tensor voting operation as a
linear combination of complex-valued convolutions. This approach has computa-
tional advantages since convolutions can be implemented efficiently. We provide
speed measurements to indicate the gain in speed, and illustrate the use of steer-
able tensor voting on medical applications.

1 Introduction

Tensor voting (TV) was originally proposed by Guy and Medioni [1], and later pre-
sented in a book by Medioni et al. [2]. It is a technique for robust grouping and extrac-
tion of lines and curves from images. In noisy images, local feature measurements, i.e.
measurements of local edges or ridges, are often unreliable, e.g. the curves are noisy
and interrupted. TV aims at making these local feature measurements more robust by
making them consistent with the measurements in the neighborhood. To achieve this,
local image features strengthen each other if they are consistent according to a model
for smooth curves.

TV is a an interesting and powerful method because of its simplicity and its wide
applicability. However, the method exhibits some ad hoc concepts, namely the way the
input data are encoded into a sparse tensor field representation, and the voting field
model that is used. In this paper we focus on another problem: the current implemen-
tation is rather cumbersome in mathematical terms. A better mathematical formulation
will help to better understand the method, and we will show that it also leads to a more
efficient implementation.
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This paper starts with a description of the “traditional” tensor voting method. We
will redefine the operational definition of tensor voting in a neater way. Subsequently
we will show that using steerable filter theory [3], we can create an implementation
of tensor voting that consists of ordinary complex-valued convolutions. This is more
efficient, since no algebraic calculations or interpolations are necessary anymore. We
will evaluate the advantages of the new approach, show some examples, and finally we
will draw conclusions.

2 Tensor Voting

2.1 Data Representation

In 2D tensor voting, local image features are encoded into a tensor field H : Ω →
T2(R2), where Ω ⊂ R

2 is the image domain, and T2(R2) denotes the set of symmetric,
positive semidefinite tensors of tensor rank 2 (i.e., rank-2 tensors) on R

2.
In the following, we shall denote the cartesian basis vectors in the image space by ex

and ey , respectively. Unless stated otherwise, all vectors and tensors will be expressed
in this basis. In this basis, each tensor A ∈ T2(R2) can be written as a positive semidef-
inite symmetric 2 × 2 matrix. We call this the matrix representation of the tensor. We
can decompose such matrix into its eigenvectors and eigenvalues

A =
(

axx axy

axy ayy

)
= λ1 e1 eT

1 + λ2 e2 eT
2 , (1)

where λ1 and λ2 are nonnegative eigenvalues (λ1 ≥ λ2 ≥ 0), and e1 and e2 are the
orthonormal eigenvectors. A graphical illustration of such a tensor is an ellipse, see
Figure 1a. In this representation, the following three properties become apparent

Orientation β[A] = arccos
(
e1 · ex

)
=

1
2

arg(axx − ayy + 2i axy), (2)

Stickness s[A] = λ1 − λ2 =
√

tr(A)2 − 4 detA, (3)

Ballness b[A] = λ2 =
1
2

(
tr(A) −

√
tr(A)2 − 4 detA

)
. (4)

Each tensor A is uniquely determined by these three scalars β (mod π, since the tensor
has a 180◦ symmetry), s ∈ R

+ ∪ {0}, and b ∈ R
+ ∪ {0}. The stickness s is interpreted

as a measure for the orientation certainty or a measure of anisotropy of the ellipse in
orientation β. The ballness b is interpreted as a measure for the orientation uncertainty
or isotropy.

There are two special cases for the positive semidefinite tensors: a stick tensor is a
tensor with b = 0 and s > 0, and a ball tensor is an isotropic tensor, i.e. s = 0.

