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Appendix A

Forms and differential forms

In this Appendix, we recall the definitions and the main basic properties of the multi-
vectors, them-forms and the differentialm-forms on Rd. We present here the material which
is needed for the definition of currents in the framework of this thesis. Some properties
are given without any proofs. For more detailed presentation, we refer the reader to any
handbook of differential geometry such as [Lang 1962, Sternberg 1964, do Carmo 1994].
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A.1 Wedge product and m-multivectors

A.1.1 Definitions

The wedge product is a generalization of the cross-product, which extends the usual
measure of areas and volumes in 3D. Theoretically, the wedge product u∧ v between u and
v, two vectors in Rd, is equal to the tensor product u⊗ v up to any linear combination of
the form x⊗ x. The set of all wedge product between any pair of vector of Rd is called the
exterior algebra over Rd and is denoted Λ(Rd). Formally, we have this abstract (and non
tractable) definition:

Definition A.1 (exterior algebra over Rd). The exterior algebra Λ(Rd) is defined as the
quotient algebra of the tensor algebra by the two-sided ideal I generated by all elements of
the form x⊗ x such that x ∈ Rd.

All what we need to know about the wedge product is the two following properties
(which is a definition of the wedge product, in some sense): the wedge product is a bilinear
operation and vanishes if two vectors are equals:{

(λu+ v) ∧ w = λ(u ∧ v) + u ∧ w
u ∧ u = 0

(A.1.1)
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for all u, v ∈ Rp and λ ∈ R.
As a direct consequence of these properties, we have that: u ∧ v = −v ∧ u. Indeed, we

have (u+ v) ∧ (u+ v) = 0 = u ∧ v + v ∧ u.
Then, we extend the wedge product between two vectors to the wedge product between

any family of m-vectors via the associativity law: u ∧ v ∧ w = (u ∧ v) ∧ w. This leads to
the definition of the mth exterior power of Rd:

Definition A.2 (mth exterior power of Rd). We call the mth exterior power of Rp the
vector space spanned by the vectors of the kind u1 ∧ . . . ∧ um for all ui ∈ Rd. We denote
this space ΛmRp. The vectors in ΛmRp are called m-multivectors.

As a consequence of this definition, the m-multivector u1 ∧ . . . ∧ um is totally antisym-
metric. This means that it vanishes as soon as two ui are equals. More generally, we have
for any permutation of {1, . . . ,m} σ:

uσ(1) ∧ . . . ∧ uσ(m) = sign(σ)u1 ∧ . . . ∧ um, (A.1.2)

where sign(σ) denotes the signature of the permutation σ.

Moreover, we have the following property:

Proposition A.3. Let (ui)i=1...m be m vectors in Rd and A a m-by-m matrix. Let vi =
m∑
j=1

Aijuj, then

v1 ∧ . . . ∧ vm = |A|u1 ∧ . . . ∧ um, (A.1.3)

where |A| denotes the (signed) determinant of the matrix A.

Proof. By linearity, we have:

v1 ∧ . . . ∧ vm =

 m∑
j=1

A1juj ∧ . . . ∧
m∑
j=1

Amjuj

 =

=
∑
p∈Pm

A1p(1) . . . Amp(m)

(
up(1) ∧ . . . ∧ up(m)

)

=

 ∑
p∈Pm

sign(σ)A1p(1) . . . Amp(m)

u1 ∧ . . . ∧ um

= |A|u1 ∧ . . . ∧ um,

(A.1.4)

by definition of the determinant (Pm denotes the set of m! permutations of {1, . . . ,m}). �

A.1.2 Euclidean basis for multivectors

Let (εi)i=1...d be the canonical basis of Rd, so that each vector ui is decomposed into∑d
k=1 u

k
i εk Thanks to the linearity and the alternating properties of the wedge product we
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have:

u1 ∧ . . . ∧ um =

(
d∑
k1

uk1
1 εk1

)
∧ . . . ∧

(
d∑

km=1

ukmm εkm

)
=
∑
p∈Cdm

∑
σPm

u
σ(p(1))
1 . . . uσ(p(m))

m εσ(p(1)) ∧ . . . ∧ εσ(p(m))

=
∑
p∈Cdm

( ∑
σ∈Pm

sign(σ)u
σ(p(1))
1 . . . uσ(p(m))

m

)
εp(1) ∧ . . . ∧ εp(m),

(A.1.5)

where Cdm denotes the set of all subsets of m elements in {1, . . . , d} and Pm the set of
all permutations of {1, . . . ,m}. This shows that the vectors εi1 ∧ . . . ∧ εim for 1 ≤ i1 <

. . . < im ≤ d spanned the vector space ΛmRd. One can easily show that these vectors are
linearly independent. Therefore, the space ΛmRd is of dimension

(
d
m

)
. Then we write any

m-multivectors on Rd as:

u =
∑

1≤i1<...<im≤d

ui1...imεi1 ∧ . . . ∧ εim (A.1.6)

We provide ΛmRp with the standard Euclidean inner-product and norm:

|u|2 =
∑

1≤i1<...<im≤d

(ui1...im)
2 (A.1.7)

Of course, this definition does not depend on the choice of the basis.

A.1.3 Particular cases

We study now some particular cases of interest:

• if m > d, ΛmRd = {0},

• if m = 0, Λ0Rd is of dimension 1: this is the space of scalars R itself,

• if m = 1, Λ1Rd is of dimension d: this is the vector space Rd itself,

• if m = d − 1, Λd−1Rd is of dimension d. The decomposition of a d − 1-multivector
u1 ∧ . . . ∧ ud−1 on the basis (ε̃di = ε1 ∧ . . . εi−1 ∧ εi+1 . . . ∧ εd)i=1,...,d (which denotes
the set of d-multivectors ε1 ∧ . . . ∧ εd in which the vector εi is missing) leads to:

u1 ∧ . . . ∧ ud−1 =
d∑
i=1

ηiε̃
d
i , (A.1.8)

where

ηi =
∑

σ∈Pm;σ(d)=i

sign(σ)u
σ(1)
1 . . . u

σ(d−1)
d−1 (A.1.9)
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This shows that the vector η is such that for any vector α ∈ Rd:

