
6. Differential structure of images
"If I had more time, I would have written you a shorter letter", Pascal (1623-1662)

6.1 The differential structure of images

In this chapter we will study the differential structure of discrete images in detail. This is the
structure described by the local multi-scale derivatives of the image. We start with the
development of a toolkit for the definitions of heightlines, local coordinate systems and
independence of our choice of coordinates.

<< FrontEndVision`FEV`; Off@General::spellD;
Show@Import@"Spiral CT abdomen.jpg"D, ImageSize -> 170D;

Figure 6.1 An example of a need for segmentation: 3D rendering of a spiral CT acquisition of
the abdomen of a patient with Leriche's syndrome (EuroRAD case #745, authors R. Brillo, A.
Napoli, S. Vagnarelli, M. Vendola, M. Benedetti Valentini, 2000, www.eurorad.org).

We will use the tools of differential geometry, a field designed for the structural description
of space and the lines, curves, surfaces etc. (a collection known as manifolds) that live there.

We develop strategies for the generation of formulas for the detection of particular features,
that detect special, semantically circumscribed, local meaningful structures (or properties) in
the image. Examples are edges, corners, T-junctions, monkey-saddles and many more. We
develop operational detectors in Mathematica for all features described.

One can discriminate local and multi-local methods in image analysis. We specifically
discuss here local methods, at a particular local neighborhood (pixel). In later chapters we
look at multi-local methods, and enter the realm of how to connect local features, both by
studying similarity in properties with neighboring pixels ('perceptual grouping'), relations
over scale ('deep structure') and relations given by a particular model. We will discuss the use
of the local features developed in this chapter into 'geometric reasoning'.

91 6.1 The differential structure of images

One can discriminate local and multi-local methods in image analysis. We specifically
discuss here local methods, at a particular local neighborhood (pixel). In later chapters we
look at multi-local methods, and enter the realm of how to connect local features, both by
studying similarity in properties with neighboring pixels ('perceptual grouping'), relations
over scale ('deep structure') and relations given by a particular model. We will discuss the use
of the local features developed in this chapter into 'geometric reasoning'.

Why do we need to go in detail about local image derivatives? Combinations of derivatives
into expressions give nice feature detectors in images. It is well known that$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%I ∑LÅÅÅÅÅÅÅÅ

∑x M2 + I ∑LÅÅÅÅÅÅÅÅ
∑y M2 is a good edge detector, and I ∑LÅÅÅÅÅÅÅÅ

∑y M2 ∑2LÅÅÅÅÅÅÅÅÅÅÅ
∑x2 - 2 ∑LÅÅÅÅÅÅÅÅ

∑x ∑LÅÅÅÅÅÅÅÅ
∑y ∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

∑x ∑y + I ∑LÅÅÅÅÅÅÅÅ
∑x M2 ∑2 LÅÅÅÅÅÅÅÅÅÅÅ

∑y2

is a good corner detector. But how do we come to such formula's? We can make an infinite
number of such expressions. What constraints can/should we impose to come to a reasonably
small set of basis descriptors? Is there such a basis? It turns out there is, and in this chapter
we will derive a formal complete set of such descriptive elements.

A very important constraint in the development of tools for the description of image structure
is to be independent of the choice of coordinates. We will discuss coordinate
transformations, like translations, rotations, zooming, in order to find a way to detect features
invariant to such coordinate transformations. In fact, we will discuss three 'languages' in
which it is easy to develop a general strategy to come up with quite complex image structure
detectors:

gauge coordinates, Cartesian tensors, and algebraic polynomial invariants. All these methods
have firm roots in mathematics, specifically differential geometry, and form an ideal
substrate for the true understanding of image structure.

We denote the function that describes our landscape (the image) with LHx, yL throughout this
book, where L is the physical property measured in the image. Examples of L are luminance,
T1 or T2 relaxation time (for MRI images), linear X-ray absorption coefficient (for CT
images), depth (for range images) etc. In fact, it can be any scalar value. The coordinates x, y
are discrete in our case, and denote the locations of the pixel. If the image is 3-dimensional,
e.g. a stack of images from an MRI or CT scanner, we write LHx, y, zL . A scale-space of
images, observed at a range of scales s is written as LHx, y; sL . We write a semicolon as
separator to highlight the fact that s is not just another spatial variable. If images are a
function of time as well, we write e.g. LHx, y, z; tL where t is the time parameter. In chapter
17 we will develop scale-space theory for images sampled over time. In chapter 15 we study
the extra dimension of color in images and derive differential features in color-space, and in
chapter 13 we derive methods for the extraction of motion, a vectorial property with a
magnitude and a direction. We firstly focus on static, spatial images.

6.2 Isophotes and flowlines

Lines in the image connecting points of equal intensity are called isophotes. They are the
heightlines of the intensity landscape when we consider the intensity as 'height'. Isophotes in
2D images are curves, and in 3D surfaces, connecting points with equal luminance.

(Greek: isos (isoV) = equal, photos (fotoV) = light): LHx, yL = constant or
LHx, y, zL = constant . This definition however is for a continuous function. But the scale-
space paradigm solves this: in discrete images isophotes exist because these are observed
images, and thus continuous (which means: infinitely differentiable, or C¶). Lines of
constant value in 2D are Contours in Mathematica, which can be plotted with
ContourPlot. Figure 6.2 illustrates this for a blurred version of a 2D image.

6. Differential structure of images 92

(Greek: isos (isoV) = equal, photos (fotoV) = light): LHx, yL = constant or
LHx, y, zL = constant . This definition however is for a continuous function. But the scale-
space paradigm solves this: in discrete images isophotes exist because these are observed
images, and thus continuous (which means: infinitely differentiable, or C¶). Lines of
constant value in 2D are Contours in Mathematica, which can be plotted with
ContourPlot. Figure 6.2 illustrates this for a blurred version of a 2D image.

im = Import@"mr128.gif"D@@1, 1DD;
Block@8$DisplayFunction = Identity, dp, cp<,
dp = ListDensityPlot@gD@im, 0, 0, #DD & êü 81, 2, 3<;
cp = ListContourPlot@gD@im, 0, 0, #D,

ContourStyle Ø List êü Hue êü H.1 Range@10DLD & êü 81, 2, 3<;
pa = MapThread@Show, 8dp, cp<DD; Show@GraphicsArray@paD,
ImageSize -> 400D;

Figure 6.2 Isophotes of an image at various blurring scales: from left to right: s = 1 , s = 2
and s = 3 pixels. Image resolution 1282 . Ten isophotes are plotted in each image,
equidistant over the available intensity range. Each is shown in a different color,
superimposed over the grayvalues. Notice that the isophotes get more 'rounded' when we
blur the image. When we consider the intensity distribution of a 2D image as a landscape,
where the height is given by the intensity, isophotes are the heightlines.

Isophotes are important elements of an image. In principle, all isophotes together contain the
same information as the image itself. The famous and often surprisingly good working
segmentation method by thresholding and separating the image in pixels lying within or
without the isophote at the threshold luminance is an example of an important application of
isophotes. Isophotes have the following properties:

† isophotes are closed curves. Most (but not all, see below) isophotes in 2D images are a so-
called Jordan curve: a non-self-intersecting planar curve topologically equivalent to a circle;
† isophotes can intersect themselves. These are the critical isophotes. These always go
through a saddlepoint;
† isophotes do not intersect other isophotes;
† any planar curve is completely described by its curvature, and so are isophotes. We will
define and derive the expression for isophote curvature in the next section.

† isophote shape is independent of grayscale transformations, such as changing the contrast
or brightness of an image.

A special class of isophotes is formed by those isophotes that go through a singularity in the
intensity landscape, thus through a minimum, maximum or saddle point. At these places the
intensity landscape is horizontal, the local spatial derivatives are all zero. Only at saddle
points isophotes intersect themselves, and just above and below this intersection its neighbor
isophotes have different topology: they have split from one curve into two, or merged from
two curves into one.

93 6.2 Isophotes and flowlines

A special class of isophotes is formed by those isophotes that go through a singularity in the
intensity landscape, thus through a minimum, maximum or saddle point. At these places the
intensity landscape is horizontal, the local spatial derivatives are all zero. Only at saddle
points isophotes intersect themselves, and just above and below this intersection its neighbor
isophotes have different topology: they have split from one curve into two, or merged from
two curves into one.

blob@x_, y_, mx_, my_, s_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

 ExpA-
Hx - mxL2 + Hy - myL2
ÅÅ

2 s2
E;

blobs@x_, y_D :=
blob@x, y, 10, 10, 4D + .7 blob@x, y, 15, 20, 4D + 0.8 blob@x, y, 22, 8, 4D;

Block@8$DisplayFunction = Identity<, p1 = Plot3D@blobs@x, yD - .00008,8x, 0, 30<, 8y, 0, 30<, PlotPoints Ø 30, Mesh Ø False, Shading -> TrueD;
c = ContourPlot@blobs@x, yD, 8x, 0, 30<, 8y, 0, 30<,
PlotPoints Ø 30, ContourShadingØ FalseD;

c3d = Graphics3D@Graphics@cD@@1DD ê.
Line@pts_D ß Hval = Apply@blobs, First@ptsDD;

Line@Map@Append@#, valD &, ptsDDLDD;
Show@p1, c3d, ViewPoint -> 81.393, 2.502, 1.114<, ImageSize -> 250D;

Figure 6.3 Isophote on a 2D 'landscape' image of 3 Gaussian blobs, depicted as heightlines.
The height is determined by the intensity. The height plot is depicted slightly lower (-0.0002)
in order to show the full extent of the isophotes.

At a minimum or maximum the isophote has shrunk to a point, and going to higher or lower
intensity gives rise to the creation or disappearance of isophotes. This is best illustrated with
an example of an image where only three Gaussian 'blobs' are present (see figure 6.3). The
saddle points are in between the blobs. Isophotes through saddles and extrema are called
critical isophotes.

We show the dynamic event of a 'split' and a 'merge' of an isophote by the behaviour of a
two-parameter family of curves, the Cassinian ovals: Hx2 + y2 + a2 L - b2 - 4 a2 x2 = 0 .

Famous members of Cassini functions are the circle (cassini[x,y,a=0,b]) and the
lemniscate of Bernouilli (cassini[x,y,a=b,b]). The limaçon function, a generalization
of the cardioid function, shows how we can get self-intersection where the new loop is
formed within the isophote's inner domain. Here are the plots:

6. Differential structure of images 94

cassini@x_, y_, a_, b_D := Hx2 + y2 + a2L2
- b2 - 4 a2 x2;

DisplayTogetherArray@8
ImplicitPlot@cassini@x, y, #, 4D == 0, 8x, -5, 5<D & êü 81.99, 2., 2.01<,
ParametricPlot@H2 Cos@tD + #L 8 Cos@tD, Sin@tD<, 8t, 0, 2 p<D & êü83, 2., 1<<, ImageSize -> 400D;

-1 1 2 3 4 5
-3
-2
-1

1
2
3

1 2 3 4
-2
-1

1
2

0.5 1 1.5 2 2.5 3
-1.5

-1
-0.5

0.5
1

1.5

-2 -1 1 2
-1

-0.5

0.5
1

-2 -1 1 2
-1

-0.5

0.5
1

-2 -1 1 2
-1

-0.5

0.5
1

Figure 6.4 Top row: Split and merge of an isophote just under, at and above a saddle point in
the image, simulated with a Cassini curve. Bottom row: Self intersection with an inner loop,
simulated with the limaçon function. Examples taken from the wonderful book by Alfred Gray
[Gray1993].

Isophotes in 3D are surfaces. Here is an example of the plotting of 4 isophote surfaces of a
discrete dataset. We use the versatile OpenGL viewer MathGL3d developed by Jens-Peer
Kuska: http://phong.informatik.uni-leipzig.de/~kuska/mathgl3dv3/

Get@"MathGL3d`OpenGLViewer`"D; isos = CompileA8<, 103

TableAExpA-
x2
ÅÅÅÅÅÅÅ
18

-
y2
ÅÅÅÅÅÅÅ
8

-
z2
ÅÅÅÅÅÅÅ
18

E , 8z, -10, 10<, 8y, -10, 10<, 8x, -10, 10<EE;
MVListContourPlot3D@isos@D, Contours -> 8.1, 1, 10<, ImageSize -> 150D;

Figure 6.5 Isophotes in 3D are surfaces. Shown are the isophotes connecting all voxels with
the values 0.1, 1, 10 and 100 in the discrete dataset of two neighboring 3D Gaussian blobs.

The calculations with the native command ListContourPlot3D take take much longer.

Flowlines are the lines everywhere perpendicular to the isophotes. E.g. for a Gaussian blob
the isophotes are circles, and the flowlines are radiating lines from the center. Flowlines are
the integral curves of the gradient, made up of all the small little gradient vectors in each
point integrated to a smooth long curve. In 2D, the flowlines and the isophotes together form
a mesh or grid on the intensity surface.

Figure 6.6 shows such a grid of the isophotes and flowlines of a 2D Gaussian blob (we have
left out the singularity).

