Active Appearance Models

Edwards, Taylor, and Cootes

Presented by Bryan Russell

Overview

- Overview of Appearance Models
- Combined Appearance Models
- Active Appearance Model Search
- Results
- Constrained Active Appearance Models

What are we trying to do?

- Formulate model to "interpret" face images
 - Set of parameters to characterize identity, pose, expression, lighting, etc.
 - Want compact set of parameters
 - Want efficient and robust model

Appearance Models

- Eigenfaces (Turk and Pentland, 1991)
 - Not robust to shape changes
 - Not robust to changes in pose and expression
- Ezzat and Poggio approach (1996)
 - Synthesize new views of face from set of example views
 - Does not generalize to unseen faces

First approach: Active Shape Model (ASM)

Point Distribution Model



First Approach: ASM (cont.)

 Training: Apply PCA to labeled images

$$\mathbf{x} = \bar{\mathbf{x}} + \mathbf{P}\mathbf{b}$$

- New image
 - Project mean shape
 - Iteratively modify model points to fit local neighborhood

Lessons learned

- ASM is relatively fast
- ASM too simplistic; not robust when new images are introduced
- May not converge to good solution
- Key insight: ASM does not incorporate all gray-level information in parameters

Combined Appearance Models

 Combine shape and gray-level variation in single statistical appearance model

- Goals:
 - Model has better representational power
 - Model inherits appearance models benefits
 - Model has comparable performance

How to generate a CAM

- Label training set with landmark points representing positions of key features
- Represent these landmarks as a vector x
- Perform PCA on these landmark vectors

How to generate a CAM (cont.)

• We get:

$$\mathbf{x} = \bar{\mathbf{x}} + \mathbf{P}_s \mathbf{b}_s$$

Warp each image so that each control point matches mean shape
Sample gray-level information g

Apply PCA to gray-level data

How to generate a CAM (cont.)

• We get:

$$\mathbf{g} = \bar{\mathbf{g}} + \mathbf{P}_g \mathbf{b}_g$$

 Concatenate shape and gray-level parameters (from PCA)

 Apply a further PCA to the concatenated vectors

How to generate a CAM (cont.)

• We get:

$$\mathbf{x} = ar{\mathbf{x}} + \mathbf{Q}_s \mathbf{c}$$
 $\mathbf{g} = ar{\mathbf{g}} + \mathbf{Q}_g \mathbf{c}$

CAM Properties

Combines shape and gray-level variations in one model

No need for separate models

Compared to separate models, in general, needs fewer parameters
Uses all available information

CAM Properties (cont.)

Inherits appearance model benefits

 Able to represent any face within bounds of the training set
 Robust interpretation

 Model parameters characterize facial features

CAM Properties (cont.)

 Obtain parameters for inter and intra class variation (identity and residual parameters) – "explains" face

CAM Properties (cont.)

Useful for tracking and identification

- Refer to: G.J.Edwards, C.J.Taylor, T.F.Cootes. "Learning to Identify and Track Faces in Image Sequences". Int. Conf. on Face and Gesture Recognition, p. 260-265, 1998.
- Note: shape and gray-level variations are correlated

How to interpret unseen example

- Treat interpretation as an optimization problem
 - Minimize difference between the real face image and one synthesized by AAM

$$\delta \mathbf{I} = \mathbf{I_i} - \mathbf{I_m}$$

How to interpret unseen example (cont.)

- Appears to be difficult optimization problem (~80 parameters)
- Key insight: we solve a similar optimization problem for each new face image

 Incorporate a-priori knowledge for parameter adjustments into algorithm

AAM: Training

 Offline: learn relationship between error and parameter adjustments
 Result: simple linear model

$$\delta \mathbf{c} = \mathbf{A} \delta \mathbf{I}$$

AAM: Training (cont.)

- Use multiple multivariate linear regression
 - Generate training set by perturbing model parameters for training images
 - Include small displacements in position, scale, and orientation
 - Record perturbation and image difference

AAM: Training (cont.)

- Important to consider frame of reference when computing image difference
 - Use shape-normalized representation (warping)
 - Calculate image difference using gray level vectors:

$$\delta \mathbf{g} = \mathbf{g_i} - \mathbf{g_m}$$

AAM: Training (cont.)

• Updated linear relationship:

$$\delta \mathbf{c} = \mathbf{A} \delta \mathbf{g}$$

 Want a model that holds over large error range

 Experimentally, optimal perturbation around 0.5 standard deviations for each parameter

AAM: Search

- Begin with reasonable starting approximation for face
- Want approximation to be fast and simple
- Perhaps Viola's method can be applied here

Starting approximation

Subsample model and image
Use simple eigenface metric:

$$S = |\mathbf{I} - \mathbf{M}|^2$$

Starting approximation (cont.)

