
6. Differential structure of images
"If I had more time, I would have written you a shorter letter", Pascal (1623-1662)

6.1 The differential structure of images

In this chapter we will study the differential structure of discrete images in detail. This is the
structure  described  by  the  local  multi-scale  derivatives  of  the  image.  We  start  with  the
development  of  a  toolkit  for  the  definitions  of  heightlines,  local  coordinate  systems  and
independence of our choice of coordinates. 

<< FrontEndVision`FEV`; Off@General::spellD;
Show@Import@"Spiral CT abdomen.jpg"D, ImageSize -> 170D;

Figure 6.1 An example of a need for segmentation: 3D rendering of a spiral CT acquisition of
the abdomen of a patient with Leriche's syndrome (EuroRAD case #745, authors R. Brillo, A.
Napoli, S. Vagnarelli, M. Vendola, M. Benedetti Valentini, 2000, www.eurorad.org).

We will use the tools of differential  geometry,  a field designed for the structural  description
of space and the lines, curves, surfaces etc. (a collection known as manifolds) that live there. 

We develop strategies  for the generation  of formulas for the detection of particular  features,
that detect  special, semantically circumscribed,  local meaningful  structures (or properties)  in
the  image.  Examples  are  edges,  corners,  T-junctions,  monkey-saddles  and  many  more.  We
develop operational detectors in Mathematica for all features described.

One  can  discriminate  local  and  multi-local  methods  in  image  analysis.  We  specifically
discuss  here  local  methods,  at  a  particular  local  neighborhood  (pixel).  In  later  chapters  we
look  at  multi-local  methods,  and  enter  the  realm  of  how  to  connect  local  features,  both  by
studying  similarity  in  properties  with  neighboring  pixels  ('perceptual  grouping'),  relations
over scale ('deep structure') and relations given by a particular model. We will discuss the use
of the local features developed in this chapter into 'geometric reasoning'.
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is a good corner  detector.  But how do we come to such formula's?  We can make an infinite
number of such expressions. What constraints can/should we impose to come to a reasonably
small set of basis  descriptors?  Is there such a basis? It turns  out there is, and in this chapter
we will derive a formal complete set of such descriptive elements. 

A very important constraint in the development of tools for the description of image structure
is  to  be  independent  of  the  choice  of  coordinates.  We  will  discuss  coordinate
transformations, like translations, rotations, zooming, in order to find a way to detect features
invariant  to  such  coordinate  transformations.  In  fact,  we  will  discuss  three  'languages'  in
which it is easy to develop a general strategy to come up with quite complex image structure
detectors: 

gauge coordinates,  Cartesian tensors,  and algebraic polynomial invariants.  All these methods
have  firm  roots  in  mathematics,  specifically  differential  geometry,  and  form  an  ideal
substrate for the true understanding of image structure.

We denote the function that describes our landscape (the image) with  LHx, yL  throughout this
book, where L  is the physical property measured in the image. Examples of L  are luminance,
T1  or  T2  relaxation  time  (for  MRI  images),  linear  X-ray  absorption  coefficient  (for  CT
images), depth (for range images) etc. In fact, it can be any scalar value. The coordinates x, y
are discrete in our case, and denote the locations of the pixel. If the image is 3-dimensional,
e.g.  a  stack  of  images  from  an  MRI  or  CT  scanner,  we  write  LHx, y, zL .  A  scale-space  of
images,  observed  at  a  range  of  scales  s  is  written  as  LHx, y; sL .  We  write  a  semicolon  as
separator  to  highlight  the  fact  that  s  is  not  just  another  spatial  variable.  If  images  are  a
function of time as well,  we write e.g. LHx, y, z; tL  where t  is the time parameter.  In chapter
17 we will develop scale-space theory for images sampled over time. In chapter 15 we study
the extra dimension of color in images and derive differential features in color-space,  and in
chapter  13  we  derive  methods  for  the  extraction  of  motion,  a  vectorial  property  with  a
magnitude and a direction. We firstly focus on static, spatial images.

6.2 Isophotes and flowlines

Lines  in  the  image  connecting  points  of  equal  intensity  are  called  isophotes.  They  are  the
heightlines of the intensity landscape when we consider the intensity as 'height'.  Isophotes in
2D images are curves, and in 3D surfaces, connecting points with equal luminance.

(Greek:  isos  (isoV)  =  equal,  photos  (fotoV)  =  light):  LHx, yL = constant  or
LHx, y, zL = constant .  This  definition  however  is  for  a  continuous  function.  But  the  scale-
space  paradigm  solves  this:  in  discrete  images  isophotes  exist  because  these  are  observed
images,  and  thus  continuous  (which  means:  infinitely  differentiable,  or  C¶ ).  Lines  of
constant  value  in  2D  are  Contours  in  Mathematica,  which  can  be  plotted  with
ContourPlot. Figure 6.2 illustrates this for a blurred version of a 2D image.
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im = Import@"mr128.gif"D@@1, 1DD;
Block@8$DisplayFunction = Identity, dp, cp<,
dp = ListDensityPlot@gD@im, 0, 0, #DD & êü 81, 2, 3<;
cp = ListContourPlot@gD@im, 0, 0, #D,

ContourStyle Ø List êü Hue êü H.1 Range@10DLD & êü 81, 2, 3<;
pa = MapThread@Show, 8dp, cp<DD; Show@GraphicsArray@paD,
ImageSize -> 400D;

Figure  6.2  Isophotes  of  an  image  at  various  blurring  scales:  from  left  to  right:  s = 1 ,  s = 2
and  s = 3  pixels.  Image  resolution  1282 .  Ten  isophotes  are  plotted  in  each  image,
equidistant  over  the  available  intensity  range.  Each  is  shown  in  a  different  color,
superimposed  over  the  grayvalues.  Notice  that  the  isophotes  get  more  'rounded'  when  we
blur  the  image.  When  we consider  the  intensity  distribution  of  a  2D image as  a  landscape,
where the height is given by the intensity, isophotes are the heightlines.

Isophotes are important elements of an image. In principle, all isophotes together contain the
same  information  as  the  image  itself.  The  famous  and  often  surprisingly  good  working
segmentation  method  by  thresholding  and  separating  the  image  in  pixels  lying  within  or
without the isophote at the threshold luminance is an example of an important application of
isophotes. Isophotes have the following properties:

† isophotes are closed curves. Most (but not all, see below) isophotes in 2D images are a so-
called Jordan curve: a non-self-intersecting planar curve topologically equivalent to a circle;
†  isophotes  can  intersect  themselves.  These  are  the  critical  isophotes.  These  always  go
through a saddlepoint;
† isophotes do not intersect other isophotes;
†  any  planar  curve  is  completely  described  by its  curvature,  and  so  are  isophotes.  We  will
define and derive the expression for isophote curvature in the next section.

†  isophote  shape  is  independent  of  grayscale  transformations,  such as changing  the contrast
or brightness of an image.

A special class of isophotes is formed by those isophotes that go through a singularity  in the
intensity landscape,  thus through a minimum, maximum or saddle point.  At these places the
intensity  landscape  is  horizontal,  the  local  spatial  derivatives  are  all  zero.  Only  at  saddle
points isophotes intersect themselves,  and just above and below this intersection its neighbor
isophotes  have  different  topology:  they have  split  from one curve  into  two, or  merged from
two curves into one. 
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blob@x_, y_, mx_, my_, s_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

 ExpA-
Hx - mxL2 + Hy - myL2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2 s2
E;

blobs@x_, y_D :=
blob@x, y, 10, 10, 4D + .7 blob@x, y, 15, 20, 4D + 0.8 blob@x, y, 22, 8, 4D;

Block@8$DisplayFunction = Identity<, p1 = Plot3D@blobs@x, yD - .00008,8x, 0, 30<, 8y, 0, 30<, PlotPoints Ø 30, Mesh Ø False, Shading -> TrueD;
c = ContourPlot@blobs@x, yD, 8x, 0, 30<, 8y, 0, 30<,
PlotPoints Ø 30, ContourShadingØ FalseD;

c3d = Graphics3D@Graphics@cD@@1DD ê.
Line@pts_D ß Hval = Apply@blobs, First@ptsDD;

Line@Map@Append@#, valD &, ptsDDLDD;
Show@p1, c3d, ViewPoint -> 81.393, 2.502, 1.114<, ImageSize -> 250D;

Figure 6.3 Isophote on a 2D 'landscape' image of 3 Gaussian blobs, depicted as heightlines.
The height is determined by the intensity. The height plot is depicted slightly lower (-0.0002)
in order to show the full extent of the isophotes.

At a minimum or maximum the isophote has shrunk to a point, and going to higher or lower
intensity gives rise to the creation or disappearance  of isophotes. This is best illustrated with
an example  of  an image  where  only  three  Gaussian  'blobs'  are  present  (see  figure  6.3).  The
saddle  points  are  in  between  the  blobs.  Isophotes  through  saddles  and  extrema  are  called
critical isophotes.

We  show  the  dynamic  event  of  a  'split'  and  a  'merge'  of  an  isophote  by  the  behaviour  of  a
two-parameter family of curves, the Cassinian ovals: Hx2 + y2 + a2 L - b2 - 4 a2 x2 = 0 .

Famous  members  of  Cassini  functions  are  the  circle  (cassini[x,y,a=0,b])  and  the
lemniscate of Bernouilli (cassini[x,y,a=b,b]). The limaçon function, a generalization
of  the  cardioid  function,  shows  how  we  can  get  self-intersection  where  the  new  loop  is
formed within the isophote's inner domain. Here are the plots:
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cassini@x_, y_, a_, b_D := Hx2 + y2 + a2L2
- b2 - 4 a2  x2;

DisplayTogetherArray@8
ImplicitPlot@cassini@x, y, #, 4D == 0, 8x, -5, 5<D & êü 81.99, 2., 2.01<,
ParametricPlot@H2 Cos@tD + #L 8 Cos@tD, Sin@tD<, 8t, 0, 2 p<D & êü83, 2., 1<<, ImageSize -> 400D;
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Figure 6.4 Top row: Split and merge of an isophote just under, at and above a saddle point in
the image,  simulated  with  a Cassini  curve.  Bottom row: Self  intersection  with an inner loop,
simulated with the limaçon function. Examples taken from the wonderful book by Alfred Gray
[Gray1993].