95 6.2 Isophotes and flowlines

DisplayTogether@
ShadowPlot3D@-gauss@x, 5D gauss@y, 5D, 8y, -15, 15<, 8x, -15, 15<D,

CartesianMap@Exp, 8 -p, p<, 8 -p, p<D,
ImageSize -> 200, AspectRatio -> 1D;

Figure 6.6 Isophotes and flowlines on the slope of a Gaussian blob. The circles are the
isophotes, the flowlines are everywhere perpendicular to them. Inset: The height and
intensity map of the Gaussian blob.

Just as in principle all isophotes together completely describe the intensity surface, so does
the set of all flowlines. Flowlines are the dual of isophotes, isophotes are the dual of
flowlines. One set can be calculated from the other. Just as the isophotes have a singularity at
minima and maxima in the image, so have flowlines a singularity in direction in such points.

6.3 Coordinate systems and transformations

We will now apply the complete family of well behaving differential operators developed in
the first chapter for the detection of local differential structure in images. The set of
derivatives taken at a particular location is a language from which we can make a description
of a local feature. We can make assemblies of the derivatives to any order, in any
combination. Local structure is the local shape of the intensity landscape, like how sloped or
curved it is, if there are saddlepoints, etc. The first order derivative gives us the slope, the
second order is related to how curved the landscape is, etc.

In mathematical terms the image derivatives show up in the so-called Taylor expansion of
our image function.

The Taylor expansion describes the function 'a little further up': If we move a little distanceHdx, dyL away from the pixel where we stand, the Taylor expansion -or Taylor series- is
given by (we take the expansion in the origin H0, 0L for notational convenience):

LHd x, d yL = LH0, 0L + I ∑LÅÅÅÅÅÅÅ∑x d x + ∑LÅÅÅÅÅÅÅ∑y d yM + 1ÅÅÅÅÅÅ2! I ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 d x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y d x d y + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2 d y2 M +

1ÅÅÅÅÅÅ3! I ∑3 LÅÅÅÅÅÅÅÅÅÅ∑x3 d x3 + ∑3 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x2 ∑y d x2 d y + ∑3 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y2 d x d y2 + ∑3 LÅÅÅÅÅÅÅÅÅÅ∑y3 d y3 M + OHd x4 , d y4 L
We see al the partial derivatives appearing. The spatial derivatives are taken at the location
(0,0), e.g. ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 …H0,0L . The first-order, second-order and third-order terms are grouped in
brackets. Such groups of all terms of a specific order together are called 'binary forms'. The
list goes to infinity, so we have to cut-off somewhere. The above series is an approximation
to the third order, and the final expression OHd x4, d y4L indicates that there is more, a rest
term of order 4 and higher in d x and d y . Mathematica has the command Series to make a
Taylor expansion. Here is the Taylor series for LHx, yL for d x to second order and then
expanded to second order by d y :

6. Differential structure of images 96

We see al the partial derivatives appearing. The spatial derivatives are taken at the location
(0,0), e.g. ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 …H0,0L . The first-order, second-order and third-order terms are grouped in
brackets. Such groups of all terms of a specific order together are called 'binary forms'. The
list goes to infinity, so we have to cut-off somewhere. The above series is an approximation
to the third order, and the final expression OHd x4, d y4L indicates that there is more, a rest
term of order 4 and higher in d x and d y . Mathematica has the command Series to make a
Taylor expansion. Here is the Taylor series for LHx, yL for d x to second order and then
expanded to second order by d y :

Series@L@dx, dyD, 8dx, 0, 2<, 8dy, 0, 2<DJL@0, 0D + LH0,1L @0, 0D dy +
1
ÅÅÅÅ2 LH0,2L @0, 0D dy2 + O@dyD3N +JLH1,0L @0, 0D + LH1,1L @0, 0D dy +

1
ÅÅÅÅ2 LH1,2L @0, 0D dy2 + O@dyD3N dx +J 1

ÅÅÅÅ2 LH2,0L @0, 0D +
1
ÅÅÅÅ2 LH2,1L @0, 0D dy +

1
ÅÅÅÅ4 LH2,2L @0, 0D dy2 + O@dyD3N dx2 + O@dxD3

This expansion says essentially that we get a good approximation of the intensity landscape a
little bit (dx, dy) further away from the origin H0, 0L , when we first climb up over dx and dy
with a slope given by the first derivative, the tangent. Then we come close, but not exactly.
We can come somewhat better approximated when we include also the second order
derivative, indicating how curved locally our landscape is. Etc. Taking into account more
and more higher order terms gives us a better approximation and finally with the infinite
series we have an exact description.
Our most important constraint for a good local image descriptor comes from the requirement
that we want to be independent of our choice of coordinates. The coordinate system used the
most is the Cartesian coordinate system (invented by and named after Descartes, a brilliant
French mathematician from the 18th century): this is our familiar orthogonal Hx, yL orHx, y, zL coordinate system.

But it should not matter if we describe our local image structure in another coordinate system
like a polar, cylindrical or rotated or translated version of our Cartesian coordinate system.
Because the Cartesian system is the easiest to understand, we will deal only with changes in
this coordinate system. The frame of the coordinate system is formed by the unit vectors
pointing in the respective dimensions. What changes could occur to a coordinate system? Of
course any modification is possible. We will focus on the change of orientation (rotation of
the axes frame), translation (x and/or y shift of the axes frame), and zoom (multiplication of
the length of the units along the axes with some factor).

The shear transformation (where the axes are no longer orthogonal) will not be discussed
here; we limit ourselves to changes of the coordinates where they remain orthogonal.

97 6.3 Coordinate systems and transformations

DisplayTogetherArray@
Show@Graphics@8Arrow@80, 0<, #D & êü 881, 0<, 80, 1<<,

Red, PointSize@.04D, Point@8.4, .6<D<D,
Frame -> True, Axes -> True, AspectRatio -> 1D,
Show@Graphics3D@8arrow3D@80, 0, 0<, #, TrueD & êü 881, 0, 0<, 80, 1, 0<,80, 0, 1<<, Red, PointSize@.04D, Point@8.4, .6, .7<D<D,
Boxed -> True, BoxRatios -> 81, 1, 1<, Axes -> TrueD, ImageSize -> 250D;

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

00.25 0.50.75
1

0
0.25

0.5
0.751

0
0.25
0.5

0.75
1

00.25 0.50.75
1

0
0.25

0.5
0.751

Figure 6.7 Use of graphics primitives in Mathematica: the coordinate unit vectors in 2D and
3D.

We call all the possible instantiations of a transformation the transformation group. So all
rotations form the rotational group, the group of translations is formed by all translations. We
now consider the transformation of the frame vectors.

Mathematically, the operation of a transformation is described by a matrix, the
transformation matrix. E.g. rotation of a vector over an angle f is described by the rotation
matrix in 2D:

RotationMatrix2D@fD êê MatrixFormJ Cos@fD Sin@fD
-Sin@fD Cos@fD N

The angle f is defined as clockwise for the positive direction. In 3D it gets a little more
complicated, as we have three angles to rotate over (these are called the 'Euler' angles):

RotationMatrix3D@y, q, fD88Cos@fD Cos@yD - Cos@qD Sin@fD Sin@yD,
Cos@qD Cos@yD Sin@fD + Cos@fD Sin@yD, Sin@qD Sin@fD<,8-Cos@yD Sin@fD - Cos@qD Cos@fD Sin@yD,
Cos@qD Cos@fD Cos@yD - Sin@fD Sin@yD, Cos@fD Sin@qD<,8Sin@qD Sin@yD, -Cos@yD Sin@qD, Cos@qD<<

In general a transformation is described by a set of equations:
x '1 = f1 Hx1 , x2 , … , xn L
 ª
x 'n = fn Hx1 , x2 , … , xn L
When we transform a space, the volume often changes, and the density of the material inside
is distributed over a different volume. To study the change of a small volume we need to
consider ∑ x”÷ 'ÅÅÅÅÅÅÅÅÅ

∑ x”÷ , which is the matrix of first order partial derivatives.

We have

J = ∑ x”÷ 'ÅÅÅÅÅÅÅÅÅ
∑ x”÷ =

i
k
jjjjjjjjjjjjj

∑Hx'L1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x1
∫ ∑Hx'L1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑xn

ª ∏ ª
∑Hx'LnÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x1

∫ ∑Hx'LnÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑xn

y
{
zzzzzzzzzzzzz . This matrix is called the Jacobian matrix, named after Carl

Jacobi (1804-1851), a Prussian mathematician. The Jacobian can be computed in
Mathematica with

6. Differential structure of images 98

We have

J = ∑ x”÷ 'ÅÅÅÅÅÅÅÅÅ
∑ x”÷ =

i
k
jjjjjjjjjjjjj

∑Hx'L1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x1
∫ ∑Hx'L1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑xn

ª ∏ ª
∑Hx'LnÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x1

∫ ∑Hx'LnÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑xn

y
{
zzzzzzzzzzzzz . This matrix is called the Jacobian matrix, named after Carl

Jacobi (1804-1851), a Prussian mathematician. The Jacobian can be computed in
Mathematica with

jacobianmatrix@functions_List, variables_ListD :=
Outer@D, functions, variablesD

If we consider the change of the infinitesimally small volume
d x '1 d x '2 … d x 'n = … ∑ x”÷ 'ÅÅÅÅÅÅÅÅÅ

∑ x”÷ … d x1 d x2 … d xn we see that the determinant of the Jacobian
matrix (also called the Jacobian) is the factor which corrects for the change in volume. When
the Jacobian is unity, we call the transformation a special transformation.
The transformation in matrix notation is expressed as x” ' = A x” , where x”÷ ' is the transformed

vector, x”÷ is the input vector, and A =
ikjjjjjjj a11 ∫ a1 n

ª ∏ ª
an 1 ∫ an n

y{zzzzzzz is the transformation matrix. When

the coefficients of A are constant, we have a linear transformation, often called an affine
transformation. In Mathematica (note the dot product between the matrix and the vector):

Clear@x, yD; A = J a11 a12
a21 a22

N; x” = 8x1, x2<;
x”' =

1
ÅÅÅ
Det@jacobianmatrix@A.x”, x”DD A.x”

9 a11 x1 + a12 x2ÅÅ
-a12 a21 + a11 a22

, a21 x1 + a22 x2ÅÅ
-a12 a21 + a11 a22

=
Ú Task 6.1 Show that the Jacobian of the transformation matrices

RotationMatrix2D[f] and RotationMatrix3D[f,q,y] are unity.

A rotation matrix that rotates over zero degrees is the identity matrix or the symmetric tensor
or d -operator:

d = RotationMatrix2D@0D; d êê MatrixFormJ 1 0
0 1

N
and the matrix that rotates over 90 degrees (p/2 radians) is called the antisymmetric tensor,
the e-operator or the Levi-Civita tensor:

e = RotationMatrix2D@p ê 2D; e êê MatrixFormJ 0 1
-1 0

N

99 6.3 Coordinate systems and transformations

Let us study an example of a rotation: a unit vector under 450 is rotated over 1100 clockwise:

v” = 9 è!!!!
2

ÅÅÅÅÅÅÅÅÅÅ
2

,
è!!!!
2

ÅÅÅÅÅÅÅÅÅÅ
2

=; v”' = RotationMatrix2DA110
2 p

ÅÅÅÅÅÅÅÅÅÅ
360

E.v” êê N80.422618, -0.906308<
Show@Graphics@8Arrow@80, 0<, #D & êü 8v”, v”'<, Text@"v”", 8.8, .8<D,

Text@"v”'", 8.55, -.8<D<D, PlotRange -> 88-1, 1<, 8-1, 1<<,
Frame -> True, Axes -> True, AspectRatio -> 1, ImageSize -> 100D;

-0.75-0.5-0.250 0.250.50.751

-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

v”÷

v”÷ '

Figure 6.8 The vector v”÷ ' is rotated by the action of the rotation matrix operator on the vector
v”÷ .

What we want is invariance under the transformations of translation and rotation. A function
is said to be invariant under a group of transformations, if the transformation has no effect on
the value of the function. The only geometrical entities that make physically sense are
invariants. In the words of Hermann Weyl: "any invariant has a specific meaning", and as
such they are widely studied in computer vision theories.

An example: The derivative to x is not invariant to rotation; if we rotate the coordinate
system, or the image, we get in general a completely different value for the value of the
derivative at that point. The same applies to the derivative to y . However, the combination$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H ∑LÅÅÅÅÅÅÅ∑x L2

+ I ∑LÅÅÅÅÅÅÅ∑y M2 is invariant, as can be seen from the following: We denote derivatives

with a lower index: Lx ª ∑LÅÅÅÅÅÅÅ∑x . The length of the gradient vector HLx, Ly L is the scalarè!!8Lx, Ly<.8Lx, Ly<è!!!!!!!!!!!!!!!!!!!!Lx2 + Ly2

We used here again the Dot (.) product of vectors. When we now rotate each vector HLx, Ly L
with the rotation matrix over an arbitrary angle f , we get,HHRotationMatrix2D@fD.8Lx, Ly<L.HRotationMatrix2D@fD.8Lx, Ly<LL"##HLy Cos@fD - Lx Sin@fDL2 + HLx Cos@fD + Ly Sin@fDL2

Simplify@%Dè!!!!!!!!!!!!!!!!!!!!Lx2 + Ly2

Invariance proved for this case. Invariants are so important, that the lower-order ones have a

name. E.g. the scalar $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H ∑LÅÅÅÅÅÅÅ∑x L2
+ I ∑LÅÅÅÅÅÅÅ∑y M2 is called the gradient magnitude, the vector operator

“
”÷÷

ª 9 ∑ÅÅÅÅÅÅÅ∑x , ∑ÅÅÅÅÅÅÅ∑y = is called the nabla operator. So “”÷÷ L is the gradient of L . “”÷÷ .I“
”÷÷ LM = ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2

is called the Laplacian. Note that the gradient of the gradient “”÷÷ I“
”÷÷ LM =

ikjjjjjjj ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2
∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y

∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y
∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2

y{zzzzzzz is the

matrix of second order derivatives, or the Hessian matrix (this is not an invariant).

