Continuous Medial Representations for Geometric Object Modeling

Wei Liu Mar 18, 2010

Methods to define skeleton of object

- maximal inscribed ball
- Hierarchal Voronoi
- Shock of boundary evolution
- core tracking.
- m-rep
- cm-rep

M-rep: Inverse skeletonization

- Traditional: the intersection of the normal.
- Now: a medial point with two boundary point.

$$\mathbf{U}^{\pm 1} = \mathbf{R} \begin{bmatrix} \cos(\theta) \\ \pm \sin(\theta) \end{bmatrix},$$

$$\mathbf{y}^{\pm 1} = \mathbf{x} + r\mathbf{U}^{\pm 1},$$

$$m = \{\mathbf{x}, r, \mathbf{R}, \theta\}$$

M-rep: sampling

- Medial point are sampled on the axis.
- A sparse representation.
- Sampled medial points are fixed relative to the axis.

http://midag.cs.unc.edu/defmreps/jl3_movie2.gif

Continuous m-rep: cm-rep

- Can move the medial points along the axis.
- Generate a synthetic given set of b-spline control points.
- Maximize overlapping between this shape and template by adjusting control point.

- m Medial surface
- r Radial scalar field
- u, v Parametrization of (\mathbf{m}, r)
 - \mathbf{b}^t Boundary counterparts of (\mathbf{m}, r)
 - t Indexes the two parts (-1,1) of the implied boundary.
- u^t Unit normal to the boundary, also the direction from a point on
 m to its boundary counterpart.
 - n Unit normal to the medial surface.

m Medial surface

r Radial scalar field

u, v Parametrization of (\mathbf{m}, r)

 \mathbf{b}^t Boundary counterparts of (\mathbf{m}, r)

t Indexes the two parts (-1,1) of the implied boundary.

u^t Unit normal to the boundary, also the direction from a point on m to its boundary counterpart.

n Unit normal to the medial surface.

$$f(\mathbf{x}, u, v) = |\mathbf{x} - \mathbf{m}(u, v)|^2 - r(u, v)^2 = 0$$

 $f = 0$, $f_u = 0$, $f_v = 0$

$$\mathbf{b}^t = \mathbf{m} + r\mathbf{u}^t ,$$

$$\mathbf{u}^t = -\nabla r + t\sqrt{1 - \|\nabla r\|^2}\mathbf{n}$$

$$\nabla r = \begin{bmatrix} \mathbf{m}_u & \mathbf{m}_v \end{bmatrix} \mathbf{I}_{\mathbf{m}}^{-1} \begin{bmatrix} r_u \\ r_v \end{bmatrix}$$

$$|\nabla r|| \le 1$$

•When ||del r|| = 0, meaning r does not change, U = N.

B-spline interpolation

- m Medial surface
- r Radial scalar field
- u, v Parametrization of (\mathbf{m}, r)
- \mathbf{b}^t Boundary counterparts of (\mathbf{m}, r)
- t Indexes the two parts (-1,1) of the implied boundary.
- u^t Unit normal to the boundary, also the direction from a point on m to its boundary counterpart.
- n Unit normal to the medial surface.

$$\mathbf{m}(u,v) \ = \ \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} N_i^3(u) N_j^3(v) \bar{\mathbf{m}}_{ij}$$

$$r(u, v) = \sum_{i=0}^{d_1} \sum_{j=0}^{d_2} N_i^3(u) N_j^3(v) \bar{r}_{ij}$$

constraints

- Closed
- Connected
- non-singular

Parameter estimation

Parameter estimation

- Obj F = prior + Energy
- Prior: prefer low curvature.

$$(|\bar{\mathbf{m}}_{i+1} - \bar{\mathbf{m}}_i| - |\bar{\mathbf{m}}_i - \bar{\mathbf{m}}_{i-1}|)^2$$

Energy: mean square distance between interpolated boundary and target shape, summed over all sampled points.

backup(1)

$$\mathbf{II_{b^t}} = \left[egin{array}{cccc} \mathbf{b}_{uu}^t \cdot \mathbf{u}^t & \mathbf{b}_{uv}^t \cdot \mathbf{u}^t \ \mathbf{b}_{vu}^t \cdot \mathbf{u}^t & \mathbf{b}_{vv}^t \cdot \mathbf{u}^t \end{array}
ight] = - \left[egin{array}{cccc} \mathbf{b}_u^t \cdot \mathbf{u}_u^t & \mathbf{b}_v^t \cdot \mathbf{u}_u^t \ \mathbf{b}_u^t \cdot \mathbf{u}_v^t & \mathbf{b}_v^t \cdot \mathbf{u}_v^t \end{array}
ight]$$

$$\mathbf{I}_{\mathbf{b}^t} = \left[egin{array}{cccc} \mathbf{b}_u^t \cdot \mathbf{b}_u^t & \mathbf{b}_u^t \cdot \mathbf{b}_v^t \ \mathbf{b}_v^t \cdot \mathbf{b}_u^t & \mathbf{b}_v^t \cdot \mathbf{b}_v^t \end{array}
ight]$$

$$\nabla r = \frac{dr}{ds}\mathbf{t} = \frac{r'}{\sqrt{x'^2 + y'^2}}\mathbf{t} ,$$

Narrated Quicktime movie about model construction in 3D (.mov with audio, 3 min, 11mb)

Narrated Quicktime movie about fitting models to images in 3D (.mov with audio, 90 sec, 18mb)

Movie of a spinning 3D model of the hippocampus (.avi loop, 200kb)

backup(2)

backup(3)

Continuous medial axis