Isophotes in  3D are  surfaces.  Here is an example  of the  plotting of 4 isophote  surfaces  of  a
discrete  dataset.  We  use  the  versatile  OpenGL  viewer  MathGL3d  developed  by  Jens-Peer
Kuska: http://phong.informatik.uni-leipzig.de/~kuska/mathgl3dv3/

Get@"MathGL3d`OpenGLViewer`"D; isos = CompileA8<, 103

TableAExpA-
x2
ÅÅÅÅÅÅÅ
18

-
y2
ÅÅÅÅÅÅÅ
8

-
z2
ÅÅÅÅÅÅÅ
18

E , 8z, -10, 10<, 8y, -10, 10<, 8x, -10, 10<EE;
MVListContourPlot3D@isos@D, Contours -> 8.1, 1, 10<, ImageSize -> 150D;

Figure 6.5 Isophotes in 3D are surfaces. Shown are the isophotes connecting all voxels with
the values 0.1, 1, 10 and 100 in the discrete dataset of two neighboring 3D Gaussian blobs.

The calculations with the native command ListContourPlot3D take take much longer.

Flowlines  are  the  lines  everywhere  perpendicular  to  the  isophotes.  E.g.  for  a  Gaussian  blob
the isophotes  are circles,  and the flowlines are radiating lines from the center. Flowlines are
the  integral  curves  of  the  gradient,  made  up  of  all  the  small  little  gradient  vectors  in  each
point integrated to a smooth long curve. In 2D, the flowlines and the isophotes together form
a mesh or grid on the intensity surface. 

Figure 6.6 shows such a grid of the isophotes and flowlines of a 2D Gaussian blob (we have
left out the singularity).
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DisplayTogether@
ShadowPlot3D@-gauss@x, 5D gauss@y, 5D, 8y, -15, 15<, 8x, -15, 15<D,

CartesianMap@Exp, 8 -p, p<, 8 -p, p<D,
ImageSize -> 200, AspectRatio -> 1D;

Figure  6.6  Isophotes  and  flowlines  on  the  slope  of  a  Gaussian  blob.  The  circles  are  the
isophotes,  the  flowlines  are  everywhere  perpendicular  to  them.  Inset:  The  height  and
intensity map of the Gaussian blob.

Just  as  in  principle  all  isophotes  together  completely  describe  the  intensity  surface,  so  does
the  set  of  all  flowlines.  Flowlines  are  the  dual  of  isophotes,  isophotes  are  the  dual  of
flowlines. One set can be calculated from the other. Just as the isophotes have a singularity at
minima and maxima in the image, so have flowlines a singularity in direction in such points. 

6.3 Coordinate systems and transformations

We will now apply the complete  family of well behaving differential operators developed in
the  first  chapter  for  the  detection  of  local  differential  structure  in  images.  The  set  of
derivatives taken at a particular location is a language from which we can make a description
of  a  local  feature.  We  can  make  assemblies  of  the  derivatives  to  any  order,  in  any
combination. Local structure is the local shape of the intensity landscape, like how sloped or
curved  it  is,  if  there  are  saddlepoints,  etc.  The  first  order  derivative  gives  us  the  slope,  the
second order is related to how curved the landscape is, etc.

In  mathematical  terms  the  image  derivatives  show  up  in  the  so-called  Taylor  expansion  of
our image function.

The Taylor  expansion describes the function 'a little  further up': If we move a little  distanceHdx, dyL  away  from  the  pixel  where  we  stand,  the  Taylor  expansion  -or  Taylor  series-  is
given by (we take the expansion in the origin H0, 0L  for notational convenience):

LHd x, d yL = LH0, 0L + I ∑LÅÅÅÅÅÅÅ∑x  d x + ∑LÅÅÅÅÅÅÅ∑y  d yM + 1ÅÅÅÅÅÅ2!  I ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2  d x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y  d x d y + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2  d y2 M +

1ÅÅÅÅÅÅ3!  I ∑3 LÅÅÅÅÅÅÅÅÅÅ∑x3  d x3 + ∑3 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x2  ∑y  d x2 d y + ∑3 LÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y2  d x d y2 + ∑3 LÅÅÅÅÅÅÅÅÅÅ∑y3  d y3 M + OHd x4 , d y4 L
We see al  the  partial  derivatives  appearing.  The spatial  derivatives  are  taken  at  the  location
(0,0),  e.g.  ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 …H0,0L .  The  first-order,  second-order  and  third-order  terms  are  grouped  in
brackets.  Such groups  of all  terms of a specific  order together  are called 'binary forms'.  The
list goes to infinity,  so we have to cut-off somewhere.  The above series is an approximation
to  the  third  order,  and  the  final  expression  OHd x4, d y4L  indicates  that  there  is  more,  a  rest
term of order 4 and higher in d x  and d y . Mathematica has the command Series to make a
Taylor  expansion.  Here  is  the  Taylor  series  for  LHx, yL  for  d x  to  second  order  and  then
expanded to second order by d y  :
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Series@L@dx, dyD, 8dx, 0, 2<, 8dy, 0, 2<DJL@0, 0D + LH0,1L @0, 0D dy +
1
ÅÅÅÅ2 LH0,2L @0, 0D dy2 + O@dyD3N +JLH1,0L @0, 0D + LH1,1L @0, 0D dy +

1
ÅÅÅÅ2 LH1,2L @0, 0D dy2 + O@dyD3N dx +J 1

ÅÅÅÅ2 LH2,0L @0, 0D +
1
ÅÅÅÅ2 LH2,1L @0, 0D dy +

1
ÅÅÅÅ4 LH2,2L @0, 0D dy2 + O@dyD3N dx2 + O@dxD3

This expansion says essentially that we get a good approximation of the intensity landscape a
little bit (dx, dy) further away from the origin H0, 0L , when we first climb up over dx and dy
with a slope given by the  first  derivative,  the tangent.  Then we come close,  but  not exactly.
We  can  come  somewhat  better  approximated  when  we  include  also  the  second  order
derivative,  indicating  how  curved  locally  our  landscape  is.  Etc.  Taking  into  account  more
and  more  higher  order  terms  gives  us  a  better  approximation  and  finally  with  the  infinite
series we have an exact description. 
Our most important constraint for a good local image descriptor comes from the requirement
that we want to be independent of our choice of coordinates.  The coordinate system used the
most  is  the  Cartesian  coordinate  system  (invented  by and  named  after  Descartes,  a  brilliant
French  mathematician  from  the  18th  century):  this  is  our  familiar  orthogonal  Hx, yL  orHx, y, zL  coordinate system. 

But it should not matter if we describe our local image structure in another coordinate system
like  a  polar,  cylindrical  or  rotated  or  translated  version  of  our  Cartesian  coordinate  system.
Because the Cartesian  system is the easiest  to understand, we will deal only with changes in
this  coordinate  system.  The  frame  of  the  coordinate  system  is  formed  by  the  unit  vectors
pointing in the respective dimensions. What changes could occur to a coordinate system? Of
course any modification  is possible.  We will  focus on the  change of orientation  (rotation of
the axes frame), translation (x  and/or y  shift of the axes frame), and zoom (multiplication of
the length of the units along the axes with some factor). 

The  shear  transformation  (where  the  axes  are  no  longer  orthogonal)  will  not  be  discussed
here; we limit ourselves to changes of the coordinates where they remain orthogonal. 
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DisplayTogetherArray@
Show@Graphics@8Arrow@80, 0<, #D & êü 881, 0<, 80, 1<<,

Red, PointSize@.04D, Point@8.4, .6<D<D,
Frame -> True, Axes -> True, AspectRatio -> 1D,
Show@Graphics3D@8arrow3D@80, 0, 0<, #, TrueD & êü 881, 0, 0<, 80, 1, 0<,80, 0, 1<<, Red, PointSize@.04D, Point@8.4, .6, .7<D<D,
Boxed -> True, BoxRatios -> 81, 1, 1<, Axes -> TrueD, ImageSize -> 250D;
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Figure 6.7 Use of graphics  primitives in Mathematica:  the coordinate  unit  vectors in 2D and
3D.

We call  all  the  possible   instantiations  of  a  transformation  the  transformation  group.  So all
rotations form the rotational group, the group of translations is formed by all translations. We
now consider the transformation of the frame vectors. 

Mathematically,  the  operation  of  a  transformation  is  described  by  a  matrix,  the
transformation  matrix.  E.g.  rotation of a vector over an angle f  is  described by the rotation
matrix in 2D:

RotationMatrix2D@fD êê MatrixFormJ Cos@fD Sin@fD
-Sin@fD Cos@fD N

The  angle  f  is  defined  as  clockwise  for  the  positive  direction.  In  3D  it  gets  a  little  more
complicated, as we have three  angles to rotate over (these are called the 'Euler' angles):

RotationMatrix3D@y, q, fD88Cos@fD Cos@yD - Cos@qD Sin@fD Sin@yD,
Cos@qD Cos@yD Sin@fD + Cos@fD Sin@yD, Sin@qD Sin@fD<,8-Cos@yD Sin@fD - Cos@qD Cos@fD Sin@yD,
Cos@qD Cos@fD Cos@yD - Sin@fD Sin@yD, Cos@fD Sin@qD<,8Sin@qD Sin@yD, -Cos@yD Sin@qD, Cos@qD<<

In general a transformation is described by a set of equations:
x '1 = f1 Hx1 , x2 , … , xn L
 ª
x 'n = fn Hx1 , x2 , … , xn L
When we transform a space, the volume often changes, and the density of the material inside
is  distributed  over  a  different  volume.  To  study  the  change  of  a  small  volume  we  need  to
consider ∑ x”÷ 'ÅÅÅÅÅÅÅÅÅ

∑ x”÷ , which is the matrix of first order partial derivatives. 