ηtα =
d∑
i=1

ηiαi =
d∑
i=1

∑
σ∈Pm;σ(d)=i

sign(σ)u
σ(1)
1 . . . u

σ(d−1)
d−1 αi

=
d∑
i=1

∑
σ∈Pm;σ(d)=i

sign(σ)u
σ(1)
1 . . . u

σ(d−1)
d−1 ασ(d)

=
∑
σ∈Pm

sign(σ)u
σ(1)
1 . . . u

σ(d−1)
d−1 ασ(d) = det (u1, . . . , ud−1, α)

(A.1.10)

Therefore, any d− 1-multivector u1 ∧ . . . ∧ ud−1 is associated to a vector η such that
ηtα = det (u1, . . . , ud−1, α) for every vector α (see below the instance in 3D)

• If m = d, ΛdRd is of dimension 1: it is spanned by the vector ε1 ∧ . . .∧ εd. Thanks to
Eq. (A.1.5), we have:

u1 ∧ . . . ∧ ud =
∑
σ∈Pd

sign(σ)u
σ(1)
1 . . . u

σ(d)
d ε1 ∧ . . . ∧ εd

= det(u1, . . . , ud)ε1 ∧ . . . ∧ εd
(A.1.11)

All d-multivector are proportional to the basis vector ε∧ . . .∧εd. There is a one-to-one
map between d-mutlivectors in Rd and the determinant of the vectors.

Let u and v be two vectors in dimension 3. Then the 2-multivector u ∧ v is given in
coordinates as:

u ∧ v = (u2v3 − u3v2)ε1 ∧ ε2 + (u3v1 − u1v3)ε3 ∧ ε1 + (u1v2 − u2v1)ε1 ∧ ε2. (A.1.12)

We notice that the coordinates of u ∧ v in the canonical basis of Λ2R3 are precisely the
coordinates of the cross product between u and v: u × v. Any 2-multivector u ∧ v in
dimension 3 can be mapped isometrically to u × v ∈ R3. Moreover, we all know that
(u× v)tw = det(u, v, w).

A.2 m-forms as antisymmetric tensors

We define now the forms on the space of m-multivectors: the m-forms.

Definition A.4 (m-forms). A m-form ω on Rd is an linear map from ΛmRd to R: ω :

(u1 ∧ . . . ∧ um) −→ ω(u1 ∧ . . . ∧ um) ∈ R, where every ui is a vector in Rd. We denote by
(ΛmRd)∗ the space of m-forms on Rd.

If we write ω(u1, . . . , um) = ω(u1 ∧ . . . ∧ um), we see that ω can be written as a m-
covariant tensor. Due to the symmetries of the wedge product, this m-covariant tensor is
totally antisymmetric (i.e. alternated forms). For example, in 3D, (u, v, w) → det(u, v, w)

is a 3-form and u, v −→ (u× v)tz for a fixed vector z is a 2-form.
As the dual space of ΛmRd, the space of m-forms in Rd is of dimension

(
d
m

)
. As an

alternated tensor, ω is decomposed into:

ω =
∑

1≤i1<...<im≤d

ωi1...imdxi1 ∧ . . . ∧ dxim , (A.2.1)
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where dxi denotes the dual basis of Rd (i.e. dxi(εj) = δi,j) and dx1 ∧ . . . ∧ dxm the
antisymmetric part of the tensor dx1⊗ . . .⊗dxm. In particular, dx∧dy = dx⊗dy−dy⊗dx.

The space of m-forms inherits from the same properties as the space of m-multivectors:

• If m = 0, ω is simply a constant mapping on R.

• If m = 1, ω is a linear form on Rd: for all u ∈ Rd, ω(u) ∈ R. Thanks to the Riesz
representation theorem, this linear form can be represented by the inner-product with
a fixed vector ω:

ω(u) = ωtu. (A.2.2)

• If m = d − 1, the space of d − 1-forms is also of dimension d. With the notations of

Section A.1.3, we have for any d−1-multivectors u1∧ . . .∧ud−1 =
d∑
i=1

ηiε̃
d
i . Therefore,

by linearity a d− 1-form satisfies:

ω(u1 ∧ . . . ∧ ud−1) =
d∑
i=1

ηiω(ε̃di ) = ηtω, (A.2.3)

where ω denotes the vector whose coordinates equal ω(ε1 ∧ . . . εi−1 ∧ εi+1 . . .∧ εd) for
i = 1 to d. Therefore, a d− 1-form also can be represented by an inner-product such
that:

ω(u1 ∧ . . . ∧ ud−1) = ηtω = det (u1, . . . , ud−1, ω) , (A.2.4)

according to Section A.1.3.

• If m = d, all d-forms are proportional to the determinant (the space of d-form in
dimension d is of dimension 1). Indeed, every d-multivector u1 ∧ . . . ∧ ud is equal to
det(u1, . . . , ud)(ε1 ∧ . . . ∧ εd). Therefore every d-forms in dimension d is written as:

ω(u1 ∧ . . . ∧ ud) = ω det(u1, . . . , ud), (A.2.5)

for a given scalar ω = ω(ε1 ∧ . . . ∧ εd).

We define the Euclidean norm of a m-form ω as the spectral norm (which corresponds
to the Euclidean norm on (ΛmRd)∗):

Definition A.5. Let ω a m-form in Rd. The norm of ω is defined as:

|ω|(ΛmRd)∗ = sup
|u1∧...∧um|=1

|ω(u1 ∧ . . . ∧ um)| =

 ∑
1≤i1<...<im≤m

(ωi1...im)
2

1/2

, (A.2.6)

where ωi1...im are the coordinates of the m-forms in the basis dxi1 ∧ . . . ∧ dxim .