There are many ways to generate an input tensor field H from an input image.
Medioni et al. assume that the input tensor field H is sparse, i.e. that most of the tensors
in H are zero and therefore do not play any role. The way to generate a sparse tensor
field (or in other words, a sparse set of tokens) out of an image is currently application-
specific, but it is considered important to come to a more generic approach for generat-
ing tokens [4]. In this work, we assume that the obtained input field H is dense, to make
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Fig. 1. (a) Graphical representation of a rank-2 symmetric positive semidefinite tensor. (b) Exam-
ple of a stick voting field. Gray scale indicates stickness value (darker mean higher value) and
line segments indicate orientation.

the algorithms we develop generically applicable for both sparse and dense data, which
is desirable as long as we do not have a well-justified method to sparsify our data.

As an example, a dense input tensor field could be obtained by creating feature im-
ages β(x) and s(x) by applying any type of orientation-selective filter with a 180◦

symmetry on the image data and taking the orientation with maximum filter response.
The ballness b(x) could be obtained by any isotropic filter on the image data. A ten-
sor is uniquely determined by these three features, so we can now construct a tensor
field H(x).

2.2 Voting Fields

TV uses a stick tensor voting field to incorporate the continuation of line structures.
This voting field is a tensor field V : Ω → T2(R2), consisting entirely of stick tensors,
in which the stickness of the tensors describes the likelihood that a feature at position
x belongs to the same line structure as the feature positioned in the center (0, 0) of the
voting field with reference orientation 0◦. The orientation of the tensor at x describes
the most probable orientation of a feature at that position. Rotated versions of V will
be denoted by Vα, where α denotes the rotation angle

Vα(x) = RαV(R−1
α x)R−1

α , (5)

where
Rα =

(
cos α − sin α
sin α cos α

)
. (6)

Medioni et al. [2] claim in their work that TV is model-free and that there is only
one involved parameter, viz. scale. We, however, consider the voting field as the model
used in tensor voting. Medioni’s fundamental stick voting field is a model based on
some assumptions on curves in images, but it is definitely not the only possible choice.
One alternative voting field is discussed in Section 4. Figure 1b shows an example of a
typical stick voting field.

2.3 Tensor Voting Operation

The idea of the TV operation is to let tensors communicate with each other by adding
up contributions of neighboring tensors, resulting in a context-enhanced tensor field U.
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Fig. 2. Illustration of context communication within TV: the tensors communicate with each other
using the stick voting field, which is indicated by the “8-shaped” contour. In this way the tensors
strengthen each other.

Figure 2 illustrates the way the voting field is used on input data consisting of stick
tensors. For each (nonzero) tensor H(x′), the voting field Vα is centered at position
x′, aligned with the local orientation β(H(x′)): Vβ(H(x′))(x−x′). Then, to all tensors
in a certain neighborhood (determined by the scale of the voting field), a weighted
contribution (called a vote) s(H(x′))Vβ(H(x′))(x−x′) is added, where x is the position
of the tensor that receives the vote. In other words, each tensor broadcasts contributions
to the neighbors by appropriate alignment and rotation of the voting field. This results
in the following operational definition for TV

U(x) =
∫

Ω

s(H(x′))Vβ(H(x′))(x − x′) d2x′, (7)

where the output is a tensor field U(x) with context-enhanced measures for orienta-
tion, stickness, and ballness. Note that in practice, the integral symbol in the previous
equation amounts to a summation on a discrete grid.

Note that ballness b is not used in (7). The original TV formulation also incorporates
ball voting [2], used to generate orientation estimates for β. Since we obtain estimates
for β using local orientation-selective filters, we will not consider ball voting, hence the
ballness b of all tensors in input tensor field H will be assumed to be zero.

2.4 Related Work

When using a dense input tensor field, the representation shows similarity with the well
known structure tensor, and especially with the hour-glass smoothing filter extension
described in [5], which shows resemblance with the tensor voting field. The difference
is that the structure tensor is always constructed from the gradient of the image, while
in tensor voting the input tensor field is considered a free choice. Also, the smoothing
kernel used to smooth the structure tensor field is scalar-valued, while our voting field
is tensorial. Tensor voting also shows resemblance with non-linear structure tensors [6],
where anisotropic non-linear diffusion is applied on tensor images.