We have

J = ∑ x”÷ 'ÅÅÅÅÅÅÅÅÅ
∑ x”÷ =

i
k
jjjjjjjjjjjjj

∑Hx'L1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x1
∫ ∑Hx'L1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑xn

ª ∏ ª
∑Hx'LnÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x1

∫ ∑Hx'LnÅÅÅÅÅÅÅÅÅÅÅÅÅÅ∑xn

y
{
zzzzzzzzzzzzz .  This  matrix is  called  the  Jacobian  matrix,  named after  Carl

Jacobi  (1804-1851),  a  Prussian  mathematician.  The  Jacobian  can  be  computed  in
Mathematica with
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zzzzzzzzzzzzz .  This  matrix is  called  the  Jacobian  matrix,  named after  Carl

Jacobi  (1804-1851),  a  Prussian  mathematician.  The  Jacobian  can  be  computed  in
Mathematica with

jacobianmatrix@functions_List, variables_ListD :=
Outer@D, functions, variablesD

If  we  consider  the  change  of  the  infinitesimally  small  volume
d x '1 d x '2  … d x 'n = … ∑ x”÷ 'ÅÅÅÅÅÅÅÅÅ

∑ x”÷ … d x1 d x2  … d xn  we  see  that  the  determinant  of  the  Jacobian
matrix (also called the Jacobian) is the factor which corrects for the change in volume. When
the Jacobian is unity, we call the transformation a special transformation.
The transformation  in  matrix  notation  is  expressed  as x” ' = A x” ,  where  x”÷ '  is  the  transformed

vector,  x”÷  is  the  input  vector,  and  A =
ikjjjjjjj a11 ∫ a1 n

ª ∏ ª
an 1 ∫ an n

y{zzzzzzz  is  the  transformation  matrix.  When

the  coefficients  of  A  are  constant,  we  have  a  linear  transformation,  often  called  an  affine
transformation. In Mathematica (note the dot product between the matrix and the vector):

Clear@x, yD; A = J a11 a12
a21 a22

N; x” = 8x1, x2<;
x”' =

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Det@jacobianmatrix@A.x”, x”DD  A.x”

9 a11 x1 + a12 x2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-a12 a21 + a11 a22

, a21 x1 + a22 x2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
-a12 a21 + a11 a22

=
Ú Task  6.1  Show  that  the  Jacobian  of  the  transformation  matrices

RotationMatrix2D[f] and  RotationMatrix3D[f,q,y] are unity.

A rotation matrix that rotates over zero degrees is the identity matrix or the symmetric tensor
or d -operator:

d = RotationMatrix2D@0D; d êê MatrixFormJ 1 0
0 1

N
and  the  matrix  that  rotates  over  90 degrees  (p/2  radians)  is  called  the  antisymmetric  tensor,
the e-operator or the Levi-Civita tensor:

e = RotationMatrix2D@p ê 2D; e êê MatrixFormJ 0 1
-1 0

N
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Let us study an example of a rotation: a unit vector under 450  is rotated over 1100  clockwise:

v” = 9 è!!!!
2

ÅÅÅÅÅÅÅÅÅÅ
2

,
è!!!!
2

ÅÅÅÅÅÅÅÅÅÅ
2

=; v”' = RotationMatrix2DA110 
2 p

ÅÅÅÅÅÅÅÅÅÅ
360

E.v” êê N80.422618, -0.906308<
Show@Graphics@8Arrow@80, 0<, #D & êü 8v”, v”'<, Text@"v”", 8.8, .8<D,

Text@"v”'", 8.55, -.8<D<D, PlotRange -> 88-1, 1<, 8-1, 1<<,
Frame -> True, Axes -> True, AspectRatio -> 1, ImageSize -> 100D;

-0.75-0.5-0.250 0.250.50.751

-0.75
-0.5

-0.25
0

0.25
0.5

0.75
1

v”÷

v”÷ '

Figure 6.8 The vector v”÷ '  is rotated by the action of the rotation matrix operator on the vector
v”÷ .

What we want is invariance under the transformations of translation and rotation. A function
is said to be invariant under a group of transformations, if the transformation has no effect on
the  value  of  the  function.  The  only  geometrical  entities  that  make  physically  sense  are
invariants.  In  the  words  of  Hermann  Weyl:  "any  invariant  has  a  specific  meaning",  and  as
such they are widely studied in computer vision theories.

An  example:  The  derivative  to  x  is  not  invariant  to  rotation;  if  we  rotate  the  coordinate
system,  or  the  image,  we  get  in  general  a  completely  different  value  for  the  value  of  the
derivative  at  that  point.  The  same  applies  to  the  derivative  to  y .  However,  the  combination$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H ∑LÅÅÅÅÅÅÅ∑x L2

+ I ∑LÅÅÅÅÅÅÅ∑y M2  is  invariant,  as  can  be  seen  from  the  following:  We  denote  derivatives

with a lower index: Lx ª ∑LÅÅÅÅÅÅÅ∑x . The length of the gradient vector HLx, Ly L  is the scalarè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!8Lx, Ly<.8Lx, Ly<è!!!!!!!!!!!!!!!!!!!!Lx2 + Ly2

We used here again the Dot (.) product of vectors. When we now rotate each vector HLx, Ly L
with the rotation matrix over an arbitrary angle f , we get,HHRotationMatrix2D@fD.8Lx, Ly<L.HRotationMatrix2D@fD.8Lx, Ly<LL"######################################################################################################################HLy Cos@fD - Lx Sin@fDL2 + HLx Cos@fD + Ly Sin@fDL2

Simplify@%Dè!!!!!!!!!!!!!!!!!!!!Lx2 + Ly2

Invariance proved for this case. Invariants are so important, that the lower-order ones have a

name. E.g. the scalar $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H ∑LÅÅÅÅÅÅÅ∑x L2
+ I ∑LÅÅÅÅÅÅÅ∑y M2  is called the gradient magnitude, the vector operator

“
”÷÷

ª 9 ∑ÅÅÅÅÅÅÅ∑x , ∑ÅÅÅÅÅÅÅ∑y =  is called the nabla operator. So “”÷÷ L is the gradient of L . “”÷÷ .I“
”÷÷ LM = ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2

is called the Laplacian.  Note that the gradient of the gradient “”÷÷ I“
”÷÷ LM =

ikjjjjjjj ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2
∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y

∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y
∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2

y{zzzzzzz  is the

matrix of second order derivatives, or the Hessian matrix (this is not an invariant).
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Invariance proved for this case. Invariants are so important, that the lower-order ones have a

name. E.g. the scalar $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H ∑LÅÅÅÅÅÅÅ∑x L2
+ I ∑LÅÅÅÅÅÅÅ∑y M2  is called the gradient magnitude, the vector operator

“
”÷÷

ª 9 ∑ÅÅÅÅÅÅÅ∑x , ∑ÅÅÅÅÅÅÅ∑y =  is called the nabla operator. So “”÷÷ L is the gradient of L . “”÷÷ .I“
”÷÷ LM = ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2 + ∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2

is called the Laplacian.  Note that the gradient of the gradient “”÷÷ I“
”÷÷ LM =

ikjjjjjjj ∑2 LÅÅÅÅÅÅÅÅÅÅ∑x2
∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y

∑2 LÅÅÅÅÅÅÅÅÅÅÅÅÅ∑x ∑y
∑2 LÅÅÅÅÅÅÅÅÅÅ∑y2

y{zzzzzzz  is the

matrix of second order derivatives, or the Hessian matrix (this is not an invariant).

Ú Task 6.2 Show that the Laplacian is an invariant under rotation, in 2D and 3D.

In  the  sequel,  we  will  only  consider  orthonormal  transformations.  These  are  also  called
Euclidean  transformations.  Orthonormal  transformations  are  special  orthogonal
transformations (the Jacobian is unity). With orthogonal transformations  the orthogonality of
the  coordinate  frame  is  preserved.  An  orthonormal  transformation  preserves  lengths  of
vectors  and  angles  between  vectors,  i.e.  it  preserves  a  symmetric  inner  product  < x”÷ , y” > .
When T  is the orthogonal transformation, this means that < x”÷ , y” >= < T  x”÷ , T  y” > .

The  transformation  matrix  of  an  orthogonal  transformation  is  an  orthogonal  matrix.  They
have the nice property that they are always invertible, as the inverse of an orthogonal matrix
is equal to its transpose: A-1 = AT . A matrix m can be tested to see if it is orthogonal using 

OrthogonalQ@m_List?MatrixQD :=HTranspose@mD.m == IdentityMatrix@Length@mDDL;
Of  course,  there  are  many  groups  of  transformations  that  can  be  considered,  such  as
projective transformations (projecting a 3D world onto a 2D surface). In biomedical imaging
mostly orthogonal transformations are encountered, and on those which will be the emphasis
of the rest of this chapter.

Notice  that  with  invariance  we  mean  invariance  for  the  transformation  (e.g.  rotation)  of  the
coordinate  system,  not  of  the  image.  The  value  of  the  local  invariant  properties  is  also  the
same  when  we  rotate  the  image.  There  is  however  an  important  difference  between  image
rotation,  and  coordinate  rotation.  We  specifically  mean  here  the  local  independence  of
rotation,  for  that  particular  point.  See  also  figure  6.9.  If  we  study  the  rotation  of  the  whole
image, we apply the same rotation to every pixel. 

Here,  we want in every  point  a description which is independent  to the rotation of the local
coordinates,  so  we  may  as well  rotate  our  coordinates  in  every  pixel  differently.  Invariance
for rotation in this way means something different than a rotation of the image. There would
be no way otherwise to recognize rotated images from non-rotated ones! 
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Show@Import@"Thatcher illusion.jpg"D, ImageSize -> 330D;

Figure  6.9  The  "Thatcher  illusion",  created  by  P.  Thompson  [Thompson1980],  shows  that
local  rotations  of  image  patches  are  radically  different  from  the  local  coordinate  rotation
invariance,  and  that  we  are  not  used  to  (i.e.  have  no  associative  set  in  our  memory)  for
sights that we seldomly see: faces upside down. Rotate the images 180 degrees to see the
effect.

In  particular,  we  will  see  that  specific  scalar  combinations  of  local  derivatives  give
descriptions of local image structure invariant under a Euclidean transformation.