A.3 Differential forms as multi-covariant tensor fields

A.3.1 Definition

Like we extend the concept of vectors to vector fields on a smooth sub-manifold, we
extend the concept of m-forms to differential m-forms. Each point x of a manifold is
associated to a m-form ω(x) whose input vectors are chosen in the tangent-space of the
manifold at point x. This leads to the following definition:
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Definition A.6 (differential m-forms). A differential m-form on Rd (or on an open sub-
space of Rd) maps every x ∈ Rd to ω(x) a m-form in (ΛmRd)∗. We denote C0(Rd, (ΛmRd)∗)
the space of the differential m-forms which are continuous and tend to zero at infinity. It
is provided with the norm:

‖ω‖∞ = sup
x∈Rd

sup
|u1∧...∧um|≤1

|ω(x)(u1 ∧ . . . ∧ um)| . (A.3.1)

If m = 0, a differential 0-form is simply a scalar function on Rd.
If m = 1, a differential 1-form is a vector field on Rd.
If m = d− 1, the d− 1 differential form can be associated to a vector field on Rd thanks

to the isometric mapping between the d− 1-form on Λd−1Rd and the vectors on Rd.
If m = d, the d differential forms are all of the form ω = ω(x) det where ω(x) is a scalar

function on Rd and det denotes the determinant form on Rd.

A.3.2 Integration of differential forms on a colored sub-manifold

In order to model sub-manifolds of Rd as currents, we need to define the integration of
differential m-forms on this manifold.

Definition A.7. Let M be an oriented sub-manifold of dimension m in Rd and I a inte-
grable function onM with respect to the Lebesgue measure onM. Let ω ∈ C0(Rd, (ΛmRd)∗)
be a m-differentiable form (Note that the degree of ω equals the dimension of the sub-
manifold).

For all x ∈M, we denote by u1(x), . . . , um(x) a positively oriented basis of the tangent-
space of M at point x (defined almost everywhere). Then, we define the integral of ω on
(M, I) as: ∫

M
Iω =

∫
M
I(x)ω(x)

(
u1(x) ∧ . . . ∧ um(x)

|u1(x) ∧ . . . ∧ um(x)|

)
dλ(x), (A.3.2)

where the integral on the right hand denotes the usual Lebesgue integral of a scalar function
onM dλ the usual Lebesgue measure onM.

Proposition A.8. The definition of the integral in Eq. (A.3.2) does not depend on the
choice of the positively oriented basis of the tangent-space ofM at point x.

Proof. Let A be a m-by-m matrix which change the basis u1(x), . . . , um(x) to the basis

v1(x) =
m∑
k=1

A1kuk, . . . , vm(x) =
m∑
k=1

Amkuk. Since the change of basis is supposed not to

change the orientation, the determinant of A is positive. Thanks to Proposition A.3, we
have that:

u1(x) ∧ . . . ∧ um(x)

|u1(x) ∧ . . . ∧ um(x)|
=
|A| (v1(x) ∧ . . . ∧ vm(x))∣∣∣|A|∣∣∣ |v1(x) ∧ . . . ∧ vm(x)|

=
v1(x) ∧ . . . ∧ vm(x)

|v1(x) ∧ . . . ∧ vm(x)|
,

(A.3.3)

since |A| =
∣∣∣|A|∣∣∣ (the absolute value of the determinant of A). �
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Remark A.9. This definition still holds ifM is of dimension 0. In this case,M is a discrete
set of points. The Lebesgue measure on M must be replaced by the measure

∑
x∈M δx

which counts the number of elements in M. An integrable function on M is therefore a
function which satisfies:

∑
x∈M I(x) < ∞. The integral of a 0-form on M is simply the

integral of a scalar function onM. �

To compute the integral in Eq. (A.3.2) in practice, we need to write it with local charts.
Let {Ui, πi} be an atlas of M and χi a partition of unity of the open cover {Ui}. This
means that M is parametrized locally (on Ui ⊂ Rm) by a piecewise differentiable chart
πi : Ui →M. We suppose moreover that every chart are positively oriented.

Let x = πi(p) be a point on M for p ∈ Ui. We can choose uk(x) = ∂πi(p)
∂pk

as the
positively oriented basis of the tangent plane of M at point πi(p). These vectors are
considered in Rd. However, they all belong to the tangent-space of dimension m. Let Πx

denote the orthogonal projection on this tangent-space. Therefore,∣∣∣∣∂πi(p)

∂p1
∧ . . . ∧ ∂πi(p)

∂pm

∣∣∣∣ =

∣∣∣∣Πx

(
∂πi(p)

∂p1

)
∧ . . . ∧Πx

(
∂πi(p)

∂pm

)∣∣∣∣
= det

(
Πx

(
∂πi(p)

∂p1

)
, . . . ,Πx

(
∂πi(p)

∂pm

))
= det

(
∂πi(p)

∂p1
, . . . ,

∂πi(p)

∂pm

)
= |dpπi|

(A.3.4)

since the magnitude of a d-multivector in dimension d is equal to the determinant of these
vectors (See Section A.1.3). Since the charts are positively oriented, this determinant is
positive.

Moreover, the Lebesgue measure written in the charts πi is equal to: dλ(x) = |dxπi| dp
for x = p. Therefore, in the charts πi, the norm of the multivector and the normalizing
factor of the Lebesgue measure cancel (|dxπi| in the numerator and denominator). The
integral in Eq. (A.3.2) finally is written as:∫

M
Iω =

∑
i

∫
Ui

χi(p)I(πi(p))ω(πi(p))

(
∂πi
∂p1

(p) ∧ . . . ∧ ∂πi
∂pm

(p)

)
dp, (A.3.5)

where the integrals of the right-hand side denotes the usual Lebesgue integral on open sub-
set of Rd. Proposition A.8 shows that this expression is independent of the choice of the
basis.

We remark that the argument of ω within the integrals written in local charts is not
normalized in Equation (A.3.5). IfM is a surface parametrized by S(u, v), then the argu-
ment of ω is the non-normalized normal ∂S∂u ×

∂S
∂v . By contrast, in the intrinsic formulation

in Eq. (A.3.2), the argument of ω is the unit normal of S (the Lebesgue measure on M
taking care of the right scaling of the normal).

A.3.3 Change of variable formula

LetM be a sub-manifold of Rd and I an integrable function onM. This function plays
the role of an image (i.e. a map of colors) drawn on the manifold. The purpose of this



304 Appendix A. Forms and differential forms

section is to define the geometrical transport of such a colored manifold and to compute
the integration of a differential form on the transported manifold, namely by the definition
of a proper change of variable formula.