3 Steerable Tensor Voting

A technical difficulty in tensor voting is the alignment of the voting field with the ori-
entation of a tensor, which needs to be done at every position. Since TV is a linear
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operation (equation (7)), it is possible to handle these rotations in an efficient way. We
will derive a method that we call steerable tensor voting. It is based on steerable filter
theory as described by Freeman et al. [3]. We will first summarize this theory, and then
explain steerable tensor voting.

3.1 Steerable Scalar Filters

One can rotate a scalar filter kernel h(x) by α by counter rotating the filter domain:
hα(x) = h(R−1

α x). If we write the function in polar coordinates, denoted by h̃(r, φ),
such that h̃(r, φ) = h(x) with x = (r cosφ, r sinφ), rotation becomes h̃α(r, φ) =
h̃(r, φ − α).

Here we introduce the spatial-angular Fourier decomposition of a function h : R
2 →

C, which is given by

h̃ms(r) =
1
2π

∫ 2π

0
h̃(r, φ) e−imsφdφ, (8)

and its inverse, the spatial composition, is

h̃(r, φ) =
∑

ms∈Z

h̃ms(r) eimsφ. (9)

A filter h is steerable if its spatial-angular Fourier composition (9) is a finite sum,
i.e., there must be a finite number of nonzero Fourier coefficients h̃ms(r). If a desired
filter can be accurately approximated with a finite sum, we also call the filter steerable.

We write a steerable filter as h̃(r, φ) =
∑M

ms=−M fms(r)eimsφ, where M < ∞ is
the highest angular frequency of the filter kernel. Rotation of the steerable filter becomes

hα(x) =
M∑

ms=−M

e−imsα︸ ︷︷ ︸
kms (α)

h̃ms(r)e
imsφ︸ ︷︷ ︸

hms(x)

, (10)

where kms(α) are the linear coefficients as function of rotation angle α.
The filter response uα of a filter hα in orientation α is obtained by uα(x) = (f ∗

hα)(x) where f is an image and “*” indicates convolution. If we substitute hα by (10)
in this equation and interchange sum and convolution, we get

uα(x) =
M∑

ms=−M

kms(α) (f ∗ hms)(x). (11)

Hence, we can first convolve an image f with the 2M + 1 component functions hms

and then calculate the filter response for any orientation α, by simply taking the linear
combination with coefficients kms(α). This leads to an efficient method for oriented
filtering if M is sufficiently small.

3.2 Rotation of 2-Tensors

A rank-2 symmetric tensor A can be rotated over an angle α as follows.

Aα = RαAR−1
α with Rα =

(
cos α − sin α
sin α cos α

)
. (12)
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It is more convenient to rewrite tensor A as a 3-tuple and to perform the tensor

rotation with a single 3×3 matrix. That is, if we write
−→
A =

( axx
axy
ayy

)
then one can verify

that
−→
Aα =

( 1
2 (1+cos(2 α)) − sin(2 α) 1

2 (1−cos(2 α))
1
2 sin(2 α) cos(2 α) − 1

2 sin(2 α)
1
2 (1−cos(2 α)) sin(2 α) 1

2 (1+cos(2 α))

)
−→
A. (13)

It is a special property of the 2D rotation group that one can diagonalize the rotation
matrix for all α by applying a similarity transformation S

−→
Aα =

1
4

( 2 1 1
0 i −i
2 −1 −1

)
︸ ︷︷ ︸

S−1

(
1 0 0
0 e−2i α 0
0 0 e2i α

)
︸ ︷︷ ︸

R′
α

( 1 0 1
1 −2i −1
1 2i −1

)
︸ ︷︷ ︸

S

−→
A. (14)

So if we transform a tensor
−→
A as

−→
A ′ =

⎛
⎝ A0

A2
A−2

⎞
⎠ = S

−→
A =

⎛
⎝1 0 1

1 −2i −1
1 2i −1

⎞
⎠

⎛
⎝axx

axy

ayy

⎞
⎠ , (15)

we obtain components A0, A2, and A−2, which are the tensor components in rotation-
invariant subspaces. These components are rotated by a simple complex phase factor:
Aα

ma
= e−imaαAma (ma = 0, −2, 2), which directly follows from (14). Henceforth

we will call these components the ma-components of the tensor, and the transformation
of (15) is called the orientation-angular Fourier decomposition of the tensor.