6.4 Directional derivatives

The  directed  first  order  nabla  operator  is  given  in  2D  by  v” .“”÷÷ ,  where  v”  is  a  unit  vector
pointing  in  the  specific  direction.  v” .“”÷÷  is  called  the  directional  derivative.  Let  us  consider
some  examples.  We  calculate  the  directional  derivative  for  v” = 9-

è!!!2 , -
è!!!2 =  and

v” = 9è!!!3 ë 2, 1 ê 2= :

im = Import@"mip147.gif"D@@1, 1DD;
northeast@im_, s_D := 9-

è!!!!
2 , -

è!!!!
2 =.8gD@im, 1, 0, sD, gD@im, 0, 1, sD<;

southsouthwest@im_, s_D :=9è!!!!
3 ë 2, 1 ê 2=.8gD@im, 1, 0, sD, gD@im, 0, 1, sD<;

DisplayTogetherArray@ListDensityPlot êü8im, northeast@im, 1D, southsouthwest@im, 1D<, ImageSize -> 300D;

Figure  6.10  Directional  derivatives.  Image  from  the  Eurorad  database  (www.eurorad.org),
case 147.
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6.5 First order gauge coordinates

We introduce the notion of intrinsic geometry: we like to have every point described in such
a way,  that if we have the same structure, or local landscape form, no matter the rotation, the
description  is  always  the  same.  This  can  be  accomplished  by  setting  up  in  each  point  a
dedicated  coordinate  frame  which  is  determined  by  some  special  local  directions  given  by
the landscape locally itself. 

Consider yourself an ant on a surface, you can only see the direct vicinity, so the world looks
locally very simple. We now fix in each point separately   our local coordinate frame in such
a way that  one  frame vector  points  to  the  direction of maximal  change  of the intensity,  and
the  other  perpendicular  to  it  (90  degrees  clockwise).  The  direction  of  maximal  change  of
intensity  is  just  the  gradient  vector  w”÷÷ = I ∑LÅÅÅÅÅÅÅ∑x , ∑LÅÅÅÅÅÅÅ∑y M .  The  perpendicular  direction  is

v” = J 0 1
-1 0 N . w”÷÷ = I ∑LÅÅÅÅÅÅÅ∑y , - ∑LÅÅÅÅÅÅÅ∑x M .  We  can  check:  if  we  are  on  a  slope  going  up  in  the  y-

direction only (the 'Southern'  slope of a hill), we have as gradient  90, ∑LÅÅÅÅÅÅÅ∑y = , because in the x-
direction the slope is horizontal.

ContourPlotAx2 + y2, 8y, 2, 4.5<,8x, 2, 4.5<, Contours Ø Range@2, 100, 4D, Epilog ->9PointSize@.02D, Point@83, 3<D, ArrowA83, 3<, 93 + .5 
è!!!!
2 , 3 - .5 

è!!!!
2 =E,

ArrowA83, 3<, 93 + .5 
è!!!!
2 , 3 + .5 

è!!!!
2 =E, Text@"v̀", 83.8, 2.2<D,

Text@"ẁ", 83.8, 3.8<D=, Frame Ø False, ImageSize Ø 100E;
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ẁ

Figure  6.11  Local  first  order  gauge  coordinates  8v̀ , ẁ < .  The  unit  vector  v̀  is  everywhere
tangential  to  the  isophote  (line  of  constant  intensity),  the  unit  vector  ẁ  is  everywhere
perpendicular to the isophote and points in the direction of the gradient vector.

We have now fixed  locally  the  direction for our new intrinsic local  coordinate  frame Hv”, w”÷÷ L .
This set of local directions is called a gauge, the new frame forms the gauge coordinates and
fixing the  frame vectors  with respect  to the  constant  direction w”÷÷  is  called:  fixing the  gauge.
Because we discuss first order derivatives here, we call this a first order gauge. We can also
derive  a  second  order  gauge  from  second  order  local  differential  structure,  as  we  will  see
later.

We want to take derivatives with respect to the gauge coordinates. 

As they are fixed to the  object,  no matter  any rotation or translation,  we have  the following
very useful result: 
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any derivative expressed in gauge coordinates is an orthogonal invariant. E.g. it is clear that
∑LÅÅÅÅÅÅÅÅ∑w  is the derivative in the gradient direction, and this is just the gradient itself, an invariant.

And  ∑LÅÅÅÅÅÅÅ∑v ª 0,  as  there  is  no  change  in  the  luminance  as  we  move  tangentially  along  the
isophote, and we have chosen this direction by definition.

From  the  derivatives  with  respect  to  the  gauge  coordinates,  we  always  need  to  go  to
Cartesian  coordinates  in  order  to  calculate  the  invariant  properties  on  a  computer.  The
transformation  from the Hv̀, ẁL  from to the  Cartesian   Hx̀, ỳL  frame is  done  by implementing
the  definition  of  the  directional  derivatives.  Important  is  that  first  a  directional  partial
derivative  (to  whatever  order)  is  calculated  with  respect  to  a  frozen  gradient  direction.  We
call  this  direction  HLx, LyL .  Then  the  formula  is  calculated  which  expresses  the  gauge
derivative  into this direction,  and finally the  frozen direction is filled in from the calculated
gradient.

In Mathematica: The frame vectors ẁ  and v̀  are defined as

ẁ =
8Lx, Ly<

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!
Lx2 + Ly2

; v̀ = J 0 1
-1 0 N.ẁ;

The directional differential operators v̀ . “
”÷÷

= I ∑ÅÅÅÅÅÅÅ∑x , ∑ÅÅÅÅÅÅÅ∑y M  and v̀ . “
”÷÷

= I ∑ÅÅÅÅÅÅÅ∑x , ∑ÅÅÅÅÅÅÅ∑y M  are defined as:

v̀.8∑x #, ∑y #< &;
v̀.8∑x #, ∑y #< &;

The notation  (...#)&  is  a  'pure  function'  on  the  argument  #,  e.g.  H#2 + #5L &  gives  the
sum of second  and  fifth  power  of some  argument  #,  D[#,x]&  (or  equivalently  H∑x #L &)
takes  the  derivative  of  the  variable  #  with  respect  to  x  (look  in  the  Help  browser  to
Function  for  more  examples).  So  the  construct  of  a  pure  function  is  the  construct  for  an
operator.  This pure  function can be applied  to an argument  by the  familiar  square  brackets,
e.g. H#2 + #5L &@zzD

zz2 + zz5

Higher  order  derivatives  are  constructed  through  nesting  multiple  first  order  derivatives,  as
many as needed. The total transformation routine is now:

Clear@f, L, Lx, LyD; Unprotect@gauge2DD;
gauge2D@f_, nv_ ê; nv ¥ 0, nw_ ê; nw ¥ 0D :=
Module@8Lx, Ly, v, w<, w = 8Lx, Ly< ê Sqrt@Lx^2 + Ly^2D;
v = 880, 1<, 8-1, 0<<.w;
Simplify@
Nest@Hv.8D@#1, xD, D@#1, yD< &L, Nest@Hw.8D@#1, xD, D@#1, yD< &L,

f, nwD, nvD ê. 8Lx Ø D@f, xD, Ly Ø D@f, yD<DD;
where  f  is  a  symbolic  function  of  x  and  y ,  and  nw  and  nv  are  the  orders  of  differentiation
with respect to w  resp v . Here is an example of its output: the gradient ∑LÅÅÅÅÅÅÅÅ∑w :
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Lw = gauge2D@L@x, yD, 0, 1D"###############################################################LH0,1L @x, yD2 + LH1,0L @x, yD2

Using pattern matching with the function shortnotation we get more readable output:

Lw = gauge2D@L@x, yD, 0, 1D êê shortnotation"###############Lx2 + Ly2

Lww = gauge2D@L@x, yD, 0, 2D êê shortnotation

Lx2 Lxx + 2 Lx Lxy Ly + Ly2 LyyÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅLx2 + Ly2

Lv = gauge2D@L@x, yD, 1, 0D êê shortnotation

0

As  expected,  because  it  is  exactly  what  we  put  into  the  definition  of  ∑LÅÅÅÅÅÅÅ∑v :  it  is  the
differentiation in the direction perpendicular  to the gradient, so along the tangential direction
of the isophote, and in this direction there is no change of the intensity function. But

Lvv = gauge2D@L@x, yD, 2, 0D êê shortnotation

-2 Lx Lxy Ly + Lxx Ly2 + Lx2 LyyÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅLx2 + Ly2

is  not  zero,  because  it  is  constructed  by  first  applying  the  directional  derivative  twice,  and
then fixing the gauge.

This calculates the Laplacian in gauge coordinates, Lv v + Lw w  (what do you expect?):

gauge2D@L@x, yD, 0, 2D + gauge2D@L@x, yD, 2, 0D êê shortnotation

Lxx + Lyy

Ú Task  6.3  Show  and  explain  that  in  the  definition  of  the  function  gauge2D  we
cannot  define w = 8∑x L, ∑y L<.  We need to have the direction of the gauge fixed
while computing the compound formula. Why?

The next  figure  shows  the  8v̀, ẁ<  gauge  frame  in  every  pixel  of  a  simple  322  image  with  3
blobs:
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blob@x_, y_, mx_, my_, s_D :=
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 p s2

 ExpA-
Hx - mxL2 + Hy - myL2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 s2

E;
blobs@x_, y_D :=
blob@x, y, 10, 10, 4D + .7 blob@x, y, 15, 20, 4D + 0.8 blob@x, y, 22, 8, 4D;

im = Table@blobs@x, yD, 8y, 30<, 8x, 30<D;
Block@8$DisplayFunction = Identity, gradient, norm, s, frame<,
norm = H#ê Sqrt@#.#DL &;

s = 1; gradient = Map@norm,
Transpose@8gD@im, 1, 0, sD, gD@im, 0, 1, sD<, 83, 2, 1<D, 82<D;

frame = Graphics@8White, Arrow@#2 - .5, #2 - .5 + #1D, Red,
Arrow@#2 - .5, #2 - .5 + 8#1@@2DD, -#1@@1DD<D<D &;

ar = MapIndexed@frame, gradientê 2, 82<D;
lp = ListDensityPlot@gD@im, 0, 0, sDDD;

Show@8lp, ar<, Frame -> True, ImageSize -> 410D;
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Figure 6.12 The gauge frame 8w, v<  given for every  pixel  in a  302  image of  three Gaussian
blobs. The gradient direction w , calculated at a scale of s=1  pixel, is indicated in white, and
points  always  to  higher  intensity.  They  are  (defined  as)  everywhere  perpendicular  to  the
isophotes and tangential to the flowlines. These vectors always point to extrema and saddle
points.  The  v  frame  vector  (in  red)  is  p/2  radians  rotated  clockwise,  they  encircle  the
extrema, (defined as) tangential to the isophotes. (The boundary effects, most notably on the
right, are due to the cyclic interpretation of the gradient calculation, which causes the image
to be interpreted as infinitely repeated in all directions: the gradient direction changes over p,
no artefact, but now well understood).

