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Figure 4.1: Different coding techniques of the simple object shown in a. The Freeman code (b)
is defined to connect the middle points of the border pixels of the object. Images ¢ and d illustrate
the crack code and its simplification, respectively, while e shows the assignment of code numbers
to directions.

Vehain = 0005676644422123
Verack 000064660666444422202242
Vaimplecrack = 0075766544321231

Table 4.1: Code sequences corresponding to Figures 4.1(b.c, and d,)



Boundary Parametrization

(1:1{5] ):(j([s]) u:uﬂ+ju1:Ej¢:EEEa

Fourier expansion

In the complex notation the vector function given in equation 4.1 transforms to the complex
valued function z(u). z(u) is represented as a series of complex exponentials.

inf

z(u) = Z Zpu” (4.4)

n=— inf

where the complex coefficient z,, can be expressed in polar notation, i.e.

o = Tpel¥ | (4.5)

with r, € R,r, = 0, and ¥ € R.



Determining Coefficients

Determining the coefficients

The calculation of z,, for a given contour z(u) is of practical interest. This is given by the
formula:

1

2

z(u) 7" |dul (4.6)

In most applications, z(u) describes a polygon and often we are not interested in the center
of gravity of the contour. In this case, it is simplest to start from the derivative ]?ﬁT[ of 4.4
and derive another formula for z,:

1
Zn = n 2 (u) 7" |dul (4.7)
1 M-1
n=—— T s (4.9)



Harmonic Contributions

Harmonic contributions to the contour Inequation (2.9) we match
terms with opposite indices in pairs

2(u) = zg+ Z zau™ oz u" (2.17)

-

n=1 Eiii:{u]

All harmonic contributions — except zp — describe an ellipse when taken
by themselves. The ellipse elli,(u) is covered n times when u runs over
the circle U. The vertex of the ellipse, i.e. the maximum of the absolute
value of elli,,, is reached where both terms of the sum have the same
phase; at this point the triangle inequality

lellin(u)] < |zau™| + [zonu™] (2.18)

holds with equality.



Normalization

Translation 2 Zn =
e el Rotation 1| 2,2 1R
Starting point A = % 1
e e Scale 15 4+241=1

Figure 4.2: Normalization steps of Fourler coefficients; shifting of the starting point to the tip of
the ellipse (a), moving the center of gravity to the coordinate origin (b}, rotating the main axis of
the ellipse to the real axis (c), and finally scaling the half major axis to unity (d).

Invariant Fourier descriptors

Tgnoring zp, that is setting zp |T: 0, achieves translation invariance. Summing up all
standardizations; the invariant coefficients are denoted Z,:

-

VRST_ - ed o
3 = 4.14
o= 0 (4.15)



Truncation / Classification

Truncating the expansion If only for practical reasons, the infinite
sum (2.9) must be truncated at some maximum degree, say N. We define
the partial sum Z and the complex-valued deviation f(u) as follows.

N

Hu) = Y zuu” (2.37)
n=—N

flu) = z(u)—z2u)= ) zu" (2.38)

Classification of objects

Model based object recognition is an important application of shape de-
scriptors. For each model object g, a descriptor, i.e. a collection {Z, }[g],
is computed in the so-called training phase. In the same way a descriptor
{z,} is determined for the unknown object. We define a classification
distance (or its square, respectively).

N
Dlgl= > |zalg] - 2l (2.42)
n=—N

We decide for the model g with minimal D]g].




Reconstruction from Elliptic
Descriptors
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