Note that the properties β, s, b defined in equations (2) to (4) can be easily described
in terms of A0, A−2 and A2 using (15)

β =
1
2

arg A−2 s =
√

A−2A2 = |A2| = |A−2| b =
1
2
(A0 − |A2|). (16)

Note also that A2 = A−2 where A−2 is the complex conjugate of A−2.

3.3 Steerable Tensor Filters

The concept of steerable filters can also be applied to tensor fields and to the vot-
ing field in particular, which rotates according to Vα(x) = RαV(R−1

α x)R−1
α . In

the previous subsection we showed how to decompose tensors in orientation-angular
Fourier components and how to rotate them. For the voting field we get V α

ma
(x) =

e−imaαVma(R−1
α x) for ma = −2, 0, 2. These three Vma functions are of the form

R
2 → C and can be made steerable in the same way as scalar filters. So, a voting field

is steerable if for all ma-components (ma = 0, −2, 2) of the tensor field we can write
Vma(x) =

∑M
ms=−M Ṽmams(r)eimsφ. Rotation becomes

V α
ma

(x) =
M∑

ms=−M

e−i(ma+ms)α Ṽmams(r) eimsφ︸ ︷︷ ︸
Vmams (x)

, (17)

where Vmams(x) are the basis filters and e−i(ma+ms)α are the linear coefficient func-
tions of rotation angle α. Filling the previous equation into (7), and writing U in its
ma-components according to (15) results in
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Uma (x) =
∫

Ω

s(H(x′)) V β(H(x′))
ma

(x − x′)dx′

=
∫

Ω

s(H(x′))

(
M∑

ms=−M

e−i(ma+ms)β(H(x′)) Vmams(x − x′)

)
dx′

=
M∑

ms=−M

∫
Ω

(
s(H(x′)) e−i(ma+ms)β(H(x′))) Vmams(x − x′)dx′

=
M∑

ms=−M

((
s(H) e−i(ma+ms)β(H)

)
∗ Vmams

)
(x). (18)

This important result states that, as opposed to non-steerable TV, we can apply TV
simply by calculating 2 · (M + 1) convolutions, viz. for each ma component we need
M + 1 ms-terms, since all odd ms components are zero for 180◦-symmetric voting
fields. Furthermore, taking into account that U2(x) = U−2(x) we see that we only have
to calculate and U0(x) and U2(x). Notice also that the convolutions involve relatively
large kernels, meaning that they can possibly be done more efficiently via the Fourier
domain, i.e. A∗B = F−1[F [A] ·F [B]], where F denotes the spatial Fourier transform.

4 Voting Fields

The stick voting field can be freely chosen in tensor voting. In this section we will treat
two different voting fields and state some qualitative differences between them.

4.1 Medioni’s Voting Field

Medioni et al. [2] assume that the best connection between two points with one orien-
tation imposed is a circular arc. If one point is horizontally oriented and the angle of
the vector connecting the two points is φ, then the angle at the other point is 2φ. This
cocircularity model is encoded in a tensor field consisting of stick tensors with λ1 = 1
(and λ2 = 0) as ccT with c =

(
cos 2φ
sin 2φ

)
(cf. (1)).

To obtain a locally confined voting field the cocircularity pattern is modulated with
a function that decays with radius curve length and curvature. This yields the following
voting field

Ṽ(r, φ) = e−( φr
σctx sin φ )2−p ( 2σctx sin φ

r )2 (
1+cos (4φ) sin (4φ)

sin (4φ) 1−cos (4φ)

)
(19)

where σctx is the scale of the voting field, p is a dimensionless constant describing the
relative weight of the curvature. In practice, points above an below the diagonals φ =
±π/4 mod π in the field are considered too unlikely to belong to the same structure
as the point in the center of the field, so the field is truncated for these values of φ.