The  gauge  coordinates  are  not  defined  at  'horizontal  points'  in  the  intensity  landscape,  i.e.
locations  where  "####################Lx

2 + Ly
2 = 0,  as  is  clear  from  the  definition  of  the  gauge  coordinates.

This  occurs  in  saddle  points  and  extrema  (minima  and  maxima)  of  the  intensity  landscape,
where  both  Lx = 0  and  Ly = 0.  In  practice  however  this  is  not  a  problem:  we  have  a  finite
number of such points, typically just a few, and we know from Morse theory that we can get
rid of such a singularity by an infinitesimally small local change in the intensity landscape. 
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The  gauge  coordinates  are  not  defined  at  'horizontal  points'  in  the  intensity  landscape,  i.e.
locations  where  "####################Lx

2 + Ly
2 = 0,  as  is  clear  from  the  definition  of  the  gauge  coordinates.

This  occurs  in  saddle  points  and  extrema  (minima  and  maxima)  of  the  intensity  landscape,
where  both  Lx = 0  and  Ly = 0.  In  practice  however  this  is  not  a  problem:  we  have  a  finite
number of such points, typically just a few, and we know from Morse theory that we can get
rid of such a singularity by an infinitesimally small local change in the intensity landscape. 

Due to  the  fixing of  the  gauge by removing  the  degree  of freedom  for rotation  (that  is why
Lv ª 0), we have an important result: every derivative to v and w is an orthogonal invariant.

In other words:  it is an invariant property where translation and/or rotation of the coordinate
frame is irrelevant.  This  also means  that  polynomial  combinations  of these gauge derivative
terms  are  invariant.  We  now  have  the  toolkit  to  make  invariants  expressed  in  gauge
derivatives to any order.

Here are a few other differential invariants of the image, which are now easily constructed:

gauge2D@L@x, yD, 4, 0D êê shortnotation

-4 Lx3 Lxyyy Ly + 6 Lx2 Lxxyy Ly2 - 4 Lx Lxxxy Ly3 + Lxxxx Ly4 + Lx4 LyyyyÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHLx2 + Ly2L2

gauge2D@L@x, yD, 2, 1D êê shortnotation

Lx3 Lxyy + Lx HLxxx - 2 LxyyL Ly2 + Lxxy Ly3 + Lx2 Ly H-2 Lxxy + LyyyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHLx2 + Ly2L3ê2

In conclusion of this section, we have found a complete family of differential invariants,  that
are invariant for rotation and translation of the coordinate frame. They are called differential
invariants,  because they consist of polynomials with as coefficients partial derivatives of the
image.  In  the  next  section  we  discuss  some  important  members  of  this  family.  Only  the
lowest order invariants have a name, the higher orders become more and more exotic.

The final step is the operational implementation of the gauge derivative operators for discrete
images. This is simply done by applying pattern matching: 
- first calculate the symbolic expression
-  then  replace  any  derivative  with  respect  to  x  and  y  by  the  numerical  derivative
gD[im,nx ,ny ,s] 
- and then insert the pixeldata in the resulting polynomial function;
as follows:

Unprotect@gauge2DND;
gauge2DN@im_, nv_, nw_, s_ ê; s > 0D :=
Module@8im0<, gauge2D@L@x, yD, nv, nwD ê.

Derivative@nx_, ny_D@L_D@x_, y_D Ø gD@im0, nx, ny, sD ê. im0 Ø imD;
This  writes  our  numerical  code  automatically.  Here  is  the  implementation  for  Lv v .  If  the
image is not defined, we get the formula returned:
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Clear@im, sD; gauge2DN@im, 2, 0, 2DHgD@im, 0, 2, 2D gD@im, 1, 0, 2D2 -
2 gD@im, 0, 1, 2D gD@im, 1, 0, 2D gD@im, 1, 1, 2D +

gD@im, 0, 1, 2D2 gD@im, 2, 0, 2DL ê HgD@im, 0, 1, 2D2 + gD@im, 1, 0, 2D2L
If the image is available, the invariant property is calculated in each pixel:

im = Import@"thorax02.gif"D@@1, 1DD;
DisplayTogetherArray@
ListDensityPlot êü 8im, -gauge2DN@im, 0, 1, 1D, -gauge2DN@im, 2, 0, 4D<,
ImageSize -> 400D;

Figure 6.13 The gradient Lw  (middle) and Lv v , the second order directional derivative in the
direction tangential  to  the isophote  (right) for  a 2562  X-thorax image at a small  scale of  0.5
pixels. Note the shadow of the coins in the pocket of his shirt in the lower right.

6.6 Gauge coordinate invariants: examples

6.6.1 Ridge detection

Lv v  is  a  good  ridge  detector,  since  at  ridges  the  curvature  of  isophotes  is  large  (see  figure
6.13). 

f@x_, y_D := ikjjjSin@xD +
1
ÅÅÅÅ
3

 Sin@3 xDy{zzz H1 + .1 yL;
DisplayTogetherArray@Plot3D@f@x, yD, 8x, 0, p<, 8y, 0, p<D,
ContourPlot@f@x, yD, 8x, 0, p<, 8y, 0, p<, PlotPoints -> 50D,
ImageSize -> 370D;
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Figure 6.14 Isophotes are much more curved at the top of ridges and valleys then along the
slopes of  it.  Left:  a slightly sloping artificial  intensity landscape with two ridges and a valley,
at right the contours as isophotes.
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Let us test this on an X-ray image of fingers and calculate Lv v  scale s = 3.

im = Import@"hands.gif"D@@1, 1DD; Lvv = gauge2DN@im, 2, 0, 3D;
DisplayTogetherArray@ListDensityPlot êü 8im, Lvv<, ImageSize Ø 450D;

Figure  6.15  The invariant  feature  Lv v  is  a  ridge  detector.  Here  applied  on  an  X-ray  of  two
hands at s = 3 pixels. Image resolution: 361 x 239 pixels.

Ú Task  6.4  Study  the  ridges  Lv v  of  the  fingers  at  different  scales,  and  note  the
scale-dependent interpretation.

Noise has structure too. Here are the ridges of uniform white noise:

im = Table@Random@D, 8128<, 8256<D;
ListDensityPlot@gauge2DN@im, 2, 0, 4DD;

Figure  6.16  The  invariant  feature  Lv v  detects  the  ridges  in  white  noise  here,  s = 4  pixels,
image resolution: 256 x 128 pixels.

Ú Task 6.5 Study in the same way the gradient of white noise at a range of scales.
Do you see the similarity with a brain surface at larger scales?

We will  encounter  the  second order gauge derivative  Lv v  in chapter  19  in the 'fundamental'
equation  of  Alvarez  et  al.  [Alvarez1992a,  Alvarez1993],  a  nonlinear  (geometry  driven)
diffusion equation: ∑LÅÅÅÅÅÅÅ∑t = Lv v . 
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This equation is used to evolve the image in a way that locally adapts the amount of blurring
to differential invariant structure in the image in order to do e.g. edge-preserving smoothing.
We discuss this in detail in chapter 21.

Detection  of  ridges  is  an  active  topic  in  multi-scale  feature  detection  [Koenderink1993a,
Maintz1996a,  Eberly1993,  Eberly1994,  Eberly1994a,  Eberly1994b,  Damon1999,
Lindeberg1998b, Lopéz1999], as it focuses on the dual of boundaries.

6.6.2 Isophote and flowline curvature in gauge coordinates

The derivation of the formula for isophote curvature is particularly easy when we express the
problem  in  gauge  coordinates.   Isophote  curvature  k  is  defined  as  the  change  w '' = ∑2 wÅÅÅÅÅÅÅÅÅÅ∑v2  of
the tangent vector w ' = ∑wÅÅÅÅÅÅÅÅ∑v = v  in the gradient-gauge coordinate system. The definition of an
isophote is: LHv, wL = Constant , and w = wHvL . So, in Mathematica we implicitly differentiate
the equality (==) to v :

L@v, w@vDD == Constant;
v =.; w =.; D@L@v, w@vDD == Constant, vD
w£ @vD LH0,1L @v, w@vDD + LH1,0L @v, w@vDD == 0

We know that Lv ª 0  by definition of the gauge coordinates,  so w ' = 0, and the curvature k
= w ''  is found by differentiating the isophote equation again and solving for w '' :

k = w''@vD ê. Solve@D@L@v, w@vDD == Constant, 8v, 2<D ê. w'@vD -> 0, w''@vDD9-
LH2,0L @v, w@vDD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅLH0,1L @v, w@vDD =

So k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
. In Cartesian coordinates we recognize the well-known formula:

im =.; k = -
gauge2D@L@x, yD, 2, 0D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gauge2D@L@x, yD, 0, 1D êê shortnotation

-
-2 Lx Lxy Ly + Lxx Ly2 + Lx2 LyyÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHLx2 + Ly2L3ê2

Here is an example of the isophote curvature at a range of scales for a sagittal MR image:

im = Import@"mr256.gif"D@@1, 1DD;
kplot =

ListDensityPlotA-
gauge2DN@im, 2, 0, #D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gauge2DN@im, 0, 1, #D , PlotRange -> 8-5, 5<E &;
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DisplayTogetherArray@8ListDensityPlot@imD, kplot@1D, kplot@2D, kplot@3D<, ImageSize -> 470D;

Figure 6.17 The isophote curvature k  is a rotationally  and translationally  invariant  feature.  It
takes high values at extrema. Image resolution: 2562  pixels.

The  reason  we  see  extreme  low  and  high  values  is  due  to  the  singularities  that  occur  at
intensity extrema, where the gradient Lw = 0 .

Ú Task 6.6 Why was not in a single pixel infinite isophote curvature encountered?
There are many maxima and minima in the image.