For M a sub-manifold of Rd and φ a diffeomorphism of Rd, then we define φ(M) the
geometrical transport of M, namely the set of points φ(x) for all x ∈ M. Since φ is a
diffeomorphism, the regularity of φ(M) is the same as the regularity of the original sub-
manifoldM.

If I is an image drawn onM, then we define the transport of I by the diffeomorphism φ

as I◦φ−1. This means that the intensities on the manifold are carried along the deformation
without any change. This action ((φ, I)→ I ◦ φ−1) is the usual transport of intensities for
image registration.

This leads to the following definition:

Definition A.10 (geometric transport of colored sub-manifolds). Let M be a rectifiable
sub-manifold of Rd and I a scalar function on M. Let φ be a diffeomorphism of Rd. We
define the geometrical transport of the couple (M, I) as:

φ (M, I) = (φ(M), I ◦ φ−1). (A.3.6)

Our purpose now is to compute the integration of am-differential form ω over the couple
φ (M, I):

∫
φ(M)

I ◦ φ−1ω. If u1(x), . . . , um(x) is a positively oriented basis of the tangent-
space ofM, then dxφ(u1(x)), . . . dxφ(um(x)) is a basis of the tangent-space of φ(M), where
dxφ is a d-by-d Jacobian matrix of φ at point x. Therefore, the integral

∫
φ(M)

I ◦ φ−1ω is
written as (using the linearity of the form ω(x)):∫
φ(M)

I ◦ φ−1ω =

∫
M
I ◦ φ−1(φ(x))ω(φ(x))

(
dxφ(u1(x)) ∧ . . . ∧ dxφ(um(x))

|dxφ(u1(x)) ∧ . . . ∧ dxφ(um(x))|

)
dλφ(φ(x))

=

∫
M
I(x)ω(φ(x)) (dxφ(u1(x)) ∧ . . . ∧ dxφ(um(x)))

dλφ(φ(x))

|dxφ(u1(x)) ∧ . . . ∧ dxφ(um(x))|
,

(A.3.7)

where dλφ denotes the Lebesgue measure on φ(M).
We can restrict the tangential map dxφ to map the tangent-space of M

at x to the tangent-space of M at φ(x). We denote dxφ̃ this m-by-m ma-
trix. Therefore, |dxφ(u1(x)) ∧ . . . ∧ dxφ(um(x))| =

∣∣∣dxφ̃(u1(x)) ∧ . . . ∧ dxφ̃(um(x))
∣∣∣ =∣∣∣dxφ̃∣∣∣ |u1(x) ∧ . . . ∧ um(x)|. Moreover, the Lebesgue measure on φ(M)) is given by

dλ(φ(x)) =
∣∣∣dxφ̃∣∣∣ dλ(x), so that the factor dxφ̃ in the numerator and denominator can-

cels:∫
φ(M)

I ◦ φ−1ω =

∫
M
I(x)ω(φ(x)) (dxφ(u1(x)) ∧ . . . ∧ dxφ(um(x)))

dλ(x)

|u1(x) ∧ . . . ∧ um(x)|

=

∫
M
I(x)φ∗ω(x)

(
u1(x) ∧ . . . ∧ um(x)

|u1(x) ∧ . . . ∧ um(x)|

)
dλ(x),

(A.3.8)

where we denote φ∗ω(x)(u1 ∧ . . . ∧ um) = ω(φ(x))(dxφ(u1) ∧ . . . ∧ dxφ(um)).
This justifies the introduction of the pullback action of a diffeomorphism on a differential

m-form:
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Definition A.11 (pullback action on differential forms). Let ω be a m-differential form on
Rd and φ a diffeomorphism of Rd such that sup

x∈Rd
|dxφ| <∞. We define φ∗ω a m-differential

form (of the same regularity as ω) as:

φ∗ω(x)(u1 ∧ . . . ∧ um) = ω(φ(x)) (dxφ(u1) ∧ . . . ∧ dxφ(um)) , (A.3.9)

for all points x ∈ Rd and every vectors ui ∈ Rd. The differential form φ∗ω is called the
pullback action of the diffeomorphism φ on the differential form ω.

We can verify easily that the vector field φ∗ω still belong to our space of differential
m-forms C0(Rd,ΛmRd) (since we suppose that sup

x∈Rd
|dxφ| < ∞). Moreover, the pullback

action is really an action of the group of diffeomorphism on the space of differential form,
namely that (φ ◦ ψ)∗ω = φ∗(ψ∗ω) for all diffeomorphism φ and ψ.

Proposition A.12. Let M be a sub-manifold of dimension m in Rd and I an integrable
function onM. Let φ be a diffeomorphism of Rd. Then:∫

φ(M)

I ◦ φ−1ω =

∫
M
Iφ∗ω. (A.3.10)

Proof. This is exactly what we proved in Equation (A.3.8). �

We can write the pullback action on a differential m-forms on Rd, ω, in some particular
cases of interest according to the dimension m:

• If m = 0, then ω(x) is a scalar field and φ∗ω = ω ◦ φ.

• If m = 1, then ω(x) is represented by a vector field ω(x): ω(x)(u) = ω(x)tu. There-
fore,

φ∗ω(x)(u) = ω(φ(x))(dxφ(u)) = ω(φ(x))tdxφ(u) =
(
dxφ

tω(φ(x))
)t
u. (A.3.11)

The vector field associated to φ∗ω is φ∗ω(x) = dxφ
tω(φ(x)).

• If m = d− 1, the ω(x) is represented by a vector field ω(x) such that ω(x)(u1 ∧ . . . ∧
ud−1) = det(ω(x), u1, . . . , ud−1). Therefore,

φ∗ω(x)(u1 ∧ . . . ∧ ud−1) = ω(φ(x))(dxφ(u1) ∧ . . . ∧ dxφ(ud−1))

= det (ω(φ(x)), dxφ(u1), . . . , dxφ(ud−1))

= |dxφ|det
(
dxφ

−1ω(φ(x)), u1, . . . , ud−1

)
= det

(
|dxφ| dxφ−1ω(φ(x)), u1, . . . , ud−1

)
,

(A.3.12)

so that the vector field associated to φ∗ω is |dxφ| dxφ−1ω(φ(x)).