There are two drawbacks of this voting field concerning steerable tensor voting. First,
there is no simple analytic expression for the components Vmams(x), so one should
calculate the steerable components of this kernel numerically. Second, the field has an
infinite number of ms-components, so we have to cut the sum over ms such that we get
a reasonable approximation. Therefore, in the next subsection we propose a different
voting field, which is more suitable for steerable tensor voting.



An Efficient Method for Tensor Voting Using Steerable Filters 235

4.2 Bandlimited Voting Field

Here we propose a bandlimited voting field, which is especially useful for steerable
tensor voting, since it has a limited number of spatial-angular Fourier components. The
decay function is similar to the one for instance used in [7].

Similar to Medioni’s voting field, we assume that the best connection between two
points with one orientation imposed is a circular arc. Now we modulate the cocircular-
ity pattern with a function that decays with radius r. We choose a Gaussian decay as
function of r. To penalize high-curvature arcs, we must also account for some periodic
modulation that reaches its maximum at φ = 0 mod π and minimum for φ = π/2
mod π. This is achieved with the term cos2n φ, where n ∈ N is a parameter speci-
fying the speed of decay of the field as function of φ. The voting field now becomes,
expressed in spatial polar coordinates

Ṽ(r, φ) =
1
G

e
−r2

2σ2
ctx cos2n(φ)

(
1+cos (4φ) sin (4φ)

sin (4φ) 1−cos (4φ)

)
, (20)

where σctx ∈ R
+ is the scale of the voting field. The factor G is a normalization factor.

This voting field is depicted in Figure 1b. In the following, to get simpler equations, we
will use G = 1/16 and n = 2.

We apply orientation-angular (15) and spatial-angular (8) Fourier decomposition to
this voting field. The spatial-angular Fourier decomposition is trivial if we first replace
all trigonometric functions by exponentials and expand these exponentials.(

Ṽ0(r,φ)
Ṽ2(r,φ)

Ṽ−2(r,φ)

)
= e

− r2

2σ2
ctx

(
e−i4φ+4e−i2φ+6+4ei2φ+ei4φ

e−i8φ+4e−i6φ+6e−i4φ+4e−i2φ+1
1+4ei2φ+6ei4φ+4ei6φ+ei8φ

)
(21)

For every ma-component we have effectively 5 ms-components. We can now write this
filter in the steerable form cf. (17)

⎛
⎝V α

0 (x)
V α

2 (x)
V α
−2(x)

⎞
⎠ =

(
0 0 e4iα 4e2iα 6 4e−2iα e−4iα 0 0

e6iα 4e4iα 6e2iα 4 e−2iα 0 0 0 0
0 0 0 0 e2iα 4 6e−2iα 4e−4iα e−6iα

)
⎛
⎜⎜⎝

w−8(x)
w−6(x)

...
w6(x)
w8(x)

⎞
⎟⎟⎠
(22)

where the matrix contains the linear coefficients as function of rotation, and the vector
at the right side contains the basis filters. The basis filters are defined by w̃ms(r, φ) =

e
− r2

2σ2
ctx eimsφ. In cartesian coordinates they are given by

wms(x) = e
− x2+y2

2σ2
ctx

(
x + iy√
x2 + y2

)ms

, for x �= (0, 0). (23)

Using (18) we can implement steerable tensor voting for this voting field, as follows.
The filter kernels wms(x) are tabulated for ms = 0, 2, 4, 6, 8 (note that w−ms = wms).
Given the stickness s and orientation β of tensors in H, we need to calculate a number of
complex-valued feature images cms(x) = s(H(x)) e−ims β(H(x)) for ms = 0, 2, 4, 6.
Now, we can calculate the resulting ma = −2 part by