 Typical starting approximations with this method

AAM: Search (cont.)

Use trained parameter adjustment
Parameter update equation:

$$\mathbf{c}' = \mathbf{c} - \mathbf{A} \delta \mathbf{g}$$

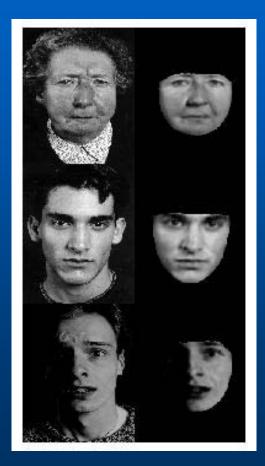
Experimental results

• Training:

- 400 images, 112 landmark points
- 80 CAM parameters
- Parameters explain
 98% observed
 variation

• Testing:

 80 previously unseen faces

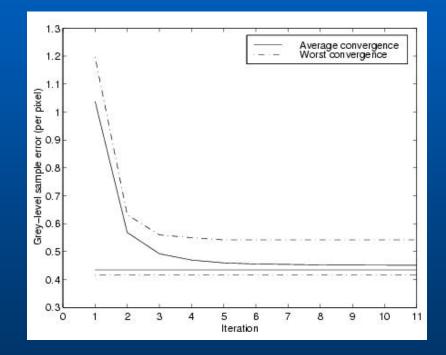


 Search results after initial, 2, 5, and 12 iterations

Search

convergence:

 Gray-level sample error vs. number of iterations



More reconstructions:

Knee images: Training: 30 examples, 42 landmarks

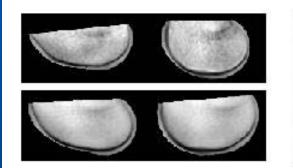


Fig. 12. First two modes of appearance variation of knee model

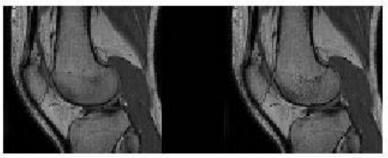


Fig. 13. Best fit of knee model to new image given landmarks

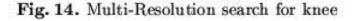
Search results after initial, 2 iterations, and convergence:



Initial

2 its

Converged (11 its)



Constrained AAMs

- Model results rely on starting approximation
- Want a method to improve influence from starting approximation
- Incorporate priors/user input on unseen image
 - MAP formulation

Constrained AAMs

Assume:

- Gray-scale errors are uniform gaussian with variance σ_r^2
- Model parameters are gaussian with diagonal covariance S_p^2
- Prior estimates of some of the positions in the image along with covariances

Constrained AAMs (cont.)

• We get update equation:

$$\mathbf{A}_1 \delta \mathbf{p} = -\mathbf{a}_1$$

where:

$$\mathbf{A}_{1} = \left(\sigma_{r}^{-2} \frac{\partial \mathbf{r}}{\partial \mathbf{p}}^{T} \frac{\partial \mathbf{r}}{\partial \mathbf{p}} + \mathbf{S}_{p}^{-1} + \frac{\partial \mathbf{d}}{\partial \mathbf{p}}^{T} \mathbf{S}_{X}^{-1} \frac{\partial \mathbf{d}}{\partial \mathbf{p}} \right)$$

$$\mathbf{a}_{1} = \left(\sigma_{r}^{-2} \frac{\partial \mathbf{r}}{\partial \mathbf{p}}^{T} \mathbf{r}(\mathbf{p}) + \mathbf{S}_{p}^{-1} \mathbf{p} + \frac{\partial \mathbf{d}}{\partial \mathbf{p}}^{T} \mathbf{S}_{X}^{-1} \mathbf{d} \right)$$

Constrained AAMs

 Comparison of constrained and unconstrained AAM search

a) Initial position for model on new .mage

b) Result of unconstrained AAM search

c) Right eye centre constrained



d) Right eye centre and left eyebrow point fixed

Mode. Points

Conclusions

 Combined Appearance Models provide an effective means to separate identity and intra-class variation

 Can be used for tracking and face classification

 Active Appearance Models enables us to effectively and efficiently update the model parameters

Conclusions (cont.)

 Approach dependent on starting approximation

 Cannot directly handle cases well outside of the training set (e.g. occlusions, extremely deformable objects)