• If m = d, the ω(x) is represented by a scalar field ω(x) such that ω(x)(u1∧ . . .∧ud) =

ω(x) det(u1,∧ . . .∧, ud). Therefore,

φ∗ω(x)(u1 ∧ . . . ∧ ud) = ω(φ(x)) det (dxφ(u1) ∧ . . . ∧ dxφ(ud))

= |dxφ|ω(φ(x)) det(u1,∧ . . .∧, ud),
(A.3.13)

so that the scalar field associated to φ∗ω is |dxφ|ω(x).
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A Hilbert space is a vector space provided with an inner-product which is topologically
complete (i.e. in which every Cauchy sequence converges). These spaces play a tremendous
role in almost all area of science, since they are the more natural extension of the usual
Euclidean spaces Rn. The structure of vector space and the inner-product allows us to
perform standard computation in a way similar to linear algebra. Roughly speaking, Hilbert
spaces give a rigorous framework to work with infinite-dimensional vectors and matrices.
The completeness enables to consider such infinite-dimensional vectors as the limit of finite-
dimensional vectors.

Among the functional Hilbert spaces (i.e. Hilbert spaces of functions), the reproducing
kernel Hilbert spaces (RKHS) are of great practical interest. They make the framework
of Hilbert spaces even more similar to the finite-dimensional Euclidean spaces. In Rn,
any symmetric definite-positive matrix K defines a metric. The inner product between
two vectors X and Y is given simply by: 〈X,Y 〉K = XtKY . This can be seen as the
Euclidean inner-product between K1/2X and K1/2Y (as if the matrix K1/2 maps Rn with
the metric K to the Euclidean space Rn). Similarly, a RKHS is entirely determined by the
choice of a function K, called a kernel. The squared root of the kernel (in a sense to be
defined) maps the space of L2 functions to the RKHS. Computations in the RKHS involves
only standard operations with the kernel, as we shall see in this appendix. Besides the
computational benefit, the framework of RKHS offers a way to adapt the metric to any
particular applications, since defining a metric is equivalent to choosing a single function
K.

The purpose of this appendix is to recall the basic properties of RKHS. We emphasize
two important aspects. First, RKHS are build as a completion of the linear span of some
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basis vectors. This gives a way for the definition of finite-dimensional approximation spaces
like in Chapter 2. Second, there is a canonical isometric mapping between a RKHS and its
dual space. This isometric mapping, which is directly linked to the kernel, plays a central
role in the computation of standard operations on currents and vector fields. This allows
us to define a whole computational framework for dealing with currents, as introduced in
Chapter 2 and 3.

The material presented in this appendix results from standard mathematical construc-
tions. We introduce here only what is needed in the framework of this thesis and we refer
the reader to [Aronszajn 1950, Schwartz 1964, Saitoh 1988] for more details on the theory.

B.1 Where does it come from?

There are two different (but equivalent) ways to construct RKHS. The first way comes
from the theory of differential equations: under some hypotheses, it is possible to express
the solution of a differential equation as a convolution with a kernel. In this case, the space
of solution is naturally a RKHS. The second construction starts choosing a kernel K and
then builds a RKHS so that its kernel is given by K. In this appendix, we will present
the second construction in details, since it is better suited for computational purposes.
However, in this section, we will give a sketch of the construction from the point of view
of the differential operators, since it gives better insights into the emergence of such spaces
and their “reproducing property”.

The rigorous framework of this construction is the one of the Friedrichs’ extensions in
functional analysis, as introduced in [Zeidler 1991]. Here, we recall simply the main steps
of the construction.

Let L be a linear, self-adjoint operator which maps a space E, which is dense in the
space of L2 functions, to L2. We suppose moreover that L is such that ‖u‖2L2 ≤ C 〈Lu, u〉L2

for every u ∈ L2. For instance, the Laplacian operator (Lu = −∆u) defined on the
space E of twice differentiable functions with compact support satisfies these requirements.
The differential operator L defines an inner-product on E by: 〈u, v〉E = 〈Lu, v〉L2 for all
functions u, v in E.

The space E provided with this inner-product is not yet a Hilbert space, since it is not
topologically complete (the limit of Cauchy sequence in E may not be in E). Nevertheless,
we can build the completion of E to give the Hilbert space W (one adds to E every limit
of the Cauchy sequence of E), still included in L2. In W , we have still 〈u, v〉W = 〈Lu, v〉L2 .

Under some assumptions (in particular that the evaluation functionals δx(u) = u(x) are
continuous on W ), one can prove that the differential operator is invertible, that L−1 maps
the space L2 to W and that L−1 admits a Green function K. This Green function satisfies,
for every function h ∈ L2:

L−1h(x) =

∫
K(x, y)h(y)dy = 〈K(x, .), h〉L2 . (B.1.1)

Combining this equation with the definition of the inner-product in W leads to:

L−1h(x) =
〈
K(x, .), L−1h

〉
W
. (B.1.2)
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This last equation shows that the function h′(x) = L−1h(x) in W satisfies the “reproducing
property”: h′(x) = 〈K(x, .), h′〉W .

Applying this equation to the Green function K itself, called kernel is this context, leads
to: K(x, y) = 〈K(x, .),K(., y)〉W . That’s why K is called “auto-reproducing kernel”.

Eventually, this construction shows that we can build a Hilbert space W of solutions of
the differential equation h = Lh′. Such solutions satisfy the reproducing property, meaning
that their evaluation on a point x is given by a convolution with a kernel K. Such Hilbert
space W are then called reproducing kernel Hilbert spaces (RKHS).

This approach is usually followed in the field of fluid mechanics, for which the differential
operator L is given by the laws of mechanics. Then, the Green function is defined implicitly.
In our case, however, we prefer to control the kernel K which determines the metric and
leaves the differential operator implicit. From a numerical point of view, it is better to
write the operations on the RKHS with the kernel K which is a regularizing convolution
instead of L which is a numerically unstable differential operator.

B.2 Construction of RKHS

In this section, we show how to construct a RKHS whose kernel is a given function K.
First, we give rigorous definition of kernels and RKHS for scalar and vectorial functions.

