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Overview

 Overview of Appearance Models
 Combined Appearance Models
 Active Appearance Model Search
 Results
 Constrained Active Appearance 

Models



What are we trying to do?

 Formulate model to “interpret” face 
images
– Set of parameters to characterize 

identity, pose, expression, lighting, etc.
– Want compact set of parameters 
– Want efficient and robust model



Appearance Models

 Eigenfaces (Turk and Pentland, 1991)
– Not robust to shape changes
– Not robust to changes in pose and 

expression
 Ezzat and Poggio approach (1996)

– Synthesize new views of face from set 
of example views

– Does not generalize to unseen faces



First approach: Active Shape 
Model (ASM)
 Point Distribution Model



First Approach: ASM (cont.)

 Training: Apply PCA to labeled 
images

 New image
– Project mean shape
– Iteratively modify model points to fit 

local neighborhood



Lessons learned

 ASM is relatively fast
 ASM too simplistic; not robust when 

new images are introduced
May not converge to good solution
 Key insight: ASM does not 

incorporate all gray-level information 
in parameters



Combined Appearance Models

 Combine shape and gray-level 
variation in single statistical 
appearance model

 Goals:
– Model has better representational 

power
– Model inherits appearance models 

benefits
– Model has comparable performance



How to generate a CAM

 Label training set with landmark 
points representing positions of key 
features

 Represent these landmarks as a 
vector x

 Perform PCA on these landmark 
vectors



How to generate a CAM (cont.)

We get:

Warp each image so that each 
control point matches mean shape

 Sample gray-level information g
 Apply PCA to gray-level data



How to generate a CAM (cont.)

We get:

 Concatenate shape and gray-level 
parameters (from PCA)

 Apply a further PCA to the 
concatenated vectors



How to generate a CAM (cont.)

We get:



CAM Properties

 Combines shape and gray-level 
variations in one model
– No need for separate models

 Compared to separate models, in 
general, needs fewer parameters

 Uses all available information



CAM Properties (cont.)

 Inherits appearance model benefits
– Able to represent any face within 

bounds of the training set
– Robust interpretation 

Model parameters characterize facial 
features



CAM Properties (cont.)

 Obtain parameters for inter and intra 
class variation (identity and residual 
parameters) – “explains” face



CAM Properties (cont.)

 Useful for tracking and identification
– Refer to: G.J.Edwards, C.J.Taylor, T.F.Cootes. "Learning 

to Identify and Track Faces in Image Sequences“. Int. 
Conf. on Face and Gesture Recognition, p. 260-265, 
1998.

 Note: shape and gray-level variations 
are correlated



How to interpret unseen example

 Treat interpretation as an 
optimization problem
– Minimize difference between the real 

face image and one synthesized by 
AAM



How to interpret unseen example 
(cont.)
 Appears to be difficult optimization 

problem (~80 parameters)
 Key insight: we solve a similar 

optimization problem for each new 
face image

 Incorporate a-priori knowledge for 
parameter adjustments into 
algorithm



AAM: Training

 Offline: learn relationship between 
error and parameter adjustments

 Result: simple linear model



AAM: Training (cont.)

 Use multiple multivariate linear 
regression
– Generate training set by perturbing 

model parameters for training images
– Include small displacements in position, 

scale, and orientation
– Record perturbation and image 

difference



AAM: Training (cont.)

 Important to consider frame of 
reference when computing image 
difference
– Use shape-normalized representation 

(warping)
– Calculate image difference using gray 

level vectors:



AAM: Training (cont.)

 Updated linear relationship:

Want a model that holds over large 
error range

 Experimentally, optimal perturbation 
around 0.5 standard deviations for 
each parameter



AAM: Search

 Begin with reasonable starting 
approximation for face

Want approximation to be fast and 
simple

 Perhaps Viola’s method can be 
applied here



Starting approximation

 Subsample model and image
 Use simple eigenface metric:



Starting approximation (cont.)

 Typical starting 
approximations 
with this method



AAM: Search (cont.)

 Use trained parameter adjustment
 Parameter update equation:



Experimental results

 Training:
– 400 images, 112 

landmark points
– 80 CAM parameters
– Parameters explain 

98% observed 
variation

 Testing:
– 80 previously 

unseen faces



Experimental results (cont.)

 Search results 
after initial, 2, 5, 
and 12 iterations



Experimental results (cont.)

 Search 
convergence: 
– Gray-level sample 

error vs. number of 
iterations



Experimental results (cont.)

More reconstructions:



Experimental results (cont.)



Experimental results (cont.)

 Knee images:
– Training: 30 examples, 42 landmarks



Experimental results (cont.)

 Search results after initial, 2 
iterations, and convergence:



Constrained AAMs

Model results rely on starting 
approximation

Want a method to improve influence 
from starting approximation

 Incorporate priors/user input on 
unseen image
– MAP formulation



Constrained AAMs

 Assume:
– Gray-scale errors are uniform gaussian 

with variance
– Model parameters are gaussian with 

diagonal covariance
– Prior estimates of some of the positions 

in the image along with covariances



Constrained AAMs (cont.)

We get update equation:

where:



Constrained AAMs

 Comparison of 
constrained and 
unconstrained 
AAM search



Conclusions

 Combined Appearance Models 
provide an effective means to 
separate identity and intra-class 
variation
– Can be used for tracking and face 

classification
 Active Appearance Models enables 

us to effectively and efficiently 
update the model parameters



Conclusions (cont.)

 Approach dependent on starting 
approximation

 Cannot directly handle cases well 
outside of the training set (e.g. 
occlusions, extremely deformable 
objects)
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