U−2(x) =(w0 ∗ c2) + 4(w2 ∗ c0) + 6(w4 ∗ c2) + 4(w6 ∗ c4) + (w8 ∗ c6), (24)
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where c2 denotes complex conjugate and c2 = c−2. The ma = 2 part does not need
to be calculated explicitly, because it is simply the complex conjugate of the ma = −2
part. The ma = 0 part can be calculated by

U0(x) = (w4 ∗ c4) + 4(w2 ∗ c2) + 6(w0 ∗ c0) + 4(w2 ∗ c2) + (w4 ∗ c4)

= Re
(
6(w0 ∗ c0) + 8(w2 ∗ c2) + 2(w4 ∗ c4)

)
.

(25)

So TV with this voting field requires 8 convolutions. In the resulting context-enhanced
tensor field U, we are interested in the orientation, stickness, and ballness. These mea-
sures are calculated using (16).

5 Computational Efficiency

In this section we compare three different versions of tensor voting:

– Normal TV: “Normal” tensor voting where the stick voting field is calculated alge-
braically at every position;

– Steerable TV spatial: Steerable tensor voting using spatial convolutions;
– Steerable TV FFT: Steerable tensor voting using FFT.

5.1 Computational Complexity

A typical TV implementation scans through the entire image, and collects or broadcasts
information from or to the neighborhood of every tensor. If our image is square with a
size of s × s pixels and the voting field kernel has a size k × k, then s2k2 tensor addi-
tions need to take place. The order of this algorithm is thus O(s2k2). Steerable tensor
voting consists of a sum of complex-valued 2D convolutions. If they are implemented
in the spatial domain, the order is O(s2k2) as well. However, if the convolutions are
implemented through the Fourier domain using a 2D FFT implementation, the order is
reduced to O(s2 log s).

5.2 Speed Comparison

To give an impression of the differences in speed we did some speed measurements.
All algorithms were implemented in C++, and compiled using Microsoft Visual C++.
To make the comparison fair, all 3 variants use the bandlimited voting field of Subsec-
tion 4.2, implying that they all give the same results. We use the FFTW library for the
FFT (see http://www.fftw.org/). All numbers are stored using data type “double”. For
normal TV and steerable TV spatial the kernel has a pixel size of 1

4 times the size of the
image, i.e. the scale of the kernel scales proportionally to the image size. The steerable
TV implementation uses a voting field with 9 steerable components. We use random
dense stickness and orientation maps as input, since the speed of the algorithms is not
dependent on the contents of the input data if the input data is dense.

Figure 3 shows computation times as function of image size, measured on an AMD
Athlon 64 X2 4400+ running on Windows XP at 2.3 GHz. It is clear that steerable TV
FFT performs fastest, followed by steerable TV spatial. The normal TV version is much
slower. As example to show the large differences, on a 512 × 512 image, steerable TV
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Fig. 3. Speed measurements of three different TV algorithms as function of image size. STV =
Steerable tensor voting. See Subsection 5.2 for details.

FFT takes 1.05 seconds, while steerable TV spatial takes 1980 seconds, and normal TV
takes 8803 seconds. Since the graph is a log-log plot, the slope of the curves indicates
the computational complexity of the algorithm. As expected, steerable TV with FFT has
a smaller slope. The latter curve shows an irregular trajectory, due to some technicalities
of the FFT algorithm. The FFT implementation is more efficient if the data size is a
power of 2 a product of small prime factors. The normal TV implementation is slower
because of the analytic calculations that are required for every vote1.

Convolutions and FFT’s only involve multiplications, additions, and memory accesses
in a very regular fashion. These operations are therefore very suitable for efficient im-
plementations exploiting cache memory and parallelism. A graphical processing unit
(GPU) might be suitable to host an extremely fast implementation of steerable tensor
voting [8].

As final remark, note that if the tensor field is very sparse, steerable TV may perform
worse since it does not benefit from the possibility to skip zero-valued tensors during
the voting process.