B.2.1 Kernels and RKHS

Definition B.1 (auto-reproducing kernel Hilbert space (RKHS) (scalar case)). Let W be
a Hilbert space of scalar field on Rd (i.e. mapping from Rd to R). W is a RKHS if the
evaluation functions (linear forms on W ) δx : W → R defined by:

δx(ω) = ω(x) (B.2.1)

are continuous.

If W is a RKHS, then the Riesz representation theorem guarantees that for all x ∈ Rd

there is a function Kx ∈W such that:

ω(x) = δx(ω) = 〈Kx, ω〉W (B.2.2)

We denote K(x, y) the scalar mapping from Rd ×Rd to R: K(x, y) = Kx(y). From the
previous equation, we get Kx(y) = 〈Kx,Ky〉W = 〈Ky,Kx〉W = Ky(x). This shows that K
is symmetric: K(x, y) = K(y, x).

Since we deal with vector fields, we give the slightly more general definition:

Definition B.2 (auto-reproducing kernel Hilbert space (RKHS) (vectorial case)). Let W
be a Hilbert space of mapping from Rd to Rp. W is a RKHS is the evaluation functions
(linear forms on W ) δαx : W → R defined by:

δαx (ω) = ω(x)tα (B.2.3)

are continuous for all point x ∈ Rd and all vectors α ∈ Rp (i.e. each coordinates are
continuous).



310 Appendix B. Construction of RKHS and their dual spaces

If W is a RKHS, then the Riesz representation theorem guarantees that for all points
x ∈ Rd and all vectors α ∈ Rp there is a function Kx(α) ∈W such that:

ω(x)tα = δαx (ω) = 〈Kx(α), ω〉W (B.2.4)

Applying this equation with α + λβ (for α, β two vectors an λ a real) shows that
the mapping α → Kx(α) is linear. We denote therefore K(x, y) the p-by-p matrix
such that K(x, y)α = Kx(α)(y) for all vectors α. Eventually, we have: αtK(x, y)β =

〈Kx(α),Ky(β)〉W = 〈Ky(β),Kx(α)〉W = βtK(y, x)α. This shows that K(x, y) = K(y, x)t.
This shows that any RKHS contains a function K (i.e. a kernel as this will be shown

in Theorem B.6) which satisfies the reproducing property in Eq. (B.2.2) and Eq. (B.2.3).
The following proposition shows that this is actually a characterization of the RKHS.

Proposition B.3. LetW be a Hilbert space which contains vector fields of the form K(x, .)α

where K is a function from Rd×Rd to the space of p-by-p matrices. If every ω ∈W satisfy
the “reproducing property”:

ω(x)tα = 〈ω,K(., x)α〉W (B.2.5)

for all x ∈ Rd and all α ∈ Rp, then W is a RKHS.

Proof. Thanks to the Cauchy-Schwarz inequality, the evaluation functional verify:

|δαx (ω)| =
∣∣ω(x)tα

∣∣ ≤ ‖ω‖W ‖K(., x)α‖W (B.2.6)

and therefore are continuous. �

The following proposition gives an important example of RKHS, which is used to give
a generic definition of the space of currents in Chapter 1.

Proposition B.4. IfW is a Hilbert space continuously embedded in the space of continuous
mapping from Rd to Rp which tend to zero at infinity (i.e. such that for every ω ∈ W ,
‖ω‖∞ ≤ CW ‖ω‖W ) for a fixed constant CW , then W is a RKHS.

Proof. If the condition is satisfied, then for every point x and vector α, |ω(x)tα| ≤
‖ω‖∞ |α| ≤ C |α| ‖ω‖W : the evaluation functions in Eq. (B.2.3) are continuous.

The condition means in particular that small errors measured in W are numerically
small. �

B.2.2 To each kernel its RKHS

Neither the definition of RKHS nor the propositions in the previous section give a
practical way to construct RKHS. In this section, we show that, given a positive kernel K,
there is a generic way to construct a RKHS whose kernel is K. The RKHS is therefore
entirely determined by its kernel and we every operations in the RKHS can be written with
the kernel.

First, we give the definition of positive kernel:

Definition B.5 (positive kernels). A positive definite scalar kernel K on Rd is a scalar
function on Rd × Rd such that
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• K(x, y) = K(y, x) for all x, y ∈ Rd

•
∑
i,j aiK(xi, xj)aj ≥ 0 for all finite set of reals (ai) and points (xi) in Rd

• If
∑
i,j aiK(xi, xj)aj = 0 when the (xi) are all distinct, then all ai = 0.

If only the first two properties are satisfied, K is a positive semi-definite kernel.
A positive definite vectorial kernel K on Rd is a mapping Rd×Rd to the space of p-by-p

matrix, such that

• K(x, y) = K(y, x)t for all x, y ∈ Rd

•
∑
i,j a

t
iK(xi, xj)aj ≥ 0 for all finite set of vectors (ai) in Rd and points (xi) in Rd

• If
∑
i,j a

t
iK(xi, xj)aj = 0 when the (xi) are all distinct, then all ai = 0.

If only the first two properties are satisfied, K is a positive semi-definite kernel.

The following theorem shows that a unique RKHS corresponds to any positive kernel
K. The idea is to build the vector space spanned by the vector fields of the form K(x, .)α

and to make this space complete by adding to it the limit of every Cauchy sequence.
This construction allows us in Chapter 1 to process in the same setting discrete meshes
(finite linear combination of K(x, .)α) and the continuous surfaces (limit of such finite
combination).

Theorem B.6. We have the two properties:

• The kernel of a RKHS is a positive semi-definite kernel,

• If K is a positive semi-definite kernel, then it exists a unique RKHS W such that K
is its kernel.