6. Differential structure of images 100

Invariance proved for this case. Invariants are so important, that the lower-order ones have a

name. E.g. the scalar $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H ∑LÅÅÅÅÅÅÅ∑x L2
+ I ∑LÅÅÅÅÅÅÅ∑y M2 is called the gradient magnitude, the vector operator

“
”÷÷

ª 9 ∑ÅÅÅÅÅÅÅ∑x , ∑ÅÅÅÅÅÅÅ∑y = is called the nabla operator. So “”÷÷ L is the gradient of L . “”÷÷ .I“
”÷÷ LM = ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2

is called the Laplacian. Note that the gradient of the gradient “”÷÷ I“
”÷÷ LM =

ikjjjjjjj ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2
∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y

∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y
∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2

y{zzzzzzz is the

matrix of second order derivatives, or the Hessian matrix (this is not an invariant).

Ú Task 6.2 Show that the Laplacian is an invariant under rotation, in 2D and 3D.

In the sequel, we will only consider orthonormal transformations. These are also called
Euclidean transformations. Orthonormal transformations are special orthogonal
transformations (the Jacobian is unity). With orthogonal transformations the orthogonality of
the coordinate frame is preserved. An orthonormal transformation preserves lengths of
vectors and angles between vectors, i.e. it preserves a symmetric inner product < x”÷ , y” > .
When T is the orthogonal transformation, this means that < x”÷ , y” >= < T x”÷ , T y” > .

The transformation matrix of an orthogonal transformation is an orthogonal matrix. They
have the nice property that they are always invertible, as the inverse of an orthogonal matrix
is equal to its transpose: A-1 = AT . A matrix m can be tested to see if it is orthogonal using

OrthogonalQ@m_List?MatrixQD :=HTranspose@mD.m == IdentityMatrix@Length@mDDL;
Of course, there are many groups of transformations that can be considered, such as
projective transformations (projecting a 3D world onto a 2D surface). In biomedical imaging
mostly orthogonal transformations are encountered, and on those which will be the emphasis
of the rest of this chapter.

Notice that with invariance we mean invariance for the transformation (e.g. rotation) of the
coordinate system, not of the image. The value of the local invariant properties is also the
same when we rotate the image. There is however an important difference between image
rotation, and coordinate rotation. We specifically mean here the local independence of
rotation, for that particular point. See also figure 6.9. If we study the rotation of the whole
image, we apply the same rotation to every pixel.

Here, we want in every point a description which is independent to the rotation of the local
coordinates, so we may as well rotate our coordinates in every pixel differently. Invariance
for rotation in this way means something different than a rotation of the image. There would
be no way otherwise to recognize rotated images from non-rotated ones!

101 6.3 Coordinate systems and transformations

Show@Import@"Thatcher illusion.jpg"D, ImageSize -> 330D;

Figure 6.9 The "Thatcher illusion", created by P. Thompson [Thompson1980], shows that
local rotations of image patches are radically different from the local coordinate rotation
invariance, and that we are not used to (i.e. have no associative set in our memory) for
sights that we seldomly see: faces upside down. Rotate the images 180 degrees to see the
effect.

In particular, we will see that specific scalar combinations of local derivatives give
descriptions of local image structure invariant under a Euclidean transformation.

6.4 Directional derivatives

The directed first order nabla operator is given in 2D by v” .“”÷÷ , where v” is a unit vector
pointing in the specific direction. v” .“”÷÷ is called the directional derivative. Let us consider
some examples. We calculate the directional derivative for v” = 9-

è!!!2 , -
è!!!2 = and

v” = 9è!!!3 ë 2, 1 ê 2= :

im = Import@"mip147.gif"D@@1, 1DD;
northeast@im_, s_D := 9-

è!!!!
2 , -

è!!!!
2 =.8gD@im, 1, 0, sD, gD@im, 0, 1, sD<;

southsouthwest@im_, s_D :=9è!!!!
3 ë 2, 1 ê 2=.8gD@im, 1, 0, sD, gD@im, 0, 1, sD<;

DisplayTogetherArray@ListDensityPlot êü8im, northeast@im, 1D, southsouthwest@im, 1D<, ImageSize -> 300D;

Figure 6.10 Directional derivatives. Image from the Eurorad database (www.eurorad.org),
case 147.

6. Differential structure of images 102

6.5 First order gauge coordinates

We introduce the notion of intrinsic geometry: we like to have every point described in such
a way, that if we have the same structure, or local landscape form, no matter the rotation, the
description is always the same. This can be accomplished by setting up in each point a
dedicated coordinate frame which is determined by some special local directions given by
the landscape locally itself.

Consider yourself an ant on a surface, you can only see the direct vicinity, so the world looks
locally very simple. We now fix in each point separately our local coordinate frame in such
a way that one frame vector points to the direction of maximal change of the intensity, and
the other perpendicular to it (90 degrees clockwise). The direction of maximal change of
intensity is just the gradient vector w”÷÷ = I ∑LÅÅÅÅÅÅÅ∑x , ∑LÅÅÅÅÅÅÅ∑y M . The perpendicular direction is

v” = J 0 1
-1 0 N . w”÷÷ = I ∑LÅÅÅÅÅÅÅ∑y , - ∑LÅÅÅÅÅÅÅ∑x M . We can check: if we are on a slope going up in the y-

direction only (the 'Southern' slope of a hill), we have as gradient 90, ∑LÅÅÅÅÅÅÅ∑y = , because in the x-
direction the slope is horizontal.

ContourPlotAx2 + y2, 8y, 2, 4.5<,8x, 2, 4.5<, Contours Ø Range@2, 100, 4D, Epilog ->9PointSize@.02D, Point@83, 3<D, ArrowA83, 3<, 93 + .5
è!!!!
2 , 3 - .5

è!!!!
2 =E,

ArrowA83, 3<, 93 + .5
è!!!!
2 , 3 + .5

è!!!!
2 =E, Text@"v̀", 83.8, 2.2<D,

Text@"ẁ", 83.8, 3.8<D=, Frame Ø False, ImageSize Ø 100E;

v̀

ẁ

Figure 6.11 Local first order gauge coordinates 8v̀ , ẁ < . The unit vector v̀ is everywhere
tangential to the isophote (line of constant intensity), the unit vector ẁ is everywhere
perpendicular to the isophote and points in the direction of the gradient vector.

We have now fixed locally the direction for our new intrinsic local coordinate frame Hv”, w”÷÷ L .
This set of local directions is called a gauge, the new frame forms the gauge coordinates and
fixing the frame vectors with respect to the constant direction w”÷÷ is called: fixing the gauge.
Because we discuss first order derivatives here, we call this a first order gauge. We can also
derive a second order gauge from second order local differential structure, as we will see
later.

We want to take derivatives with respect to the gauge coordinates.

As they are fixed to the object, no matter any rotation or translation, we have the following
very useful result:

103 6.5 First order gauge coordinates

any derivative expressed in gauge coordinates is an orthogonal invariant. E.g. it is clear that
∑LÅÅÅÅÅÅÅÅ∑w is the derivative in the gradient direction, and this is just the gradient itself, an invariant.

And ∑LÅÅÅÅÅÅÅ∑v ª 0, as there is no change in the luminance as we move tangentially along the
isophote, and we have chosen this direction by definition.

From the derivatives with respect to the gauge coordinates, we always need to go to
Cartesian coordinates in order to calculate the invariant properties on a computer. The
transformation from the Hv̀, ẁL from to the Cartesian Hx̀, ỳL frame is done by implementing
the definition of the directional derivatives. Important is that first a directional partial
derivative (to whatever order) is calculated with respect to a frozen gradient direction. We
call this direction HLx, LyL . Then the formula is calculated which expresses the gauge
derivative into this direction, and finally the frozen direction is filled in from the calculated
gradient.

In Mathematica: The frame vectors ẁ and v̀ are defined as

ẁ =
8Lx, Ly<

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!
Lx2 + Ly2

; v̀ = J 0 1
-1 0 N.ẁ;

The directional differential operators v̀ . “
”÷÷

= I ∑ÅÅÅÅÅÅÅ∑x , ∑ÅÅÅÅÅÅÅ∑y M and v̀ . “
”÷÷

= I ∑ÅÅÅÅÅÅÅ∑x , ∑ÅÅÅÅÅÅÅ∑y M are defined as:

v̀.8∑x #, ∑y #< &;
v̀.8∑x #, ∑y #< &;

The notation (...#)& is a 'pure function' on the argument #, e.g. H#2 + #5L & gives the
sum of second and fifth power of some argument #, D[#,x]& (or equivalently H∑x #L &)
takes the derivative of the variable # with respect to x (look in the Help browser to
Function for more examples). So the construct of a pure function is the construct for an
operator. This pure function can be applied to an argument by the familiar square brackets,
e.g. H#2 + #5L &@zzD

zz2 + zz5

Higher order derivatives are constructed through nesting multiple first order derivatives, as
many as needed. The total transformation routine is now:

Clear@f, L, Lx, LyD; Unprotect@gauge2DD;
gauge2D@f_, nv_ ê; nv ¥ 0, nw_ ê; nw ¥ 0D :=
Module@8Lx, Ly, v, w<, w = 8Lx, Ly< ê Sqrt@Lx^2 + Ly^2D;
v = 880, 1<, 8-1, 0<<.w;
Simplify@
Nest@Hv.8D@#1, xD, D@#1, yD< &L, Nest@Hw.8D@#1, xD, D@#1, yD< &L,

f, nwD, nvD ê. 8Lx Ø D@f, xD, Ly Ø D@f, yD<DD;
where f is a symbolic function of x and y , and nw and nv are the orders of differentiation
with respect to w resp v . Here is an example of its output: the gradient ∑LÅÅÅÅÅÅÅÅ∑w :

6. Differential structure of images 104

Lw = gauge2D@L@x, yD, 0, 1D"###LH0,1L @x, yD2 + LH1,0L @x, yD2

Using pattern matching with the function shortnotation we get more readable output:

Lw = gauge2D@L@x, yD, 0, 1D êê shortnotation"###############Lx2 + Ly2

Lww = gauge2D@L@x, yD, 0, 2D êê shortnotation

Lx2 Lxx + 2 Lx Lxy Ly + Ly2 LyyÅÅLx2 + Ly2

Lv = gauge2D@L@x, yD, 1, 0D êê shortnotation

0

As expected, because it is exactly what we put into the definition of ∑LÅÅÅÅÅÅÅ∑v : it is the
differentiation in the direction perpendicular to the gradient, so along the tangential direction
of the isophote, and in this direction there is no change of the intensity function. But

Lvv = gauge2D@L@x, yD, 2, 0D êê shortnotation

-2 Lx Lxy Ly + Lxx Ly2 + Lx2 LyyÅÅÅLx2 + Ly2

is not zero, because it is constructed by first applying the directional derivative twice, and
then fixing the gauge.

This calculates the Laplacian in gauge coordinates, Lv v + Lw w (what do you expect?):

gauge2D@L@x, yD, 0, 2D + gauge2D@L@x, yD, 2, 0D êê shortnotation

Lxx + Lyy

Ú Task 6.3 Show and explain that in the definition of the function gauge2D we
cannot define w = 8∑x L, ∑y L<. We need to have the direction of the gauge fixed
while computing the compound formula. Why?

The next figure shows the 8v̀, ẁ< gauge frame in every pixel of a simple 322 image with 3
blobs:

105 6.5 First order gauge coordinates

blob@x_, y_, mx_, my_, s_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

 ExpA-
Hx - mxL2 + Hy - myL2

ÅÅÅ
2 s2

E;
blobs@x_, y_D :=
blob@x, y, 10, 10, 4D + .7 blob@x, y, 15, 20, 4D + 0.8 blob@x, y, 22, 8, 4D;

im = Table@blobs@x, yD, 8y, 30<, 8x, 30<D;
Block@8$DisplayFunction = Identity, gradient, norm, s, frame<,
norm = H#ê Sqrt@#.#DL &;

s = 1; gradient = Map@norm,
Transpose@8gD@im, 1, 0, sD, gD@im, 0, 1, sD<, 83, 2, 1<D, 82<D;

frame = Graphics@8White, Arrow@#2 - .5, #2 - .5 + #1D, Red,
Arrow@#2 - .5, #2 - .5 + 8#1@@2DD, -#1@@1DD<D<D &;

ar = MapIndexed@frame, gradientê 2, 82<D;
lp = ListDensityPlot@gD@im, 0, 0, sDDD;

Show@8lp, ar<, Frame -> True, ImageSize -> 410D;

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 6.12 The gauge frame 8w, v< given for every pixel in a 302 image of three Gaussian
blobs. The gradient direction w , calculated at a scale of s=1 pixel, is indicated in white, and
points always to higher intensity. They are (defined as) everywhere perpendicular to the
isophotes and tangential to the flowlines. These vectors always point to extrema and saddle
points. The v frame vector (in red) is p/2 radians rotated clockwise, they encircle the
extrema, (defined as) tangential to the isophotes. (The boundary effects, most notably on the
right, are due to the cyclic interpretation of the gradient calculation, which causes the image
to be interpreted as infinitely repeated in all directions: the gradient direction changes over p,
no artefact, but now well understood).