Lopéz et al. [Lopéz2000b] defined a robust multi-scale version of a local curvature measure,
which they termed level set extrinsic curvature, based on the divergence of the gradient field,
integrated over a path (with a certain are: the scale) around the point of interest. 
The  perception  of  curvature  is  influenced  by  its  context,  as  is  clear  from  the  Tolansky's
curvature illusion (see figure 6.18).

Show@
Graphics@8Thickness@.01D, Circle@80, 0<, 10, 80, p<D, Circle@80, -4<,

10, 8p ê 4, 3 p ê 4<D, Circle@80, -8<, 10, 83 p ê 8, 5 p ê 8<D<D,
AspectRatio Ø Automatic, ImageSize -> 260D;

Figure 6.18 Tolansky's curvature illusion. The three circle segments have the same curvature
1/10.

We  remember  the  flowlines  as  the  integral  curves  of  the  gradient.  In  figure  6.6  they  were
depicted  together  with  their  duals,  the  isophotes.  In  that  particular  case,  for  such  circular
objects flowlines are straight lines with curvature zero. In figure 6.6 the isophote curvature at
the top of the blob goes to infinity and is left out for that reason.
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Ú Task  6.7  Prove,  with  the  methodology  sketched  above,  that  the  flowline
curvature expressed in first order gauge coordinates is: m = - Lv wÅÅÅÅÅÅÅÅÅÅLw

.

The  third  (and  last)  member  of  the  set  of  second  order  derivatives  in  gauge  coordinates  is
Lw w . This is the derivative of the gradient in the gradient direction. So when we want to find
the maximum of the gradient, we can inspect zeros of Lw w . 
Historically,  much  attention  is  paid  to  the  zerocrossings  of  the  Laplacian  due  to  the
groundbreaking  work  of  Marr  and  Hildreth.  As  a  rotational  isotropic  filter,  and  its  close
analogy to the retinal receptive fields, its zerocrossings were often interpreted as the maxima
of  a  rotational  invariant  edge  detector.  The  zerocrossings  are  however  displaced  on  curved
edges.

Note  that  with  the  compact  expression  for  isophote  curvature  k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
 we  can  establish  a

relation between the  Laplacian  and the second order derivative  in the gradient  direction we
want  to investigate  for  zerocrossings:  Lw w .  From the  expression  of the   Laplacian  in gauge
coordinates DL = Lw w + Lv v = Lw w - k Lw  we see immediately that there is a deviation term
k Lw  which is directly proportional  to the isophote curvature k. Only on a straight edge with
local  isophote  curvature  zero  the  Laplacian  is  numerically  equal  to  Lw w .  Without  gauge
coordinates,  this is much harder to prove. It took Clark two full pages in PAMI to show this
[Clark1989]!

im = Import@"thorax02.gif"D@@1, 1DD;
Block@8$DisplayFunction = Identity<,
p1 = ListDensityPlot@imD;
p2 = ListContourPlot@gauge2DN@im, 0, 2, 4D, Contours -> 80<D;
p3 = ListContourPlot@gD@im, 2, 0, 4D + gD@im, 0, 2, 4D, Contours -> 80<DD;

DisplayTogetherArray@8Show@8p1, p2<D, Show@8p1, p3<D<, ImageSize -> 380D;

Figure  6.19  Contours  of  Lv v = 0  (left)  and  DL = 0  (right)  superimposed  on  the  X-thorax
image for s = 4 pixels.

The term n = - Lw wÅÅÅÅÅÅÅÅÅÅÅLw
 is not a curvature, but can be interpreted as a density of isophotes.

Notice  that  the  isophote  curvature  k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
 and  flowline  curvature  m = - Lv wÅÅÅÅÅÅÅÅÅÅLw

 have  equal
dimensionality  for  the  intensity  in  both  nominator  and  denominator.  This  leads  to  the
desirable  property  that these curvatures  do not change when we e.g. manipulate  the contrast
or  brightness  of  an  image.  In  general,  these  curvatures  are  said  to  be  invariant  under
monotonic  intensity  transformations.  In  section  6.7  we  elaborate  on  this  special  case  of
invariance.  
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Notice  that  the  isophote  curvature  k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
 and  flowline  curvature  m = - Lv wÅÅÅÅÅÅÅÅÅÅLw

 have  equal
dimensionality  for  the  intensity  in  both  nominator  and  denominator.  This  leads  to  the
desirable  property  that these curvatures  do not change when we e.g. manipulate  the contrast
or  brightness  of  an  image.  In  general,  these  curvatures  are  said  to  be  invariant  under
monotonic  intensity  transformations.  In  section  6.7  we  elaborate  on  this  special  case  of
invariance.  

6.6.3 Affine invariant corner detection

Corners are defined as locations with high isophote curvature and high intensity gradient. An
elegant  reasoning  for  an  affine  invariant  corner  detector  was  proposed  by  Blom
[Blom1991a],  then  a PhD student  of  Koenderink.  We  reproduce it  here using  Mathematica.
Blom proposed to take the product of isophote curvature - Lv vÅÅÅÅÅÅÅÅÅLw

 and the gradient Lw  raised to
some (to be determined) power n : 

Q@nD = - Lv vÅÅÅÅÅÅÅÅÅÅLw
 Lw

n = k Lw
n = -Lv v  Lw

n-1 . 

An obvious advantage is invariance under a transformation that changes the opening angle of
the corner.  Such  a transformation  is the  affine  transformation.  An affine  transformation  is a
linear transformation of the coordinate axes:

 J x '
y '

N = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa d-b c  J a b
c d

N H x y L + He f L . 

We  omit  the  translation  term  He f L  and  study  the  affine  transformation  proper.  The  term
1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa d-b c  is  the  determinant  of  the  transformation  matrix,  and  is  called  the  Jacobian.  Its

purpose is to adjust the amplitude when the area changes.

A  good  example  of  the  effect  of  an  affine  transformation  is  to  study  the  projection  of  a
square from a large distance. Rotation over a vertical axis shortens the x -axis. Changing both
axes introduces  a shear, where  the angles  between the sides change. The following example
illustrates this by an affine transformation of a square:

square = 880, 0<, 81, 0<, 81, 1<, 80, 1<, 80, 0<<;
affine = J 5 2

0 .5 N; afsquare = affine.# & êü square;

DisplayTogetherArray@Graphics@Line@#D, AspectRatio -> 1D & êü8square, afsquare<, ImageSize -> 200D;

Figure 6.20  Affine  transformation  of  a  square,  with  transformation  matrix  J 5 2
0 .5

Nmapped

on each point.
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The  derivatives  transform  as  ikjjj ∑x'

∑y'

y{zzz = 1ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅa d-b c  J a b
c d

N H ∑x ∑y L .  We  put  the  affine

transformation A = J a b
c d N  into the definition of affinely transformed gauge coordinates:

Clear@a, b, c, dD;
gauge2Daffine@f_, nv_, nw_D := ModuleA9Lx, Ly, v, w, A = J a b

c d N=,
w =

8Lx', Ly'<
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"##########################

Lx'2 + Ly'2
; v = J 0 1

-1 0 N.w;
SimplifyANestAv.ikjjj 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Det@AD  A.8∑x #, ∑y #<y{zzz &,

NestAw.ikjjj 1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Det@AD  A.8∑x #, ∑y #<y{zzz &, f, nwE, nvE ê.9Lx' Ø

a Lx + b Ly
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Det@AD , Ly' Ø

c Lx + d Ly
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Det@AD = ê. 8Lx Ø ∑x f, Ly Ø ∑y f<EE;

The equation for the affinely distorted coordinates -Lva va  Lwa
n-1  now becomes:

-gauge2Daffine@L@x, yD, 2, 0D gauge2Daffine@L@x, yD, 0, 1Dn-1 êê
Simplify êê shortnotationI Ha2 +c2 L Lx

2+2 Ha b+c dL Lx Ly +Hb2 +d2 L Ly
2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHb c-a dL2 M 1ÅÅÅÅ2 H-3+nL H2 Lx Lxy Ly - Lxx Ly2 - Lx2 LyyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHb c - a dL2

Very  interesting:  when  n = 3  and  for  an  affine  transformation  with  unity  Jacobean
(a d - b c = 1, a so-called special transformation) we are independent of the parameters a , b ,
c  and d ! This is the affine invariance condition.

So  the  expression  Q = Lv vÅÅÅÅÅÅÅÅÅLw
 Lw

3 = Lv v  Lw
2 = 2 Lx  Lx y Ly - Lx x  Ly

2 - Lx
2  Ly y  is  an  affine

invariant corner detector. This feature has the nice property that it is not singular at locations
where  the  gradient  vanishes,  and  through  its  affine  invariance  it  detects  corners  at  all
'opening angles'.

We show corner detection at two scales on the 'Utrecht' image:

im = SubMatrix@Import@"Utrecht256.gif"D@@1, 1DD, 81, 128<, 8128, 128<D;
corner1 = gauge2DN@im, 2, 0, 1D gauge2DN@im, 0, 1, 1D2;
corner3 = gauge2DN@im, 2, 0, 3D gauge2DN@im, 0, 1, 2D2;
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DisplayTogetherArray@
ListDensityPlot êü 8im, corner1, corner3<, ImageSize Ø 500D;

Figure  6.21  Corner  detection  with  the  L v v  Lw
2  operator.  Left:  original  image,  dimensions

1282 . Middle: corner detection at s = 1 pixel; right: corner detection at s = 3 pixels. Isophote
curvature is signed, so note the positive (convex, light) and negative (concave, dark) corners.

Ú Task  6.8  Show  why  the  compound  spike  response,  where  an  rotationally
invariant  operator is applied on a spike image (discrete delta function),  leads to
a rotationally symmetric response. An example is given below:

spike = Table@0, 8128<, 8128<D; spike@@64, 64DD = 100;
gradient = gauge2DN@spike, 0, 1, 15D;
cornerness = -gauge2DN@spike, 2, 0, 15D gauge2DN@spike, 0, 1, 15D2;
DisplayTogetherArray@
ListDensityPlot êü 8spike, gradient, cornerness<, ImageSize -> 400D;

Figure 6.22 Convolution of a spike (Delta function) image with a kernel gives the kernel itself
as  result.  Left:  spike  image,  middle:  response  to  the  gradient  kernel  assembly,  right:
response to the cornerness kernel assembly. Scale s = 15 pixels, resolution image 1282 .