Proof. We prove the previous theorem in the vectorial case. It can be easily simplified to
apply in the scalar case. If W is a RKHS and K its kernel, then∥∥∥∥∥∑

i

K(., xi)ai

∥∥∥∥∥
2

W

=
∑
i,j

ajK(xj , xi)ai ≥ 0 (B.2.7)

for all finite set of (xi) and (αi). K is positive semi-definite kernel.
Conversely, let K be a positive semi-definite kernel and E the vector space spanned by

the function of the typeK(x, .)α for all points x and vector α. Note that these vectors do not
build a basis of E since the kernel is supposed to be only positive semi-definite. We provide
E with the bilinear form defined on the K(x, .)α elements by: 〈K(x, .)α,K(y, .)β〉E =

αtK(x, y)β. This bilinear form does not depend on the decomposition of the vectors ω ∈
E . If a vector ω ∈ E has two different decompositions ω and ω̃, one wants to prove
that 〈ω, ω′〉E = 〈ω̃, ω′〉E . Assume that ω =

∑
iK(xi, .)αi = 0, then for any y and β,

〈ω,K(y, .)β〉E = βt
∑
iK(xi, y)αi = βtω(y) = 0. By linearity, we get that 〈ω, ω′〉E = 0 for

every ω′ ∈ E.
We prove now that this bilinear form is an inner-product on E. Due to the definition

of a positive kernel, this bilinear form is symmetric and positive. Let ω ∈ E such that
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〈ω, ω〉E = 0. By linearity, the reproducing property which is satisfied for every K(., x)α

extends to every ω ∈ E: ω(x)tα = 〈K(x, .)α, ω〉E . This implies thanks to the Cauchy-
Schwarz inequality that: |ω(x)| = sup|α|=1 |ω(x)tα| ≤ sup|α|=1 α

tK(x, x)α 〈ω, ω〉E = 0.
And ω = 0.

E is therefore provided with an inner-product and satisfies the reproducing property.
However, E is not Hilbert, since it is not complete. We build from E the space W which
contains E and the limits of any Cauchy sequences of E.

Let ωn be a Cauchy sequence in E. From the Cauchy-Schwarz inequality, we get:

|ωp(x)− ωq(x)| ≤ ‖ωp − ωq‖E
√

sup
|α|=1

αtK(x, x)α (B.2.8)

Therefore, ωp(x) is a Cauchy sequence in Rd and hence converges. Let ω(x) be its limit. We
define now W as the set of functions ω which are limits from Cauchy sequence in E: W ={
ω; ∃(ωn) ∈ E(Cauchy), ∀x ∈ Rd, ω(x) = limn→∞ ωn(x)

}
. For any Cauchy sequence ωn

in E, ‖ωn‖E is a Cauchy sequence in R and therefore converges. This allows us to provide
W with the norm (and inner-product): ‖ω‖W = limn→∞ ‖ωn‖E . Nevertheless, we have to
check that this definition does not depend on the Cauchy sequence used to approximate ω.
For this purpose, assume that ωn is a Cauchy sequence in E, such that ωn(x) converges to 0

for all x. We will prove that ‖ωn‖E will converge to 0. Indeed, ωn(x)tα = 〈ωn,K(x, .)α〉E →
0. By linearity, for all ω′ ∈ E, 〈ωn, ω′〉E → 0. Then, since ωn is a Cauchy sequence, there
is an integer n such that for all n ≥ p,

‖ωn‖E − 2 〈ωp, ωn〉E ≤ ‖ωp − ωn‖
2
E ≤ ε (B.2.9)

for all ε > 0. Since 〈ωp, ωn〉E →n→∞ 0, for n large enough, ‖ωn‖E ≤ 2ε and therefore
‖ωn‖E tends to 0.

Now, we prove that the construction of the Hilbert space W leads to a RKHS of ker-
nel K. By definition of ω(x), we have ω(x)tα = limn→∞ ωn(x)tα. We have ωn(x)tα =

〈ωn,K(x, .)α〉W which converges to 〈ω,K(x, .)α〉W by definition of the norm in W . There-
fore K is the kernel of the RKHS W .

We still need to prove that W is the unique RKHS whose kernel is K. If W̃ is a RKHS
of kernel K, the every function of the type K(x, .)α are in W̃ , and by linearity E is included
in W̃ . Let ω ∈ W as a limit of the Cauchy sequence ωn in E. Due to the reproducing
property, the inner-product 〈., .〉W , 〈., .〉W̃ and 〈., .〉E all coincide on E. Therefore, ωn is also
a Cauchy sequence in W̃ . This sequence converge pointwise to ω, the same limit as in W
since this pointwise convergence does not depend on the Hilbert inner-product. Therefore
ω ∈ W̃ and W is a closed subset W̃ . To prove the equality of the two spaces, we show that
the orthogonal subspace of W in W̃ is equal to {0}. Let ω̃ ∈ W̃ , such that for all ω ∈ W ,
〈ω, ω̃〉W̃ = 0. Then, ω̃(x)tα = 〈ω̃,K(x, .)α〉W̃ = 0 and therefore ω̃ = 0. �

A direct consequence of this proof is the following corollary:

Corollary B.7 (dense vector space in the RKHS). The span of vector fields of the form
K(x, .)α for every x ∈ Rd and α ∈ Rp is dense in W .

This corollary offers a way to define a approximation spaces of the space W by limiting
the point x to belong to a particular discrete subset (see Chapter 2).
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B.2.3 Choice of the kernel

The previous theorem shows that the choice of the kernel determines the RKHS
and especially its metric. The choice of this metric is therefore crucial and must be
adapted to every particular problems. Here, we give some examples of parametric ker-
nels. They are translation-invariant isotropic scalar kernels, which means of the form
K(x, y) = k(|x− y|)Ip. The following functions k lead to positive kernels, as shown
in [Glaunès 2005]:

• Gaussian kernel: k(x) = exp

(
−x2

λ2
W

)

• Cauchy kernel: k(x) =

(
1 +

x2

λ2
W

)−1

• Sobolev kernel: k is the inverse Fourier transform of (1 + x2)−s for s > d+ 1/2

See [Glaunès 2005] and the theorem of Bochner for more details on translation-invariant
kernels. In particular, it is shown that the Sobolev spaces Hs(Rd,Rm) are RKHS if s >
d+ 1/2.

However, how to choose the “best” kernel according a particular application is still an
open question. Through the applications of chapter 6, 7 and 8, we will give some clue to
adjust kernel’s parameters in different context.

From now on, we consider only symmetric kernel so that we do make differences between
K(x, y) and K(y, x).