The gauge coordinates are not defined at 'horizontal points' in the intensity landscape, i.e.
locations where "####################Lx

2 + Ly
2 = 0, as is clear from the definition of the gauge coordinates.

This occurs in saddle points and extrema (minima and maxima) of the intensity landscape,
where both Lx = 0 and Ly = 0. In practice however this is not a problem: we have a finite
number of such points, typically just a few, and we know from Morse theory that we can get
rid of such a singularity by an infinitesimally small local change in the intensity landscape.

6. Differential structure of images 106

The gauge coordinates are not defined at 'horizontal points' in the intensity landscape, i.e.
locations where "####################Lx

2 + Ly
2 = 0, as is clear from the definition of the gauge coordinates.

This occurs in saddle points and extrema (minima and maxima) of the intensity landscape,
where both Lx = 0 and Ly = 0. In practice however this is not a problem: we have a finite
number of such points, typically just a few, and we know from Morse theory that we can get
rid of such a singularity by an infinitesimally small local change in the intensity landscape.

Due to the fixing of the gauge by removing the degree of freedom for rotation (that is why
Lv ª 0), we have an important result: every derivative to v and w is an orthogonal invariant.

In other words: it is an invariant property where translation and/or rotation of the coordinate
frame is irrelevant. This also means that polynomial combinations of these gauge derivative
terms are invariant. We now have the toolkit to make invariants expressed in gauge
derivatives to any order.

Here are a few other differential invariants of the image, which are now easily constructed:

gauge2D@L@x, yD, 4, 0D êê shortnotation

-4 Lx3 Lxyyy Ly + 6 Lx2 Lxxyy Ly2 - 4 Lx Lxxxy Ly3 + Lxxxx Ly4 + Lx4 LyyyyÅÅÅHLx2 + Ly2L2

gauge2D@L@x, yD, 2, 1D êê shortnotation

Lx3 Lxyy + Lx HLxxx - 2 LxyyL Ly2 + Lxxy Ly3 + Lx2 Ly H-2 Lxxy + LyyyL
ÅÅHLx2 + Ly2L3ê2

In conclusion of this section, we have found a complete family of differential invariants, that
are invariant for rotation and translation of the coordinate frame. They are called differential
invariants, because they consist of polynomials with as coefficients partial derivatives of the
image. In the next section we discuss some important members of this family. Only the
lowest order invariants have a name, the higher orders become more and more exotic.

The final step is the operational implementation of the gauge derivative operators for discrete
images. This is simply done by applying pattern matching:
- first calculate the symbolic expression
- then replace any derivative with respect to x and y by the numerical derivative
gD[im,nx ,ny ,s]
- and then insert the pixeldata in the resulting polynomial function;
as follows:

Unprotect@gauge2DND;
gauge2DN@im_, nv_, nw_, s_ ê; s > 0D :=
Module@8im0<, gauge2D@L@x, yD, nv, nwD ê.

Derivative@nx_, ny_D@L_D@x_, y_D Ø gD@im0, nx, ny, sD ê. im0 Ø imD;
This writes our numerical code automatically. Here is the implementation for Lv v . If the
image is not defined, we get the formula returned:

107 6.5 First order gauge coordinates

Clear@im, sD; gauge2DN@im, 2, 0, 2DHgD@im, 0, 2, 2D gD@im, 1, 0, 2D2 -
2 gD@im, 0, 1, 2D gD@im, 1, 0, 2D gD@im, 1, 1, 2D +

gD@im, 0, 1, 2D2 gD@im, 2, 0, 2DL ê HgD@im, 0, 1, 2D2 + gD@im, 1, 0, 2D2L
If the image is available, the invariant property is calculated in each pixel:

im = Import@"thorax02.gif"D@@1, 1DD;
DisplayTogetherArray@
ListDensityPlot êü 8im, -gauge2DN@im, 0, 1, 1D, -gauge2DN@im, 2, 0, 4D<,
ImageSize -> 400D;

Figure 6.13 The gradient Lw (middle) and Lv v , the second order directional derivative in the
direction tangential to the isophote (right) for a 2562 X-thorax image at a small scale of 0.5
pixels. Note the shadow of the coins in the pocket of his shirt in the lower right.

6.6 Gauge coordinate invariants: examples

6.6.1 Ridge detection

Lv v is a good ridge detector, since at ridges the curvature of isophotes is large (see figure
6.13).

f@x_, y_D := ikjjjSin@xD +
1
ÅÅÅÅ
3

 Sin@3 xDy{zzz H1 + .1 yL;
DisplayTogetherArray@Plot3D@f@x, yD, 8x, 0, p<, 8y, 0, p<D,
ContourPlot@f@x, yD, 8x, 0, p<, 8y, 0, p<, PlotPoints -> 50D,
ImageSize -> 370D;

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Figure 6.14 Isophotes are much more curved at the top of ridges and valleys then along the
slopes of it. Left: a slightly sloping artificial intensity landscape with two ridges and a valley,
at right the contours as isophotes.

6. Differential structure of images 108

Let us test this on an X-ray image of fingers and calculate Lv v scale s = 3.

im = Import@"hands.gif"D@@1, 1DD; Lvv = gauge2DN@im, 2, 0, 3D;
DisplayTogetherArray@ListDensityPlot êü 8im, Lvv<, ImageSize Ø 450D;

Figure 6.15 The invariant feature Lv v is a ridge detector. Here applied on an X-ray of two
hands at s = 3 pixels. Image resolution: 361 x 239 pixels.

Ú Task 6.4 Study the ridges Lv v of the fingers at different scales, and note the
scale-dependent interpretation.

Noise has structure too. Here are the ridges of uniform white noise:

im = Table@Random@D, 8128<, 8256<D;
ListDensityPlot@gauge2DN@im, 2, 0, 4DD;

Figure 6.16 The invariant feature Lv v detects the ridges in white noise here, s = 4 pixels,
image resolution: 256 x 128 pixels.

Ú Task 6.5 Study in the same way the gradient of white noise at a range of scales.
Do you see the similarity with a brain surface at larger scales?

We will encounter the second order gauge derivative Lv v in chapter 19 in the 'fundamental'
equation of Alvarez et al. [Alvarez1992a, Alvarez1993], a nonlinear (geometry driven)
diffusion equation: ∑LÅÅÅÅÅÅÅ∑t = Lv v .

109 6.6 Gauge coordinate invariants: examples

This equation is used to evolve the image in a way that locally adapts the amount of blurring
to differential invariant structure in the image in order to do e.g. edge-preserving smoothing.
We discuss this in detail in chapter 21.

Detection of ridges is an active topic in multi-scale feature detection [Koenderink1993a,
Maintz1996a, Eberly1993, Eberly1994, Eberly1994a, Eberly1994b, Damon1999,
Lindeberg1998b, Lopéz1999], as it focuses on the dual of boundaries.

6.6.2 Isophote and flowline curvature in gauge coordinates

The derivation of the formula for isophote curvature is particularly easy when we express the
problem in gauge coordinates. Isophote curvature k is defined as the change w '' = ∑2 wÅÅÅÅÅÅÅÅÅÅ∑v2 of
the tangent vector w ' = ∑wÅÅÅÅÅÅÅÅ∑v = v in the gradient-gauge coordinate system. The definition of an
isophote is: LHv, wL = Constant , and w = wHvL . So, in Mathematica we implicitly differentiate
the equality (==) to v :

L@v, w@vDD == Constant;
v =.; w =.; D@L@v, w@vDD == Constant, vD
w£ @vD LH0,1L @v, w@vDD + LH1,0L @v, w@vDD == 0

We know that Lv ª 0 by definition of the gauge coordinates, so w ' = 0, and the curvature k
= w '' is found by differentiating the isophote equation again and solving for w '' :

k = w''@vD ê. Solve@D@L@v, w@vDD == Constant, 8v, 2<D ê. w'@vD -> 0, w''@vDD9-
LH2,0L @v, w@vDD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅLH0,1L @v, w@vDD =

So k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
. In Cartesian coordinates we recognize the well-known formula:

im =.; k = -
gauge2D@L@x, yD, 2, 0D
ÅÅÅ
gauge2D@L@x, yD, 0, 1D êê shortnotation

-
-2 Lx Lxy Ly + Lxx Ly2 + Lx2 LyyÅÅÅHLx2 + Ly2L3ê2

Here is an example of the isophote curvature at a range of scales for a sagittal MR image:

im = Import@"mr256.gif"D@@1, 1DD;
kplot =

ListDensityPlotA-
gauge2DN@im, 2, 0, #D
ÅÅ
gauge2DN@im, 0, 1, #D , PlotRange -> 8-5, 5<E &;

6. Differential structure of images 110

DisplayTogetherArray@8ListDensityPlot@imD, kplot@1D, kplot@2D, kplot@3D<, ImageSize -> 470D;

Figure 6.17 The isophote curvature k is a rotationally and translationally invariant feature. It
takes high values at extrema. Image resolution: 2562 pixels.

The reason we see extreme low and high values is due to the singularities that occur at
intensity extrema, where the gradient Lw = 0 .

Ú Task 6.6 Why was not in a single pixel infinite isophote curvature encountered?
There are many maxima and minima in the image.

Lopéz et al. [Lopéz2000b] defined a robust multi-scale version of a local curvature measure,
which they termed level set extrinsic curvature, based on the divergence of the gradient field,
integrated over a path (with a certain are: the scale) around the point of interest.
The perception of curvature is influenced by its context, as is clear from the Tolansky's
curvature illusion (see figure 6.18).

Show@
Graphics@8Thickness@.01D, Circle@80, 0<, 10, 80, p<D, Circle@80, -4<,

10, 8p ê 4, 3 p ê 4<D, Circle@80, -8<, 10, 83 p ê 8, 5 p ê 8<D<D,
AspectRatio Ø Automatic, ImageSize -> 260D;

Figure 6.18 Tolansky's curvature illusion. The three circle segments have the same curvature
1/10.

We remember the flowlines as the integral curves of the gradient. In figure 6.6 they were
depicted together with their duals, the isophotes. In that particular case, for such circular
objects flowlines are straight lines with curvature zero. In figure 6.6 the isophote curvature at
the top of the blob goes to infinity and is left out for that reason.

111 6.6 Gauge coordinate invariants: examples

Ú Task 6.7 Prove, with the methodology sketched above, that the flowline
curvature expressed in first order gauge coordinates is: m = - Lv wÅÅÅÅÅÅÅÅÅÅLw

.

The third (and last) member of the set of second order derivatives in gauge coordinates is
Lw w . This is the derivative of the gradient in the gradient direction. So when we want to find
the maximum of the gradient, we can inspect zeros of Lw w .
Historically, much attention is paid to the zerocrossings of the Laplacian due to the
groundbreaking work of Marr and Hildreth. As a rotational isotropic filter, and its close
analogy to the retinal receptive fields, its zerocrossings were often interpreted as the maxima
of a rotational invariant edge detector. The zerocrossings are however displaced on curved
edges.

Note that with the compact expression for isophote curvature k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
 we can establish a

relation between the Laplacian and the second order derivative in the gradient direction we
want to investigate for zerocrossings: Lw w . From the expression of the Laplacian in gauge
coordinates DL = Lw w + Lv v = Lw w - k Lw we see immediately that there is a deviation term
k Lw which is directly proportional to the isophote curvature k. Only on a straight edge with
local isophote curvature zero the Laplacian is numerically equal to Lw w . Without gauge
coordinates, this is much harder to prove. It took Clark two full pages in PAMI to show this
[Clark1989]!

im = Import@"thorax02.gif"D@@1, 1DD;
Block@8$DisplayFunction = Identity<,
p1 = ListDensityPlot@imD;
p2 = ListContourPlot@gauge2DN@im, 0, 2, 4D, Contours -> 80<D;
p3 = ListContourPlot@gD@im, 2, 0, 4D + gD@im, 0, 2, 4D, Contours -> 80<DD;

DisplayTogetherArray@8Show@8p1, p2<D, Show@8p1, p3<D<, ImageSize -> 380D;

Figure 6.19 Contours of Lv v = 0 (left) and DL = 0 (right) superimposed on the X-thorax
image for s = 4 pixels.

The term n = - Lw wÅÅÅÅÅÅÅÅÅÅÅLw
 is not a curvature, but can be interpreted as a density of isophotes.