6 Examples of 2D Steerable Tensor Voting

Steerable tensor voting is a new computational method for tensor voting, which yields
the same result as normal tensor voting if exactly the same voting field is used. There-
fore, in this section we do not perform comparison of results of the two methods, but
only show two applications that require computationally efficient algorithms.

In the examples, our approach for the curve extraction process is as follows. The
input stickness s and the orientation β are constructed using first order (for edges) or
second order (for ridges) Gaussian derivatives. To enhance these data, a steerable tensor
voting step is performed according to (18). Spurious responses caused by noise in the
image cause that the resulting stickness image is not sufficiently enhanced: for instance,

1 Alternatively, one could also precalculate the voting field in one or a limited number of ori-
entations and then interpolate. However, this will lead to discretization errors and irregular
memory accesses, and therefore possible caching problems on typical computer systems.



238 E. Franken et al.

the resulting curves might still have gaps. To get more consistent curves, non-maximum
suppression (thinning) is applied on the resulting stickness image to keep the centerlines
of the curves, followed by a second tensor voting step on the thinned image. So, the first
TV step is on dense data (prior to any hard decision step), the second step is on sparse
data.

6.1 Electrophysiology Catheters

An interesting example application is the detection of Electrophysiology (EP) catheters
in X-ray fluoroscopy images. These images are generated during heart catheterization
procedures. Figure 4 shows an example of such an image, the result obtained with steer-
able tensor voting and the final result after an EP-catheter specific extraction algorithm
is applied on the resulting stickness image. We did an extensive evaluation on this med-
ical application, and clearly our extraction performance increased using tensor voting
compared to not using tensor voting. More details can be found in [9].

6.2 Ultrasound Kidney

Figure 5 shows the results on the ultrasound image of a kidney. The line segment extrac-
tion in subimages (c) en (f) is achieved by applying thinning, and extraction of strings of

(a) (b) (c)

(d) (e)

Fig. 4. Electrophysiology catheter extraction example. (b) Original noisy image, used as input for
this example. Size 512 × 512 pixels. (b) Local ridgeness image (i.e. the largest eigenvalue of
Hessian constructed using 2nd order Gaussian derivatives with scale σ = 3.4 pixels). (c) Result
of first tensor voting step with σctx = 15. (d) Result of a second tensor voting step with σctx = 7.5.
(e) Final extraction result using EP-catheter specific extraction algorithm.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Example of tensor voting on an ultrasound image of a kidney. (a) Original image, size
345 × 260 pixels. (b) Gradient magnitude with σ = 3 pixels. (c) Extracted line segments using
(b). (d) Result after first tensor voting step with σctx = 15. (e) Result after second tensor voting
step with same settings. (f) Extracted line segments using image (e). In both (c) and (f), 1250
pixels were extracted for the sake of comparison.

connected pixels starting from the pixel with highest value that is not yet extracted, until
a predefined number of pixels is extracted. The contours are more enhanced after tensor
voting, which can be seen if we compare the extracted contours with and without the use
of tensor voting. Clearly, tensor voting helps to extract longer and smoother contours.

7 Conclusion

The main conclusion of this paper is that tensor voting can be made steerable. We are
able to write tensor voting as a summation of a number of complex-valued convolu-
tions. We showed that two-dimensional steerable tensor voting is computationally more
efficient on dense tensor fields. The highest speed gain is achieved if we implement
steerable tensor voting using FFT. A GPU implementation might lead to an even faster
implementation.

Another point we made is that the voting field of Medioni is not the only possible
voting field. We proposed the bandlimited voting field as alternative. The voting field
could also be made more application-specific by gathering statistics on curves in a spe-
cific application. Or it can be made as generic as possible by only using the random
walker prior, leading to the stochastic completion field [10, 11].

Our examples show that the method is especially feasible for applications where thin
noisy line-structures must be detected. These kind of problems often arise in the field
of medical image analysis.

Tensor voting and related methods are promising methods for robust extraction of
line-like structures in images. There are still a lot of challenges to be faced, such as 3D
steerable tensor voting and multi-scale tensor voting.
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