B.3 A RKHS is isometric to its dual space

B.3.1 W ∗: dual space of RKHS W

Let W be a RKHS of kernel K. We denote W ∗ the dual space of W (i.e. the space of
continuous linear forms on W ). This means that T : W → R is in W ∗ if there is a constant
CT such that for all ω, |T (ω)| ≤ CT ‖ω‖W ).

By definition of a RKHS in B.2, the evaluation functional δαx are continuous linear forms
on W . They belong therefore to W ∗. They will play the role of Dirac delta currents in
Chapter 1.

As a vector space of linear maps, W ∗ is provided with the operator norm:

‖T‖W∗ = sup
‖ω‖W≤1

|T (ω)| (B.3.1)

B.3.2 Isometric mapping LW
One of the key property of the RKHS is that there is a canonical isometric map between

a RKHS W and its dual space W ∗. This isometric map is used intensively throughout the
thesis.
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Definition B.8. Let LW be the mapping:

LW : W −→ W ∗

ω LW (ω)
(B.3.2)

where ∀ω′ ∈W,LW (ω)(ω′) = 〈ω, ω′〉W . LW (ω) is continuous thanks to the Cauchy-Schwarz
inequality and therefore belongs to W ∗.

Proposition B.9. LW is an isometric mapping between W and W ∗.

Proof. The following equalities apply for all ω ∈W :

‖LW (ω)‖W∗ = sup
‖ω′‖W=1

|LW (ω)(ω′)|

= sup
‖ω′‖W=1

|〈ω, ω′〉W | = ‖ω‖W
(B.3.3)

�

This proposition shows that the operator norm on the dual space W ∗ (see Eq. (B.3.1))
derives from an inner-product. Indeed, the norm on W comes from the inner-product.
Since, 〈ω, ω′〉W = (‖ω + ω′‖2W − ‖ω − ω′‖

2
W )/4 and ‖LW (ω)‖W∗ = ‖ω‖W , we have:

〈T, T ′〉W∗ =
〈
L−1
W (T ),L−1

W (T ′)
〉
W

(B.3.4)

The isometric map LW carries the Hilbert structure inW toW ∗. This makesW ∗ a Hilbert
space.

Moreover, let T ∈ W ∗, then by definition of LW , the vector field L−1
W (T ) satisfies

T (ω) = LW (L−1
W (T ))(ω) =

〈
L−1
W (T ), ω

〉
W
. Using the isometric map, we obtain these two

equalities:
T (ω) = 〈T,LW (ω)〉W∗ =

〈
L−1
W (T ), ω

〉
W

(B.3.5)

In particular, this allows us to show that the vector field which achieves the supremum
in the definition of the norm in W ∗ in Eq. (B.3.1) is given by L−1

W (T )/
∥∥L−1

W (T )
∥∥
W
. Indeed

we have:

‖T‖W∗ = sup
‖ω‖W=1

|T (ω)|

= sup
‖ω‖W=1

∣∣〈L−1
W (T ), ω

〉
W

∣∣ (B.3.6)

whose supremum is achieved for ω = ±L−1
W (T )

∥∥L−1
W (T )

∥∥
W
.

In Eq. (B.3.5), we write T (ω) via the map LW . Actually, any operations on W and W ∗

can be expressed using this map. In particular, the inner-product in these two spaces are
given as:

〈ω, ω′〉W = LW (ω)(ω′)

〈T, T ′〉W∗ = T
(
L−1
W (T ′)

) (B.3.7)

The first equality is a direct consequence of Definition B.8. The second one results from
the application of Eq. (B.3.5) with ω = L−1

W (T ′).
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B.3.3 Link between LW and the kernel

We have just shown that the metric on W and W ∗ can be expressed via the isometric
map LW . Actually, this isometric map is closely related to the kernel K of the RKHS W .
This allows us to express the metric in terms of operations with the kernel. Therefore, once
the kernel is chosen, any operations in the RKHS will have a closed form.

First, we apply the previous equations in the particular case when T ∈ W ∗ is an eval-
uation functional δαx , as defined in Eq. (B.2.2). For every ω ∈ W , we have by application
of Eq. (B.3.5): δαx (ω) =

〈
L−1
W (δαx ), ω

〉
W
. Moreover, thanks to the reproducing property

satisfied in the RKHS W , we have: δαx (ω) = ω(x)tα = 〈ω,K(x, .)α〉W . This proves that:

L−1
W (δαx ) = K(x, .)α (B.3.8)

This equation shows that the kernel K may be seen as the Green function of the mapping
LW (which is implicitly a differential operator).

The application of Eq. (B.3.4) and the reproducing property leads to the explicit com-
putation of the inner-product between evaluation functionals:〈

δαx , δ
β
y

〉
W∗

= 〈K(., x)α,K(., y)β〉W = αtK(x, y)β (B.3.9)

By linearity, the inner-product between T =
∑n
i=1 δ

αi
xi and U =

∑m
j=1 δ

βj
yj is given by:

〈T,U〉W∗ =
n∑
i=1

m∑
j=1

αtiK(xi, yj)βj (B.3.10)

This equation may be written in a matrix form:

〈T,U〉W∗ = αtKβ, (B.3.11)

where α (resp. β) denotes the nd (resp. md) dimensional vector obtained by the concate-
nation of every vectors αi (resp. βj). K denotes the nd-by-md block matrix whose block
(i, j) is given by the d-by-d matrix K(xi, yj) (for i = 1, . . . , n and j = 1, . . . ,m). This shows
that the map L−1

W is computed via the matrix K when applied to finite linear combination
of evaluation functionals.

This way to compute the metric on W ∗ in a matrix form involving only the kernel
K is the core of the numerical framework for computing with currents, as introduced in
Chapter 2 and 3. Indeed, by construction of the RKHS the span of the functions K(x, .)α

is dense in W (see Corollary B.7). By isometry, the span of the evaluation functionals δαx is
a dense vector space in W ∗. This means that we can always approximate a current in W ∗

as a finite linear combination of evaluation functionals and use this matrix form to compute
the metric in W ∗. The true map L−1

W can be considered then as a multiplication with the
matrix K whose dimensions tend to infinity.
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