Notice that the isophote curvature k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
 and flowline curvature m = - Lv wÅÅÅÅÅÅÅÅÅÅLw

 have equal
dimensionality for the intensity in both nominator and denominator. This leads to the
desirable property that these curvatures do not change when we e.g. manipulate the contrast
or brightness of an image. In general, these curvatures are said to be invariant under
monotonic intensity transformations. In section 6.7 we elaborate on this special case of
invariance.

6. Differential structure of images 112

Notice that the isophote curvature k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
 and flowline curvature m = - Lv wÅÅÅÅÅÅÅÅÅÅLw

 have equal
dimensionality for the intensity in both nominator and denominator. This leads to the
desirable property that these curvatures do not change when we e.g. manipulate the contrast
or brightness of an image. In general, these curvatures are said to be invariant under
monotonic intensity transformations. In section 6.7 we elaborate on this special case of
invariance.

6.6.3 Affine invariant corner detection

Corners are defined as locations with high isophote curvature and high intensity gradient. An
elegant reasoning for an affine invariant corner detector was proposed by Blom
[Blom1991a], then a PhD student of Koenderink. We reproduce it here using Mathematica.
Blom proposed to take the product of isophote curvature - Lv vÅÅÅÅÅÅÅÅÅLw

 and the gradient Lw raised to
some (to be determined) power n :

Q@nD = - Lv vÅÅÅÅÅÅÅÅÅÅLw
 Lw

n = k Lw
n = -Lv v Lw

n-1 .

An obvious advantage is invariance under a transformation that changes the opening angle of
the corner. Such a transformation is the affine transformation. An affine transformation is a
linear transformation of the coordinate axes:

 J x '
y '

N = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa d-b c J a b
c d

N H x y L + He f L .

We omit the translation term He f L and study the affine transformation proper. The term
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa d-b c is the determinant of the transformation matrix, and is called the Jacobian. Its

purpose is to adjust the amplitude when the area changes.

A good example of the effect of an affine transformation is to study the projection of a
square from a large distance. Rotation over a vertical axis shortens the x -axis. Changing both
axes introduces a shear, where the angles between the sides change. The following example
illustrates this by an affine transformation of a square:

square = 880, 0<, 81, 0<, 81, 1<, 80, 1<, 80, 0<<;
affine = J 5 2

0 .5 N; afsquare = affine.# & êü square;

DisplayTogetherArray@Graphics@Line@#D, AspectRatio -> 1D & êü8square, afsquare<, ImageSize -> 200D;

Figure 6.20 Affine transformation of a square, with transformation matrix J 5 2
0 .5

Nmapped

on each point.

113 6.6 Gauge coordinate invariants: examples

The derivatives transform as ikjjj ∑x'

∑y'

y{zzz = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa d-b c J a b
c d

N H ∑x ∑y L . We put the affine

transformation A = J a b
c d N into the definition of affinely transformed gauge coordinates:

Clear@a, b, c, dD;
gauge2Daffine@f_, nv_, nw_D := ModuleA9Lx, Ly, v, w, A = J a b

c d N=,
w =

8Lx', Ly'<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##########################

Lx'2 + Ly'2
; v = J 0 1

-1 0 N.w;
SimplifyANestAv.ikjjj 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Det@AD A.8∑x #, ∑y #<y{zzz &,

NestAw.ikjjj 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Det@AD A.8∑x #, ∑y #<y{zzz &, f, nwE, nvE ê.9Lx' Ø

a Lx + b Ly
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Det@AD , Ly' Ø

c Lx + d Ly
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Det@AD = ê. 8Lx Ø ∑x f, Ly Ø ∑y f<EE;

The equation for the affinely distorted coordinates -Lva va Lwa
n-1 now becomes:

-gauge2Daffine@L@x, yD, 2, 0D gauge2Daffine@L@x, yD, 0, 1Dn-1 êê
Simplify êê shortnotationI Ha2 +c2 L Lx

2+2 Ha b+c dL Lx Ly +Hb2 +d2 L Ly
2

ÅÅHb c-a dL2 M 1ÅÅÅÅ2 H-3+nL H2 Lx Lxy Ly - Lxx Ly2 - Lx2 LyyL
ÅÅÅHb c - a dL2

Very interesting: when n = 3 and for an affine transformation with unity Jacobean
(a d - b c = 1, a so-called special transformation) we are independent of the parameters a , b ,
c and d ! This is the affine invariance condition.

So the expression Q = Lv vÅÅÅÅÅÅÅÅÅLw
 Lw

3 = Lv v Lw
2 = 2 Lx Lx y Ly - Lx x Ly

2 - Lx
2 Ly y is an affine

invariant corner detector. This feature has the nice property that it is not singular at locations
where the gradient vanishes, and through its affine invariance it detects corners at all
'opening angles'.

We show corner detection at two scales on the 'Utrecht' image:

im = SubMatrix@Import@"Utrecht256.gif"D@@1, 1DD, 81, 128<, 8128, 128<D;
corner1 = gauge2DN@im, 2, 0, 1D gauge2DN@im, 0, 1, 1D2;
corner3 = gauge2DN@im, 2, 0, 3D gauge2DN@im, 0, 1, 2D2;

6. Differential structure of images 114

DisplayTogetherArray@
ListDensityPlot êü 8im, corner1, corner3<, ImageSize Ø 500D;

Figure 6.21 Corner detection with the L v v Lw
2 operator. Left: original image, dimensions

1282 . Middle: corner detection at s = 1 pixel; right: corner detection at s = 3 pixels. Isophote
curvature is signed, so note the positive (convex, light) and negative (concave, dark) corners.

Ú Task 6.8 Show why the compound spike response, where an rotationally
invariant operator is applied on a spike image (discrete delta function), leads to
a rotationally symmetric response. An example is given below:

spike = Table@0, 8128<, 8128<D; spike@@64, 64DD = 100;
gradient = gauge2DN@spike, 0, 1, 15D;
cornerness = -gauge2DN@spike, 2, 0, 15D gauge2DN@spike, 0, 1, 15D2;
DisplayTogetherArray@
ListDensityPlot êü 8spike, gradient, cornerness<, ImageSize -> 400D;

Figure 6.22 Convolution of a spike (Delta function) image with a kernel gives the kernel itself
as result. Left: spike image, middle: response to the gradient kernel assembly, right:
response to the cornerness kernel assembly. Scale s = 15 pixels, resolution image 1282 .

6.7 A curvature illusion

A particular visual illusion shows the influence of the multi-scale perception of a local
property, like curvature. In figure 6.23 the lines appear curved, though they are really straight.

115 6.6 Gauge coordinate invariants: examples

star = Graphics@Table@
Line@88Cos@fD, Sin@fD<, 8-Cos@fD, -Sin@fD<<D, 8f, 0, p, p ê 20<DD;

lines = Graphics@8Thickness@.015D, DarkViolet,
Line@88-1, .1<, 81, .1<<D, Line@88-1, -.1<, 81, -.1<<D<D;

Show@8star, lines<, PlotRange Ø 88-.4, .4<, 8-.2, .2<<,
AspectRatio Ø Automatic, ImageSize -> 300D;

Figure 6.23 The straight lines appear curved due to the surrounding pattern.

When we calculate the isophote curvature k = -Lv vÅÅÅÅÅÅÅÅÅÅÅÅÅLw
 for this figure at a coarse scale, we see

that the curvature is not constant along the horizontal lines, but changes when moving from
the center. Figure 6.24 shows the curvature and the profile along the center of the horizontal
line.

curvill = Show@8star, lines<, PlotRange Ø 88-.4, .4<, 8-.2, .2<<,
AspectRatio Ø Automatic, ImageSize -> 432, DisplayFunction -> IdentityD;

Export@"curvillusion-star.jpg", curvillD;
im1 = Import@"curvillusion-star.jpg"D@@1, 1DD ê. 8a_, b_, c_< ->

a + b + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
;

DeleteFile@"curvillusion-star.jpg"D;
DisplayTogetherArrayA9ListDensityPlotAk1 = -

gauge2DN@im1, 2, 0, 20D
ÅÅ
gauge2DN@im1, 0, 1, 20D , PlotRange -> 8-.1, .1<,

Epilog -> 8Red, Line@88110, 161<, 8320, 161<<D<E,
ListPlot@Take@k1, 8161, 161<, 8110, 320<D êê Flatten,

AspectRatio -> .4, AxesLabel -> 8"", "k1"<D=, ImageSize -> 450E;
50 100 150 200

-0.5
-0.4
-0.3
-0.2
-0.1

k1

Figure 6.24 Left: Isophote curvature k at a scale of s = 20 pixels for the pattern in figure
6.23, dimensions image 216 x 432 pixels. Right: profile of curvature along the central portion
of the top horizontal line (to avoid boundary effects only the central portion is shown,
indicated by the red line in the left figure).

6. Differential structure of images 116

6.8 Second order structure

The second order structure of the intensity landscape is rich. To describe and to represent it,
we will develop a precise mathematical formulation in order to do a proper analysis.

Let us first develop some intuitive notions by visual inspection. Figure 6.25 shows a blurred
version of an X-thorax image is depicted as a height plot. We see hills and dales, saddle
points, ridges, maxima and minima. Clearly curvature plays an important role.

The second order structure of the intensity landscape LHx, y; sL in a point LHx0 , y0 ; sL is
described by the second order term in the local Taylor expansion around the point Hx0, y0 L .
Without any loss of generalization we take Hx0 , y0 L = H0, 0L :

s = Series@L@x, yD, 8x, 0, 2<, 8y, 0, 2<D êê Normal êê shortnotation

L@0, 0D + x Lx +
x2 LxxÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + y ikjj x2 LxxyÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + x Lxy + Lyy{zz +

1
ÅÅÅÅ4 y2 Hx2 Lxxyy + 2 Hx Lxyy + LyyLL

The second order term is 1ÅÅÅÅ2 Lx x x2 + Lx y x y + 1ÅÅÅÅ2 Ly y y2 . The second order derivatives are
the coefficients in the quadratic polynomial that describes the second order landscape.

im = Import@"thorax02.gif"D@@1, 1DD;
DisplayTogetherArray@ListDensityPlot@imD,
ListPlot3D@-gD@im, 0, 0, 2D, Mesh Ø FalseD, ImageSize Ø 320D;

Figure 6.25 Left: An X-thorax image (resolution 2562) and its 'intensity landscape' at s = 2
pixels (right).

We investigate the role of the coefficients in this second order polynomial. In the graph
below we vary all three coefficients. In the three groups of 9 plots the value of the mixed
coefficient Lx y has been varied (value -1, 0 and 1). In each group the 'pure' order terms Lx x
and Ly y are varied (values -1, 0 and +1). In the middle group we see concave, convex,
cylindrical and saddle shapes.

117 6.8 Second order structure

ShowAGraphicsArrayA
TableAGraphicsArrayATableAPlot3DA Lxx

ÅÅÅÅÅÅÅÅÅÅ
2

x2 + Lxy x y +
Lyy
ÅÅÅÅÅÅÅÅÅÅ
2

y2, 8x, -3, 3<,8y, -3, 3<, PlotRange Ø 8-18, 18<, AspectRatio Ø 1,
DisplayFunctionØ Identity, Boxed Ø True, Mesh Ø FalseE,8Lxx, -1, 1<, 8Lyy, -1, 1<E, Frame Ø TrueE, 8Lxy, -1, 1<EE, ImageSize Ø 480E;

Figure 6.26 Plots of Lx xÅÅÅÅÅÅÅÅÅÅ2 x2 + Lx y x y + Ly yÅÅÅÅÅÅÅÅÅÅ2 y2 . Left: Lx y = -1. Middle: Lx y = 0. Right:
Lx y = 1. In each frame: upper row: Lx x = 1, middle row: Lx x = 0, lower row: Lx x = -1, left
column: Ly y = -1, middle column: Ly y = 0, right row: Ly y = 1.

When three variables are at steak, and a visual impression may give valuable insight, one can
exploit the trichromacy of our vision. We employ the invariant second order derivatives,
Lv v , Lv w and Lw w . This shows the triple 8Lv v , Lv w , Lw w< as RGBColor@Lv v , Lv w , Lw w<
color directive settings in each pixel. The color coefficients for this function need to be
scaled between 0 and 255.

im = Import@"thorax02.gif"D; s = 5; impix = im@@1, 1DD; imcolor = im;
min = Min@color = Transpose@8gauge2DN@impix, 2, 0, sD,

gauge2DN@impix, 1, 1, sD, gauge2DN@impix, 0, 2, sD<, 83, 1, 2<DD;
max = Max@color- minD; imcolor@@1, 1DD = NA color - min

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
max

255E;
imcolor@@1, 4DD = ColorFunctionØ RGBColor;
DisplayTogetherArray@Show êü 8im, imcolor<, ImageSize Ø 400D;

Figure 6.27 Left: An X-thorax image (resolution 2562) and a mapping of the triple of invariant
second order derivatives 8Lv v , Lv w , Lw w < on the RGB coordinates in each pixel.

6. Differential structure of images 118

6.8.1 The Hessian matrix and principal curvatures

At any point on the surface we can step into an infinite number of directions away from the
point, and in each direction we can define a curvature. So in each point an infinite number of
curvatures can be defined. It runs out that the curvatures in opposite directions are always the
same. Secondly, when we smoothly change direction, there are two (opposite) directions
where the curvature is maximal, and there are two (opposite) directions where the curvature
is minimal. These directions are perpendicular to each other, and the extremal curvatures are
called the principal curvatures.