6.7 A curvature illusion

A  particular  visual  illusion  shows  the  influence  of  the  multi-scale  perception  of  a  local
property, like curvature. In figure 6.23 the lines appear curved, though they are really straight.
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star = Graphics@Table@
Line@88Cos@fD, Sin@fD<, 8-Cos@fD, -Sin@fD<<D, 8f, 0, p, p ê 20<DD;

lines = Graphics@8Thickness@.015D, DarkViolet,
Line@88-1, .1<, 81, .1<<D, Line@88-1, -.1<, 81, -.1<<D<D;

Show@8star, lines<, PlotRange Ø 88-.4, .4<, 8-.2, .2<<,
AspectRatio Ø Automatic, ImageSize -> 300D;

Figure 6.23 The straight lines appear curved due to the surrounding pattern. 

When we calculate  the  isophote  curvature  k = -Lv vÅÅÅÅÅÅÅÅÅÅÅÅÅLw
 for  this  figure at  a  coarse  scale,  we see

that the curvature  is not constant  along the  horizontal  lines,  but changes  when moving from
the center. Figure 6.24 shows the curvature and the profile along the center of the horizontal
line.

curvill = Show@8star, lines<, PlotRange Ø 88-.4, .4<, 8-.2, .2<<,
AspectRatio Ø Automatic, ImageSize -> 432, DisplayFunction -> IdentityD;

Export@"curvillusion-star.jpg", curvillD;
im1 = Import@"curvillusion-star.jpg"D@@1, 1DD ê. 8a_, b_, c_< ->

a + b + c
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

3
;

DeleteFile@"curvillusion-star.jpg"D;
DisplayTogetherArrayA9ListDensityPlotAk1 = -

gauge2DN@im1, 2, 0, 20D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gauge2DN@im1, 0, 1, 20D , PlotRange -> 8-.1, .1<,

Epilog -> 8Red, Line@88110, 161<, 8320, 161<<D<E,
ListPlot@Take@k1, 8161, 161<, 8110, 320<D êê Flatten,

AspectRatio -> .4, AxesLabel -> 8"", "k1"<D=, ImageSize -> 450E;
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Figure  6.24  Left:  Isophote  curvature  k  at  a  scale  of  s = 20  pixels  for  the  pattern  in  figure
6.23, dimensions image 216 x 432 pixels. Right: profile of curvature along the central portion
of  the  top  horizontal  line  (to  avoid  boundary  effects  only  the  central  portion  is  shown,
indicated by the red line in the left figure).
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6.8 Second order structure

The second order structure of the intensity landscape is rich. To describe and to represent it,
we will develop a precise mathematical formulation in order to do a proper analysis.

Let us first develop some intuitive notions by visual inspection.  Figure 6.25 shows a blurred
version  of  an  X-thorax  image  is  depicted  as  a  height  plot.  We  see  hills  and  dales,  saddle
points, ridges, maxima and minima. Clearly curvature plays an important role.

The  second  order  structure  of  the  intensity  landscape  LHx, y; sL  in  a  point  LHx0 , y0 ; sL  is
described  by the  second order  term in the  local  Taylor  expansion  around  the  point  Hx0, y0 L .
Without any loss of generalization we take Hx0 , y0 L = H0, 0L :

s = Series@L@x, yD, 8x, 0, 2<, 8y, 0, 2<D êê Normal êê shortnotation

L@0, 0D + x Lx +
x2 LxxÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + y ikjj x2 LxxyÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 + x Lxy + Lyy{zz +

1
ÅÅÅÅ4 y2 Hx2 Lxxyy + 2 Hx Lxyy + LyyLL

The  second  order  term  is  1ÅÅÅÅ2  Lx x  x2 + Lx y  x y + 1ÅÅÅÅ2  Ly y  y2 .  The  second  order  derivatives  are
the coefficients in the quadratic polynomial that describes the second order landscape.

im = Import@"thorax02.gif"D@@1, 1DD;
DisplayTogetherArray@ListDensityPlot@imD,
ListPlot3D@-gD@im, 0, 0, 2D, Mesh Ø FalseD, ImageSize Ø 320D;

Figure 6.25  Left:  An  X-thorax  image  (resolution  2562 )  and  its  'intensity  landscape'  at  s = 2
pixels (right).

We  investigate  the  role  of  the  coefficients  in  this  second  order  polynomial.  In  the  graph
below  we  vary  all  three  coefficients.  In  the  three  groups  of  9  plots  the  value  of  the  mixed
coefficient Lx y  has been varied (value -1, 0 and 1). In each group the 'pure' order terms Lx x
and  Ly y  are  varied  (values  -1,  0  and  +1).  In  the  middle  group  we  see  concave,  convex,
cylindrical and saddle shapes. 
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ShowAGraphicsArrayA
TableAGraphicsArrayATableAPlot3DA Lxx

ÅÅÅÅÅÅÅÅÅÅ
2

x2 + Lxy x y +
Lyy
ÅÅÅÅÅÅÅÅÅÅ
2

y2, 8x, -3, 3<,8y, -3, 3<, PlotRange Ø 8-18, 18<, AspectRatio Ø 1,
DisplayFunctionØ Identity, Boxed Ø True, Mesh Ø FalseE,8Lxx, -1, 1<, 8Lyy, -1, 1<E, Frame Ø TrueE, 8Lxy, -1, 1<EE, ImageSize Ø 480E;

Figure  6.26  Plots  of  Lx xÅÅÅÅÅÅÅÅÅÅ2 x2 + Lx y  x y + Ly yÅÅÅÅÅÅÅÅÅÅ2  y2 .  Left:  Lx y = -1.  Middle:  Lx y = 0.  Right:
Lx y = 1.  In  each  frame:  upper  row:  Lx x = 1,  middle  row:  Lx x = 0,  lower  row:  Lx x = -1,  left
column: Ly y = -1, middle column: Ly y = 0, right row: Ly y = 1.

When three variables are at steak, and a visual impression may give valuable insight, one can
exploit  the  trichromacy  of  our  vision.  We  employ  the  invariant  second  order  derivatives,
Lv v ,  Lv w  and  Lw w .  This  shows  the  triple  8Lv v , Lv w , Lw w<  as  RGBColor@Lv v , Lv w , Lw w<
color  directive  settings  in  each  pixel.  The  color  coefficients  for  this  function  need  to  be
scaled between 0 and 255.

im = Import@"thorax02.gif"D; s = 5; impix = im@@1, 1DD; imcolor = im;
min = Min@color = Transpose@8gauge2DN@impix, 2, 0, sD,

gauge2DN@impix, 1, 1, sD, gauge2DN@impix, 0, 2, sD<, 83, 1, 2<DD;
max = Max@color- minD; imcolor@@1, 1DD = NA color - min

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
max

255E;
imcolor@@1, 4DD = ColorFunctionØ RGBColor;
DisplayTogetherArray@Show êü 8im, imcolor<, ImageSize Ø 400D;

Figure 6.27 Left: An X-thorax image (resolution 2562 ) and a mapping of the triple of invariant
second order derivatives 8Lv v , Lv w , Lw w <  on the RGB coordinates in each pixel.
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6.8.1 The Hessian matrix and principal curvatures

At any point  on the surface  we can step into an infinite number of directions away from the
point, and in each direction we can define a curvature. So in each point an infinite number of
curvatures can be defined. It runs out that the curvatures in opposite directions are always the
same.  Secondly,  when  we  smoothly  change  direction,  there  are  two  (opposite)  directions
where the curvature  is maximal,  and there are two (opposite)  directions where the curvature
is minimal. These directions are perpendicular  to each other, and the extremal curvatures are
called the principal curvatures.

The  Hessian  matrix  is  the  gradient  of  the  gradient  vectorfield.  The  coefficients  form  the
second  order  structure  matrix,  or  the  Hessian  matrix,  also  known  as  the  shape  operator
[Gray1993]. The Hessian matrix is a square, symmetric matrix:

hessian2D = ikjjj ∑x,x L@x, yD ∑x,y L@x, yD
∑x,y L@x, yD ∑y,y L@x, yD y{zzz;

The  Hessian  matrix  is  square  and  symmetric,  so  we  can  bring  it  in  diagonal  form  by
calculating the Eigenvalues of the matrix and put these on the diagonal elements:

DiagonalMatrix@Eigenvalues@hessian2DDD êê shortnotation99 1
ÅÅÅÅ2 ILxx + Lyy - "########################################################Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2 M, 0=,90, 1

ÅÅÅÅ2 ILxx + Lyy + "########################################################Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2 M==
These special values are the principal curvatures  of that point of the surface. In the diagonal
form  the  Hessian  matrix  is  rotated  in  such  a  way,  that  the  curvatures  are  maximal  and
minimal.  The  principal  curvature  directions  are  given  by  the  Eigenvectors  of  the  Hessian
matrix,  found  by  solving  the  characteristic  equation  » H - k I » = 0  for  k ,  where  » ... »
denotes the determinant, and  I  is the identity matrix (all diagonal elements are 1, rest zeros).

k =.; Solve@Det@hessian2D - k IdentityMatrix@2DD ã 0, kD êê shortnotation99k Ø
1
ÅÅÅÅ2 ILxx + Lyy - "########################################################Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2 M=,9k Ø
1
ÅÅÅÅ2 ILxx + Lyy + "########################################################Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2 M==

The command to calculate Eigenvalues is built into Mathematica:8k1, k2< = Eigenvalues@hessian2DD êê FullSimplify;8k1, k2< êê shortnotation9 1
ÅÅÅÅ2 JLxx - "#########################################4 Lxy2 + HLxx - LyyL2 + LyyN, 1

ÅÅÅÅ2 JLxx + "#########################################4 Lxy2 + HLxx - LyyL2 + LyyN=
The two principal curvatures  are equal  when 4 Lx y

2 + HLy y - Lx x L 2  is zero. This happens in
so-called  umbilical  points.  In  umbilical  points  the  principal  directions  are  undefined.  The
surface is locally spherical.  The  term 4 Lx y

2 + HLy y - Lx x L 2  can be interpreted  as 'deviation
from sphericalness'.
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6.8.2 The shape index

When  the  principal  curvatures  k1  and  k2  are  considered  coordinates  in  a  2D  'shape  graph',
we  see  that  all  different  second  order  shapes  are  represented.  Each shape  is  a  point  on  this
graph. The following list gives some possibilities:

When both curvatures are zero we have the flat shape.
When both curvatures are positive, we have concave shapes.
When both curvatures are negative, we have convex shapes.
When both curvatures the same sign and magnitude: spherical shapes.
When the curvatures have opposite sign: saddle shapes.
When one curvature is zero: cylindrical shapes.