The Hessian matrix is the gradient of the gradient vectorfield. The coefficients form the
second order structure matrix, or the Hessian matrix, also known as the shape operator
[Gray1993]. The Hessian matrix is a square, symmetric matrix:

hessian2D = ikjjj ∑x,x L@x, yD ∑x,y L@x, yD
∑x,y L@x, yD ∑y,y L@x, yD y{zzz;

The Hessian matrix is square and symmetric, so we can bring it in diagonal form by
calculating the Eigenvalues of the matrix and put these on the diagonal elements:

DiagonalMatrix@Eigenvalues@hessian2DDD êê shortnotation99 1
ÅÅÅÅ2 ILxx + Lyy - "##Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2 M, 0=,90, 1

ÅÅÅÅ2 ILxx + Lyy + "##Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2 M==
These special values are the principal curvatures of that point of the surface. In the diagonal
form the Hessian matrix is rotated in such a way, that the curvatures are maximal and
minimal. The principal curvature directions are given by the Eigenvectors of the Hessian
matrix, found by solving the characteristic equation » H - k I » = 0 for k , where » ... »
denotes the determinant, and I is the identity matrix (all diagonal elements are 1, rest zeros).

k =.; Solve@Det@hessian2D - k IdentityMatrix@2DD ã 0, kD êê shortnotation99k Ø
1
ÅÅÅÅ2 ILxx + Lyy - "##Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2 M=,9k Ø
1
ÅÅÅÅ2 ILxx + Lyy + "##Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2 M==

The command to calculate Eigenvalues is built into Mathematica:8k1, k2< = Eigenvalues@hessian2DD êê FullSimplify;8k1, k2< êê shortnotation9 1
ÅÅÅÅ2 JLxx - "###4 Lxy2 + HLxx - LyyL2 + LyyN, 1

ÅÅÅÅ2 JLxx + "###4 Lxy2 + HLxx - LyyL2 + LyyN=
The two principal curvatures are equal when 4 Lx y

2 + HLy y - Lx x L 2 is zero. This happens in
so-called umbilical points. In umbilical points the principal directions are undefined. The
surface is locally spherical. The term 4 Lx y

2 + HLy y - Lx x L 2 can be interpreted as 'deviation
from sphericalness'.

119 6.8 Second order structure

6.8.2 The shape index

When the principal curvatures k1 and k2 are considered coordinates in a 2D 'shape graph',
we see that all different second order shapes are represented. Each shape is a point on this
graph. The following list gives some possibilities:

When both curvatures are zero we have the flat shape.
When both curvatures are positive, we have concave shapes.
When both curvatures are negative, we have convex shapes.
When both curvatures the same sign and magnitude: spherical shapes.
When the curvatures have opposite sign: saddle shapes.
When one curvature is zero: cylindrical shapes.

Koenderink proposed to call the angle, of where the shape vector points to, the shape index.
It is defined as:

shapeindex ª 2ÅÅÅÅp arctan k1 +k2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk1 -k2
, k1 ¥ k2 .

The expression for k1 +k2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk1 -k2
can be markedly cleaned up:

SimplifyA k1 + k2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
k1 - k2

E êê shortnotation

-Lxx - LyyÅÅ"###4 Lxy2 + HLxx - LyyL2

so we get for the shape index:

shapeindex ª 2ÅÅÅÅp arctanikjjj -Lx x -Ly yÅÅÅ"##Lx x
2 +4 Lx y

2 -2 Lx x Ly y +Ly y
2

y{zzz .

The shape index runs from -1 (cup) via the shapes trough, rut, and saddle rut to zero, the
saddle (here the shape index is undefined), and the goes via saddle ridge, ridge, and dome to
the value of +1, the cap.

The length of the vector defines how curved a shape is, which gives Koenderink's definition
of curvedness:

curvedness ª 1ÅÅÅÅ2
è!!!!!!!!!!!!!!!!!!!

k1 2 + k2 2 .

1
ÅÅÅÅ
2

è!!!!!!!!!!!!!!!!!!!

k1
2 + k2

2 êê Simplify êê shortnotation

1
ÅÅÅÅ2

"##################################Lxx2 + 2 Lxy2 + Lyy2

shapes =
Table@GraphicsArray@Table@Plot3D@k1 x2 + k2 y2, 8x, -3, 3<, 8y, -3, 3<,

PlotRange Ø 8-18, 18<, PlotLabel ->
"k1=" <> ToString@k1D <> ", k2=" <> ToString@k2D, AspectRatio Ø 1,
DisplayFunction Ø Identity, Boxed Ø True, Mesh Ø FalseD,8k2, 1, -1, -1<, 8k1, -1, 1<DDD;

6. Differential structure of images 120

Show@
GraphicsArray@8Graphics@8Arrow@80, 0<, 8.7, .5<D, Red, PointSize@.02D,

Point@8.7, .5<D<, PlotRange Ø 88-1, 1<, 8-1, 1<<,
Frame Ø True, Axes Ø True, AxesLabel Ø 8"k1", "k2"<,
AspectRatio Ø 1D, shapes<D, ImageSize Ø 450D;

-0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

k1

k2

k1=-1, k2=-1 k1=0, k2=-1 k1=1, k2=-1

k1=-1, k2=0 k1=0, k2=0 k1=1, k2=0

k1=-1, k2=1 k1=0, k2=1 k1=1, k2=1

Figure 6.28 Left: Coordinate space of the shape index. Horizontal axis: maximal principal
curvature k1 , vertical axis: minimal principal curvature k2 . The angle of the position vector
determines the shape, the length the curvedness. Right: same as middle set of figure 6.22.

Here is the shape index calculated and plotted for every pixel on our familiar MR image at a
scale of s=3 pixels:

im = Import@"mr128.gif"D@@1, 1DD;
shapeindex@im_, s_D :=

2
ÅÅÅÅ
p

 ArcTanAH-gD@im, 2, 0, sD - gD@im, 0, 2, sDL ëI, HgD@im, 2, 0, sD2 + 4 gD@im, 1, 1, sD2 -

2 gD@im, 2, 0, sD gD@im, 0, 2, sD + gD@im, 0, 2, sD2LME;
DisplayTogetherArray@ListDensityPlot@shapeindex@im, #DD & êü Range@5D,
ImageSize Ø 400D;

Figure 6.29 Shape index of the sagittal MR image at s = 1, 2, 3, 4 and 5 pixels.

121 6.8 Second order structure

curvedness@im_, s_D :=,HgD@im, 2, 0, sD2 + 2 gD@im, 1, 1, sD2 + gD@im, 0, 2, sD2L;
DisplayTogetherArray@ListDensityPlot@curvedness@im, #DD & êü Range@4D,
ImageSize Ø 400D;

Figure 6.30 Curvedness of the sagittal MR image at s = 1, 2, 3 and 4 pixels.

6.8.3 Principal directions

The principal curvature directions are given by the Eigenvectors of the Hessian matrix:8vk1, vk2< = Eigenvectors@hessian2DD; 8vk1, vk2< êê shortnotation

99-
-Lxx + Lyy + "##Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2
ÅÅÅ2 Lxy

, 1=,
9 Lxx - Lyy + "##Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2

ÅÅ2 Lxy
, 1==

The Eigenvectors are perpendicular to each other, there inner product is zero:

vk1.vk2 êê Simplify

0

The local principal direction vectors form locally a frame. We inspect how the orientations of
such frames are distributed in an image. We orient the frame in such a way that the largest
Eigenvalue (maximal principal curvature) is one direction, the minimal principal curvature
direction is p/2 rotated clockwise.

plotprincipalcurvatureframes@im_, s_D :=

ModuleA8hessian, frame, frames<,
hessian = J gD@im, 2, 0, sD gD@im, 1, 1, sD

gD@im, 1, 1, sD gD@im, 0, 2, sD N;
frame = 8Green, Arrow@#2 - .5, #2 - .5 + First@#1DD,

Red, Arrow@#2 - .5, #2 - .5 + Last@#1DD< &;
frames = MapIndexed@frame, .5 Map@Eigenvectors,

Transpose@hessian, 84, 3, 2, 1<D, 82<D, 82<D;
plot = ListDensityPlot@gD@im, 0, 0, sD, Epilog Ø framesDE
im = Import@"mr32.gif"D@@1, 1DD;

6. Differential structure of images 122

plotprincipalcurvatureframes@im, 1D;

Figure 6.31 Frames of the normalized principal curvature directions at a scale of 1 pixel.
Image resolution 322 pixels. Green: maximal principal curvature direction; red: minimal
principal curvature direction.

The principal curvatures have been employed by Niessen, ter Haar Romeny and Lopéz in
studies to the 2D and 3D structure of trabecular bone [TerHaarRomeny1996f, Niessen1997b,
Lopéz200a]. The local structure was defined as flat when the two principal curvatures of the
iso-intensity surface in 3D were are both small, as rod-like if one of the curvatures was small
and the other high, giving a local cylindrical shape, and sphere-like if two principal
curvatures were both high. See also Task 19.8.

6.8.4 Gaussian and mean curvature

The Gaussian curvature ! is defined as the product of the two principal curvatures:
! = k1 k2 .

! = k1 k2 êê Simplify êê shortnotation

-Lxy2 + Lxx Lyy

The Gaussian curvature is equal to the determinant of the Hessian matrix:

Det@hessian2DD êê shortnotation

-Lxy2 + Lxx Lyy

The sign of the Gaussian curvature determines if we are in a concave / convex area (positive
Gaussian curvature) or in a saddle-like area (negative Gaussian curvature). This shows
saddle-like areas as dark patches:

123 6.8 Second order structure

im = Import@"mr256.gif"D@@1, 1DD;
s = 5; ! = -gD@im, 1, 1, sD2 + gD@im, 2, 0, sD gD@im, 0, 2, sD;
DisplayTogetherArray@Append@ListDensityPlot êü 8!, Sign@!D<,

ListContourPlot@!, Contours Ø 80<DD, ImageSize Ø 390D;

Figure 6.32 Left: Gaussian curvature ! for a 2562 sagittal MR image at a scale of 5 pixels.
Middle: sign of !. Right: zerocrossings of !.

The locations where the Gaussian curvature is zero, are characterized by the fact that at least
one of the principal curvatures is zero. The collection of locations where the Gaussian
curvature is zero is known as the parabolic lines. It was shown by Koenderink that these
lines play an important role in reflection and shape-from-shading.

The mean curvature is defined as the arithmetic mean of the principal curvatures: " = k1 +k2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 .

The mean curvature is related to the trace of the Hessian matrix:

" =
k1 + k2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
êê Simplify êê shortnotation

1
ÅÅÅÅ2 HLxx + LyyL
Tr@hessian2DD êê shortnotation

Lxx + Lyy

The relation between the mean curvature " and the Gaussian curvature ! is given by
k2 - 2 " k + ! = 0, which has solutions:

" =.; ! =.; Solve@k2 - 2 " k + ! ã 0, kD99k Ø ! -
è!!!!!!!!!!!!!!!2 - " =, 9k Ø ! +

è!!!!!!!!!!!!!!!2 - " ==
The mean curvature " and the Gaussian curvature ! are well defined in umbilical points.

The directional derivative of the principal curvature in the direction of the principal direction
is called the extremality [Monga1995].

Because there are two principal curvatures, there are two extremalities, vk1
”÷÷÷÷÷÷ .“”÷÷ k1 and vk2

”÷÷÷÷÷÷ .“”÷÷ k2 :

<< Calculus`VectorAnalysis`;

6. Differential structure of images 124

e1 = vk1 .Take@Grad@8k1, 0, 0<, Cartesian@x, y, zDD, 2D êê FullSimplify;
e1 êê shortnotation9-

1
ÅÅÅÅÅÅÅÅÅÅÅÅ4 Lxy

ikjjjjjjjikjjjjjjjLxxx + Lxyy +

-4 Lxxy Lxy - HLxxx - LxyyL HLxx - LyyL
ÅÅ"###4 Lxy2 + HLxx - LyyL2

y{zzzzzzzJ-Lxx + "###4 Lxy2 + HLxx - LyyL2 + LyyNy{zzzzzzz,
-

1
ÅÅÅÅÅÅÅÅÅÅÅÅ4 Lxy

ikjjjjjjjJ-Lxx + "###4 Lxy2 + HLxx - LyyL2 + LyyNikjjjjjjjLxxy +

-4 Lxy Lxyy - HLxx - LyyL HLxxy - LyyyL
ÅÅ"###4 Lxy2 + HLxx - LyyL2

+ Lyyy
y{zzzzzzzy{zzzzzzz, 0=

e2 = vk2 .Take@Grad@8k2, 0, 0<, Cartesian@x, y, zDD, 2D êê FullSimplify;
e2 êê shortnotation9-

1
ÅÅÅÅÅÅÅÅÅÅÅÅ4 Lxy

ikjjjjjjjikjjjjjjjLxxx + Lxyy +

4 Lxxy Lxy + HLxxx - LxyyL HLxx - LyyL
ÅÅÅ"###4 Lxy2 + HLxx - LyyL2

y{zzzzzzzJ-Lxx - "###4 Lxy2 + HLxx - LyyL2 + LyyNy{zzzzzzz,
-

1
ÅÅÅÅÅÅÅÅÅÅÅÅ4 Lxy

ikjjjjjjjJ-Lxx - "###4 Lxy2 + HLxx - LyyL2 + LyyNikjjjjjjjLxxy +

4 Lxy Lxyy + HLxx - LyyL HLxxy - LyyyL
ÅÅÅ"###4 Lxy2 + HLxx - LyyL2

+ Lyyy
y{zzzzzzzy{zzzzzzz, 0=

The lines defined by the zerocrossings of each of these two extremalities are called the
extremal lines [Thirion1995a, Thirion1996]. There are 4 types of these lines:
- lines of maximum largest principal curvature (these are called crest lines);
- lines of minimum largest principal curvature;
- lines of maximum smallest principal curvature;
- lines of minimum smallest principal curvature.

The product of the two extremalities is called the Gaussian extremality # = e1 .e2 , a true
local invariant [Thirion1996]. The boundaries of the regions where the Gaussian extremality
changes sign, are the extremal lines.

e1.e2 êê Simplify êê shortnotation

-HLxy2 HLxxx2 + 2 Lxxx Lxyy - 3 HLxxy2 + Lxyy2 LL +

Lxxx Lxyy HLxx - LyyL2 + 2 Lxxx Lxxy Lxy H-Lxx + LyyL +HLxx2 Lxxy - 2 Lxy Lxyy Lyy + 2 Lxx HLxy Lxyy - Lxxy LyyL + Lxxy H2 Lxy2 + Lyy2 LL Lyyy +

Lxy
2 Lyyy

2 L ê HLxx2 + 4 Lxy
2 - 2 Lxx Lyy + Lyy

2 L

125 6.8 Second order structure

DisplayTogetherArray@
ListDensityPlot@Sign@e1.e2 ê. Derivative@nx_, ny_D@LD@x_, y_D Ø

gD@im0, nx, ny, #D ê. im0 Ø imDD & êü 82, 6, 10<, ImageSize Ø 400D;

Figure 6.33 Left: Gaussian extremality # = e1 e2 for a 2562 sagittal MR image at a scale of 2
pixels (left), 6 pixels (middle) and 10 pixels (right).

The mesh that these lines form on an iso-intensity surface in 3D is called the extremal mesh.
It has been applied for 3D image registration, by extracting the lines with a dedicated
'marching lines' algorithm [Thirion1996].

Show@Import@"extremal mesh - Thirion.jpg"D, ImageSize Ø 250D;

Figure 6.34 Extremal mesh on a 3D skull from a 3D CT dataset. The extremal lines are found
with the marching lines algorithm. From [Thirion1993].

6.8.5 Minimal surfaces and zero Gaussian curvature surfaces

Surfaces that have everywhere mean curvature zero, are called minimal surfaces. There are
many beautiful examples of such surfaces (see e.g. the Scientific Grahics Project,
http://www.msri.org/publications/sgp/SGP/indexc.html . Soap bubbles are famous and much
studied examples of minimal surfaces.

From the wonderful interactive book by Alfred Gray [Gray1993] (written in Mathematica)
we plot two members of the family of zero Gaussian curvature manifolds that can be
constructed by a moving straight line through 3D space:

6. Differential structure of images 126

heltocat@t_D@u_, v_D := Cos@tD 8Sinh@vD Sin@uD, -Sinh@vD Cos@uD, u< +
Sin@tD 8Cosh@vD Cos@uD, Cosh@vD Sin@uD, v<;

moebiusstrip@u_, v_D := 8Cos@uD + v Cos@u ê 2D Cos@uD,
Sin@uD + v Cos@u ê 2D Sin@uD, v Sin@uê 2D<;

DisplayTogetherArray@8ParametricPlot3D@
Evaluate@heltocat@0D@u, vDD, 8u, -p, p<, 8v, -p, p<,
PlotPoints -> 30, Axes -> None, BoxRatios -> 81, 1, 1<,
PlotRange -> 88-13, 13<, 8-13, 13<, 8-p, p<<D,

ParametricPlot3D@moebiusstrip@u, vD êê Evaluate,8u, 0, 2 Pi<, 8v, -.3, .3<, PlotPoints -> 830, 4<,
Axes -> NoneD<, ImageSize Ø 390D;

Figure 6.35 Surfaces with zero Gaussian curvature. Left the helicoid, a member of the
heltocat family. Right the Moebius strip. Both surfaces can be constructed by a moving
straight line. From [Gray1993].

Ú Task 6.9 Which surfaces have constant mean curvature? And which surfaces
have constant Gaussian curvature?

Ú Task 6.10 If I walk with my principal coordinate frame over an egg, something
goes wrong when I walk through an umbilical point. What?

6.9 Third order image structure: T-junction detection

An example of third order geometric reasoning in images is the detection of T-junctions
[TerHaarRomeny1991a, TerHaarRomeny1993b]. T-junctions in the intensity landscape of
natural images occur typically at occlusion points. Occlusion points are those points where a
contour ends or emerges because there is another object in front of the contour. See for an
artistic example the famous painting 'the blank cheque' by Magritte.

127 6.8 Second order structure

Show@Import@"blank cheque.jpg"D, ImageSize -> 210D;

Figure 6.36 The painting 'the blank cheque' by the famous Belgian surrealist painter René
Magritte (1898 - 1967). Source: Paleta (www.paletaworld.org).

In this section we develop a third order detector for "T-junction-likeniness". In the figure
below the circles indicate a few particular T-junctions:

blocks = Import@"blocks.gif"D@@1, 1DD;
ListDensityPlot@blocks,
Epilog -> Hcircles = 8Circle@8221, 178<, 13D, Circle@8157, 169<, 13D,

Circle@890, 155<, 13D, Circle@8148, 56<, 13D,
Circle@8194, 77<, 13D, Circle@8253, 84<, 13D<L, ImageSize -> 300D;

Figure 6.37 T-junctions often emerge at occlusion boundaries. The foreground edge is most
likely to be the straight edge of the "T", with the occluded edge at some angle to it. The
circles indicate some T-junctions in the image.

When we zoom in on the T-junction of an observed image and inspect locally the isophote
structure at a T-junction, we see that at a T-junction the derivative of the isophote curvature k
in the direction perpendicular to the isophotes is high. In the figure below the isophote
landscape of a blurred T-junction illustrates the direction of maximum change of k:

6. Differential structure of images 128

When we zoom in on the T-junction of an observed image and inspect locally the isophote
structure at a T-junction, we see that at a T-junction the derivative of the isophote curvature k
in the direction perpendicular to the isophotes is high. In the figure below the isophote
landscape of a blurred T-junction illustrates the direction of maximum change of k:

im = Table@If@y < 64, 0, 1D + If@y < x && y > 63, 2, 1D, 8y, 128<, 8x, 128<D;
DisplayTogetherArray@ListDensityPlot@imD,
ListContourPlot@gD@im, 0, 0, 7D, Contours Ø 15,
PlotRange Ø 8-0.3, 2.8<D, ImageSize -> 280D;

Figure 6.38 The isophote structure (right) of a simple idealized and observed (blurred) T-
junction (left) shows that isophotes strongly bend at T-junctions when we walk through the
intensity landscape.

When we study the curvature of the isophotes in the middle of the image, at the location of
the T-junction, we see the isophote 'sweep' from highly curved to almost straight for
decreasing intensity. So the geometric reasoning is the "the isophote curvature changes a lot
when we traverse the image in the w direction". It seems to make sense to study ∑kÅÅÅÅÅÅÅÅ∑w :

We recall that the isophote curvature k is defined as k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
:

k =
gauge2D@L@x, yD, 2, 0D
ÅÅÅ
gauge2D@L@x, yD, 0, 1D ; k êê Simplify êê shortnotation

-2 Lx Lxy Ly + Lxx Ly2 + Lx2 LyyÅÅÅHLx2 + Ly2L3ê2
The derivative of the isophote curvature in the direction of the gradient, ∑kÅÅÅÅÅÅÅÅ∑w is quite a
complex third order expression. The formula is derived by calculating the directional
derivative of the curvature in the direction of the normalized gradient. We define the gradient
(or nabla: “) operator with a pure function:

grad = 8∑x #, ∑y #< &;

dkdw =
grad@L@x, yDD

ÅÅè!!!
grad@L@x, yDD.grad@L@x, yDD .grad@kD;

dkdw êê Simplify êê shortnotation

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHLx2 + Ly2L3 HLxxy Ly5 + Lx4 H-2 Lxy2 + Lx Lxyy - Lxx LyyL - Ly4 H2 Lxy2 - Lx HLxxx - 2 LxyyL + Lxx LyyL +

Lx
2 Ly

2 H-3 Lxx
2 + 8 Lxy

2 + Lx HLxxx - LxyyL + 4 Lxx Lyy - 3 Lyy
2 L +

Lx3 Ly H6 Lxy HLxx - LyyL + Lx H-2 Lxxy + LyyyLL +

Lx Ly
3 H6 Lxy H-Lxx + LyyL + Lx H-Lxxy + LyyyLLL

129 6.9 Third order image structure: T-junction detection

To avoid singularities at vanishing gradients through the division by HLx
2 + Ly

2 L3
= Lw

6 we
use as our T-junction detector t = ∑kÅÅÅÅÅÅÅÅ∑w Lw

6 :

tjunction = dkdw Hgrad@L@x, yDD.grad@L@x, yDDL3;
tjunction êê shortnotation

Lx5 Lxyy + Ly4 H-2 Lxy2 + Lxxy Ly - Lxx LyyL +

Lx3 Ly H6 Lxx Lxy + Lxxx Ly - Lxyy Ly - 6 Lxy LyyL +

Lx Ly3 H-6 Lxx Lxy + Lxxx Ly - 2 Lxyy Ly + 6 Lxy LyyL -

Lx4 H2 Lxy2 + 2 Lxxy Ly + Lxx Lyy - Ly LyyyL +

Lx2 Ly2 H-3 Lxx2 + 8 Lxy2 - Lxxy Ly + 4 Lxx Lyy - 3 Lyy2 + Ly LyyyL
Finally, we apply the T-junction detector on our blocks at a rather fine scale of s = 2 (we
plot -tjunction to invert the contrast):

s = 2; ListDensityPlot@
tjunction ê. Derivative@nx_, ny_D@LD@x, yD -> gD@im0, nx, ny, sD ê.
im0 -> blocks, Epilog -> circles, ImageSize -> 230D;

Figure 6.39 Detection of T-junctions in the image of the blocks with the detector t = ∑kÅÅÅÅÅÅÅÅ∑w Lw
6 .

The same circles have been drawn as in figure 6.32.

Compare the detected points with the circles in the input image. Note that in medical
tomographic images (CT, MR, PET, SPECT, US) there is no occlusion present. One can
however use third order properties in any geometric reasoning scheme, as the 'change of a
second order property'.

Ú Task 6.11 Investigate if the expression for the T-junction t = ∑kÅÅÅÅÅÅÅÅ∑w Lw
6 is affine

invariant.

Ú Task 6.12 Another definition for a T-junction detector might be the magnitude of

the gradient of the curvature: t = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H ∑kÅÅÅÅÅÅÅÅ
∑w

L2
+ H ∑kÅÅÅÅÅÅÅÅ

∑w
L2

 Lw
6 , or the derivative of the

curvature in the v direction: ∑kÅÅÅÅÅÅÅ
∑v

 Lw
6 . Study and explain the differences.

6. Differential structure of images 130

6.10 Fourth order image structure: junction detection

As a final fourth order example, we give an example for a detection problem in images at
high order of differentiation from algebraic theory. Even at orders of differentiation as high
as 4, invariant features can be constructed and calculated for discrete images through the
biologically inspired scaled derivative operators. Our example is to find in a checkerboard
the crossings where 4 edges meet. We take an algebraic approach, which is taken from
Salden et al. [Salden1999a].

When we study the fourth order local image structure, we consider the fourth order
polynomial terms from the local Taylor expansion:

pol4 = Lxxxx x4 + 4 Lxxxy x3 y + 6 Lxxyy x2 y2 + 4 Lxyyy x y3 + Lyyyy y4;

The main theorem of algebra states that a polynomial is fully described by its roots: e.g.
ax2 + bx + c = Hx - x1 L Hx - x2 L . It was shown more than a century ago by Hilbert
[Hilbert1890] that the 'coincidencesness' of the roots, or how well all roots coincide, is a
particular invariant condition. From algebraic theory it is known that this 'coincidenceness' is
given by the discriminant, defined below (see also [Salden1999a]):

Discriminant@p_, x_D :=

WithA8m = Exponent@p, xD<, CancelA H-1L 1ÅÅÅÅ2 m Hm-1L Resultant@p, ∑x p, xD
ÅÅÅ

Coefficient@p, x, mD EE
The resultant of two polynomials a and b , both with leading coefficient one, is the product of
all the differences ai - b j between roots of the polynomials. The resultant is always a
number or a polynomial. The discriminant of a polynomial is the product of the squares of all
the differences of the roots taken in pairs. We can express our function in two variables8x, y< as a function in a single variable xÅÅÅÅy by the substitution y Ø 1 . Some examples:

Discriminant@Lxx x2 + 2 Lxy x y + Lyy y2, xD ê. 8y Ø 1<
-4 H-Lxy2 + Lxx LyyL

The discriminant of second order image structure is just the determinant of the Hessian
matrix, i.e. the Gaussian curvature. Here is our fourth order discriminant:

Discriminant@pol4, xD ê. 8y Ø 1< êê Simplify

256 H-27 Lxxxy4 Lyyyy2 + Lxxxy3 H-64 Lxyyy3 + 108 Lxxyy Lxyyy LyyyyL -

12 Lxxxx Lxxxy Lxyyy H-9 Lxxyy Lxyyy2 + 15 Lxxyy2 Lyyyy + Lxxxx Lyyyy2L -
6 Lxxxy2 H-6 Lxxyy2 Lxyyy2 + 9 Lxxyy3 Lyyyy +

Lxxxx Lxyyy2 Lyyyy - 9 Lxxxx Lxxyy Lyyyy2L +
Lxxxx H-54 Lxxyy3 Lxyyy2 + 81 Lxxyy4 Lyyyy + 54 Lxxxx Lxxyy Lxyyy2 Lyyyy -

18 Lxxxx Lxxyy2 Lyyyy2 + Lxxxx H-27 Lxyyy4 + Lxxxx Lyyyy3LLL
It looks like an impossibly complicated polynomial in fourth order derivative images, and it
is. Through the use of Gaussian derivative kernels each separate term can easily be
calculated. We replace (with the operator /.) all the partial derivatives into scaled Gaussian
derivatives:

131 6.10 Fourth order image structure: junction detection

It looks like an impossibly complicated polynomial in fourth order derivative images, and it
is. Through the use of Gaussian derivative kernels each separate term can easily be
calculated. We replace (with the operator /.) all the partial derivatives into scaled Gaussian
derivatives:

discr4@im_, s_D := Discriminant@pol4, xD ê.8y Ø 1, Lxxxx Ø gD@im, 4, 0, sD, Lxxxy Ø gD@im, 3, 1, sD,
Lxxyy Ø gD@im, 2, 2, sD, Lxyyy Ø gD@im, 1, 3, sD, Lyyyy Ø gD@im, 0, 4, sD<

Let us apply this high order function on an image of a checkerboard, and we add noise with
twice the maximum image intensity to show its robustness, despite the high order derivatives
(see figure 6.40).

Note that we have a highly symmetric situation here: the four edges that come together at the
checkerboard vertex cut the angle in four. The symmetry can be seen in the complex
expression for discr4: only pure partial derivatives of fourth order occur. For a less
symmetric situation we need a detector which incorporates in its expression also the lower
order partial derivatives. For details see [Salden1999a].

t1 = Table@If@Hx > 50 && y > 50L »» Hx § 50 && y § 50L, 0, 100D + 200* Random@D,8x, 100<, 8y, 100<D;
t2 = Table@If@Hx + y - 100 > 0 && y - x < 0L »» Hx + y - 100 § 0 && y - x ¥ 0L,

0, 100D + 200* Random@D, 8x, 100<, 8y, 100<D;
noisycheck = Transpose@Join@t1, t2DD;
DisplayTogetherArray@ListDensityPlot êü8noisycheck, discr4@noisycheck, 5D<, ImageSize -> 400D;

Figure 6.40 Left: A noisy checkerboard detail at two orientations. Right: the output of the 4th

order discriminant. The detection clearly is rotation invariant, robust to noise, and there is no
detection at corners (e.g. center of the image).

6.11 Scale invariance and natural coordinates

The intensity of images and invariant features at larger scale decreases fast. This is due to the
non-scale-invariant use of the differential operators. For, if we consider the transformation
xÅÅÅÅÅs Ø x̀ , then x̀ is dimensionless. At every scale now distances are measured with a distance

yardstick with is scaled relative to the scale itself. This is the scale-invariance.

The dimensionless coordinate is termed the natural coordinate. This implies that the
derivative operator in natural coordinates has a scaling factor: ∑n

ÅÅÅÅÅÅÅÅÅ∑x̀n Ø sn ∑n
ÅÅÅÅÅÅÅÅÅ∑xn .

Here we generate a scale-space of the intensity gradient. To study the absolute intensities, we
plot every image with the same intensity plotrange of {0,40}:

6. Differential structure of images 132

im = Import@"mr128.gif"D@@1, 1DD; BlockA8$DisplayFunction = Identity<,
p1 = TableAgrad =

, HgD@im, 1, 0, sD2 + gD@im, 0, 1, sD2L;
ListDensityPlot@#, PlotRange -> 80, 40<D & êü 8grad, s grad<
, 8s, 1, 5<EE; Show@GraphicsArray@Transpose@p1DD, ImageSize Ø 450D;

Figure 6.41 The gradient of a 1282 image plotted at 5 scales, for s = 1, 2, 3, 4 and 5 pixels
respectively. All images (in both rows) are plotted at a fixed intensity range {0,40}. Top row
shows the regular gradient, clearly showing the decrease in intensity for larger blurring.
Bottom row: the gradient in natural coordinates (multiplied by s). The intensity dynamic
range is now kept more or less constant.

Clearly the gradient magnitude expressed in the natural coordinates keeps its average output
range. For a Laplacian scale-space stack in natural coordinates we need to multiply the
Laplacian with s2 : ∑2

ÅÅÅÅÅÅÅÅÅ
∑x̀2 + ∑2

ÅÅÅÅÅÅÅÅÅÅ
∑ỳ2 = s2 I ∑2

ÅÅÅÅÅÅÅÅÅ∑x2 + ∑2
ÅÅÅÅÅÅÅÅÅÅ∑y2 M , and so on for higher order derivative

operators in natural coordinates.

Block@8$DisplayFunction = Identity<,
p1 = Table@lapl = gD@im, 2, 0, sD + gD@im, 0, 2, sD;
ListDensityPlot@#, PlotRange -> 8-90, 60<D & êü 8lapl, s2 lapl<
, 8s, 1, 5<DD; Show@GraphicsArray@Transpose@p1DD, ImageSize Ø 450D;

Figure 6.42 The Laplacian of a 1282 image plotted at 5 scales, for s = 1, 2, 3, 4 and 5 pixels
respectively. Top row: Laplacian in regular coordinates. Bottom row: Laplacian in natural
coordinates. Top and bottom rows at fixed intensity range of {-90,60}.

133 6.11 Scale invariance and natural coordinates

6.12 Irreducible invariants

Invariant differential features are independent of changes in specific groups of coordinate
transformations. Note that the transformations of the coordinates are involved as the basic
physical notion, as the particular choice of coordinates is just a mean to describe the world,
the real situation should be independent of this choice. This is often misunderstood, e.g.
when rotation invariance is interpreted as that all results are the same when the image itself is
rotated. Rotation invariance is a local property, and as such a coordinate rotation and an
image rotation are only the same when we consider a single point in the image.

For medical imaging the most important groups are the orthogonal transformations, such as
translations, rotations, mirroring and scaling, and the affine transformations, such as shear.
There are numerous other groups of transformations, but it is beyond the scope of this book
to treat this. The differential invariants are the natural building blocks to express local
differential structure.

It has been shown by Hilbert [Hilbert1893] that any invariant of finite order can be
expressed as a polynomial function of a set of irreducible invariants. This is an important
result. For e.g. scalar images these invariants form the fundamental set of image primitives in
which all local intrinsic properties can be described. In other words: any invariant can be
expressed in a polynomial combination of the irreducible invariants.

Typically, and fortunately, there are only a small number of irreducible invariants for low
order. E.g. for 2D images up to second order there are only 5 of such irreducibles. We have
already encountered one mechanism to find the irreducible set: gauge coordinates. We found
the following set:

Zeroth order L
First order Lw
Second order Lv v , Lv w , Lw w
Third order Lv v v , Lv v w , Lv w w , Lw w w
etc.

Each of these irreducible invariants cannot be expressed in the others. Any invariant property
to some finite order can be expressed as a combination of these irreducibles. E.g. isophote
curvature, a second order local invariant feature, is expressed as: k = -Lv v ê Lw .
Note that the first derivative to v is missing. But Lv ª 0 is just the gauge condition! There is
always that one degree of freedom to rotate the coordinate system in such a way that the
tangential derivative vanishes. This gives a way to estimate the number of irreducible
invariants for a given order: It is equal to the number of partial derivative coefficients in the
local Taylor expansion, minus 1 for the gauge condition. E.g. for the 4th order we have the
partial derivatives Lv v v v , Lv v v w , Lv v w w , Lv w w w , and Lw w w w , so in total we have
1 + 1 + 3 + 4 + 5 = 14 irreducible invariants for the 4th order.
These irreducibles form a basis for the differential invariant structure. The set of 5
irreducible grayvalue invariants in 2D images has been exploited to classify local image
structure by Schmidt et al. [Schmidt1996a, Schmidt1996b] for statistical object recognition.

6. Differential structure of images 134

This assigns the three RGB channels of a color image to the irreducible invariants8L, Lw and Lv v + Lw w< of a scalar grayvalue image for s = 2 pixels:

im = Import@"mr256.gif"D; px = im@@1, 1DD; s = 2;

r = gD@px, 0, 0, sD; g =
"###
gD@px, 1, 0, sD2 + gD@px, 0, 1, sD2 ;

b = gD@px, 2, 0, sD2 + gD@px, 0, 2, sD2;
g = g

255
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Max@gD ; b = b

255
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Max@bD ; imtr = Transpose@8r, g, b<, 83, 1, 2<D;

im@@1, 1DD = imtr; im@@1, 4DD = ColorFunction Ø RGBColor; Show@im, ImageSize -> 150D;

Figure 6.43 RGB color coding with the triplet of differential invariants 8L, Li Li , Li i < .

Intermezzo: Tensor notation

There are many ways to set up an irreducible basis, but it is beyond the scope of this
introductory book to go in detail here. We just give one example of another often used
scheme to generate irreducible invariants: tensor notation (see for details e.g.
[Florack1993a]). Here tensor indices denote partial derivatives and run over the dimensions,
e.g. Li denotes the vector 8Lx , Ly < , Li j denotes the second order matrix (the Hessian)ikjjj Lx x Lx y

Ly x Ly y

y{zzz , etc.

When indices come in pairs, summation over the dimensions is implied (the so-called
Einstein summation convention, or contraction): Li i = ⁄i=x

D Li i = Lx x + Ly y , etc. So we get:

Zeroth order L
First order Li Li (= Lx Lx + Ly Ly , the gradient)
Second order Li i (= Lx x + Ly y , the Laplacian)

Li j Lj i (= Lx x
2 + 2 Lx y + Ly y

2 , the 'deviation from flatness'),
Li Li j Lj (= Lx

2 Lx x + 2 Lx Ly Lx y + Ly
2 Ly y , 'curvature')

etc.

Some statements by famous physicists:
- "Gauge invariance is a classic case of a good idea which was discovered before its time."
(K. Moriyasu, An Elementary Primer for Gauge Theory, World Scientific, 1984).
- "The name 'gauge' comes from the ordinary English word meaning 'measure'. The history
of the use of this name for a class of field theories is very roundabout, and has little to do
with their physical significance as we now understand it." (S. Weinberg, "The Forces of
Nature", Am. Scientist, 65, 1977).
- "As far as I see, all a priori statements in physics have their origin in symmetry." (H. Weyl,
Symmetry, 1952).

135 6.12 Irreducible invariants

Some statements by famous physicists:
- "Gauge invariance is a classic case of a good idea which was discovered before its time."
(K. Moriyasu, An Elementary Primer for Gauge Theory, World Scientific, 1984).
- "The name 'gauge' comes from the ordinary English word meaning 'measure'. The history
of the use of this name for a class of field theories is very roundabout, and has little to do
with their physical significance as we now understand it." (S. Weinberg, "The Forces of
Nature", Am. Scientist, 65, 1977).
- "As far as I see, all a priori statements in physics have their origin in symmetry." (H. Weyl,
Symmetry, 1952).

6.13 Summary of this chapter

Invariant differential feature detectors are special (mostly) polynomial combinations of
image derivatives, which exhibit invariance under some chosen group of transformations.
We only discussed invariance under translations and rotations, the most common groups,
especially for medical images. The derivatives are easily calculated from the image through
the multi-scale Gaussian derivative kernels.

The notion of invariance is crucial for geometric relevance. Non-invariant properties have no
value in general feature detection tasks. A convenient paradigm to calculate features
invariant under Euclidean coordinate transformations is the notion of gauge coordinates. For
first order in 2D they are defined as a local frame with one unit vector w”÷÷ pointing in the
direction of the gradient, the other perpendicular unit vector v” pointing in the direction
tangential to the isophote. Any combination of derivatives with respect to v and w is
invariant under Euclidean transformations. We discussed the second order examples of
isophote and flowline curvature, cornerness and the third order example of T-junction
detection in this framework.

Mathematica offers a particularly attractive framework, in that it combines the analytical
calculation of features under the Euclidean invariance condition with a final replacement of
the analytical derivatives with numerical Gaussian derivatives. In this way even high order
(up to order 4) examples could be discussed and calculated.

6. Differential structure of images 136