Koenderink proposed to call the angle,  of where the shape vector points to, the shape index.
It is defined as: 

shapeindex ª 2ÅÅÅÅp  arctan k1 +k2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk1 -k2
, k1 ¥ k2 .

The expression for k1 +k2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅk1 -k2
can be markedly cleaned up:

SimplifyA k1 + k2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
k1 - k2

E êê shortnotation

-Lxx - LyyÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#########################################4 Lxy2 + HLxx - LyyL2

so we get for the shape index:

shapeindex ª 2ÅÅÅÅp  arctanikjjj -Lx x -Ly yÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"################################################################Lx x
2 +4 Lx y

2 -2 Lx x Ly y +Ly y
2

y{zzz .

The  shape  index  runs  from  -1  (cup)  via  the  shapes  trough,  rut,  and  saddle  rut  to  zero,  the
saddle (here the shape index is undefined), and the goes via saddle ridge, ridge, and dome to
the value of +1, the cap. 

The length of the vector defines how curved a shape is, which gives Koenderink's  definition
of curvedness:

curvedness ª 1ÅÅÅÅ2  
è!!!!!!!!!!!!!!!!!!!

k1 2 + k2 2 .

1
ÅÅÅÅ
2

 
è!!!!!!!!!!!!!!!!!!!

k1
2 + k2

2 êê Simplify êê shortnotation

1
ÅÅÅÅ2

"##################################Lxx2 + 2 Lxy2 + Lyy2

shapes =
Table@GraphicsArray@Table@Plot3D@k1 x2 + k2 y2, 8x, -3, 3<, 8y, -3, 3<,

PlotRange Ø 8-18, 18<, PlotLabel ->
"k1=" <> ToString@k1D <> ", k2=" <> ToString@k2D, AspectRatio Ø 1,
DisplayFunction Ø Identity, Boxed Ø True, Mesh Ø FalseD,8k2, 1, -1, -1<, 8k1, -1, 1<DDD;
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Show@
GraphicsArray@8Graphics@8Arrow@80, 0<, 8.7, .5<D, Red, PointSize@.02D,

Point@8.7, .5<D<, PlotRange Ø 88-1, 1<, 8-1, 1<<,
Frame Ø True, Axes Ø True, AxesLabel Ø 8"k1", "k2"<,
AspectRatio Ø 1D, shapes<D, ImageSize Ø 450D;
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Figure  6.28  Left:  Coordinate  space  of  the  shape  index.  Horizontal  axis:  maximal  principal
curvature  k1 ,  vertical  axis:  minimal  principal  curvature  k2 .  The  angle  of  the  position  vector
determines the shape, the length the curvedness. Right: same as middle set of figure 6.22.

Here is the shape index calculated and plotted for every pixel on our familiar MR image at a
scale of s=3 pixels:

im = Import@"mr128.gif"D@@1, 1DD;
shapeindex@im_, s_D :=

2
ÅÅÅÅ
p

 ArcTanAH-gD@im, 2, 0, sD - gD@im, 0, 2, sDL ëI, HgD@im, 2, 0, sD2 + 4 gD@im, 1, 1, sD2 -

2 gD@im, 2, 0, sD gD@im, 0, 2, sD + gD@im, 0, 2, sD2LME;
DisplayTogetherArray@ListDensityPlot@shapeindex@im, #DD & êü Range@5D,
ImageSize Ø 400D;

Figure 6.29 Shape index of the sagittal MR image at s = 1, 2, 3, 4 and 5 pixels.
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curvedness@im_, s_D :=,HgD@im, 2, 0, sD2 + 2 gD@im, 1, 1, sD2 + gD@im, 0, 2, sD2L;
DisplayTogetherArray@ListDensityPlot@curvedness@im, #DD & êü Range@4D,
ImageSize Ø 400D;

Figure 6.30 Curvedness of the sagittal MR image at s = 1, 2, 3 and 4 pixels.

6.8.3 Principal directions

The principal curvature directions are given by the Eigenvectors of the Hessian matrix:8vk1, vk2< = Eigenvectors@hessian2DD; 8vk1, vk2< êê shortnotation

99-
-Lxx + Lyy + "########################################################Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Lxy

, 1=,
9 Lxx - Lyy + "########################################################Lxx2 + 4 Lxy2 - 2 Lxx Lyy + Lyy2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 Lxy
, 1==

The Eigenvectors are perpendicular to each other,  there inner product is zero:

vk1.vk2 êê Simplify

0

The local principal direction vectors form locally a frame. We inspect how the orientations of
such frames  are  distributed  in  an image.  We orient  the  frame in  such a  way that  the  largest
Eigenvalue  (maximal  principal  curvature)  is  one  direction,  the  minimal  principal  curvature
direction is p/2 rotated clockwise.

plotprincipalcurvatureframes@im_, s_D :=

ModuleA8hessian, frame, frames<,
hessian = J gD@im, 2, 0, sD gD@im, 1, 1, sD

gD@im, 1, 1, sD gD@im, 0, 2, sD N;
frame = 8Green, Arrow@#2 - .5, #2 - .5 + First@#1DD,

Red, Arrow@#2 - .5, #2 - .5 + Last@#1DD< &;
frames = MapIndexed@frame, .5 Map@Eigenvectors,

Transpose@hessian, 84, 3, 2, 1<D, 82<D, 82<D;
plot = ListDensityPlot@gD@im, 0, 0, sD, Epilog Ø framesDE
im = Import@"mr32.gif"D@@1, 1DD;
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plotprincipalcurvatureframes@im, 1D;

Figure  6.31  Frames  of  the  normalized  principal  curvature  directions  at  a  scale  of  1  pixel.
Image  resolution  322  pixels.  Green:  maximal  principal  curvature  direction;  red:  minimal
principal curvature direction.

The  principal  curvatures  have  been  employed  by  Niessen,  ter  Haar  Romeny  and  Lopéz  in
studies to the 2D and 3D structure of trabecular bone [TerHaarRomeny1996f, Niessen1997b,
Lopéz200a]. The local structure was defined as flat  when the two principal curvatures of the
iso-intensity surface in 3D were are both small, as rod-like if one of the curvatures was small
and  the  other  high,  giving  a  local  cylindrical  shape,  and  sphere-like  if  two  principal
curvatures were both high. See also Task 19.8.

6.8.4 Gaussian and mean curvature

The  Gaussian  curvature  !  is  defined  as  the  product  of  the  two  principal  curvatures:
! = k1 k2 . 

! = k1 k2 êê Simplify êê shortnotation

-Lxy2 + Lxx Lyy

The Gaussian curvature is equal to the determinant of the Hessian matrix:

Det@hessian2DD êê shortnotation

-Lxy2 + Lxx Lyy

The sign of the Gaussian curvature determines if we are in a concave / convex area (positive
Gaussian  curvature)  or  in  a  saddle-like  area  (negative  Gaussian  curvature).  This  shows
saddle-like areas as dark patches:
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im = Import@"mr256.gif"D@@1, 1DD;
s = 5; ! = -gD@im, 1, 1, sD2 + gD@im, 2, 0, sD gD@im, 0, 2, sD;
DisplayTogetherArray@Append@ListDensityPlot êü 8!, Sign@!D<,

ListContourPlot@!, Contours Ø 80<DD, ImageSize Ø 390D;

Figure 6.32 Left:  Gaussian curvature ! for a 2562  sagittal  MR image at a scale of 5 pixels.
Middle: sign of !. Right: zerocrossings of !.

The locations where the Gaussian curvature is zero, are characterized by the fact that at least
one  of  the  principal  curvatures  is  zero.  The  collection  of  locations  where  the  Gaussian
curvature  is  zero  is  known  as  the  parabolic  lines.  It  was  shown  by  Koenderink  that  these
lines play an important role in reflection and shape-from-shading.

The mean curvature is defined as the arithmetic mean of the principal curvatures: " = k1 +k2ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ2 .

The mean curvature is related to the trace of the Hessian matrix:

" =
k1 + k2
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

2
êê Simplify êê shortnotation

1
ÅÅÅÅ2 HLxx + LyyL
Tr@hessian2DD êê shortnotation

Lxx + Lyy

The  relation  between  the  mean  curvature  "  and  the  Gaussian  curvature  !  is  given  by
k2 - 2 " k + ! = 0, which has solutions:

" =.; ! =.; Solve@k2 - 2 " k + ! ã 0, kD99k Ø ! -
è!!!!!!!!!!!!!!!2 - " =, 9k Ø ! +

è!!!!!!!!!!!!!!!2 - " ==
The mean curvature "  and the Gaussian curvature !  are well defined in umbilical points.

The directional derivative of the principal curvature in the direction of the principal direction
is called the extremality [Monga1995]. 

Because there are two principal curvatures, there are two extremalities, vk1
”÷÷÷÷÷÷ .“”÷÷ k1  and vk2

”÷÷÷÷÷÷ .“”÷÷ k2 :

<< Calculus`VectorAnalysis`;
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e1 = vk1 .Take@Grad@8k1, 0, 0<, Cartesian@x, y, zDD, 2D êê FullSimplify;
e1 êê shortnotation9-

1
ÅÅÅÅÅÅÅÅÅÅÅÅ4 Lxy

 
ikjjjjjjjikjjjjjjjLxxx + Lxyy +

-4 Lxxy Lxy - HLxxx - LxyyL HLxx - LyyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#########################################4 Lxy2 + HLxx - LyyL2

y{zzzzzzzJ-Lxx + "#########################################4 Lxy2 + HLxx - LyyL2 + LyyNy{zzzzzzz,
-

1
ÅÅÅÅÅÅÅÅÅÅÅÅ4 Lxy

 
ikjjjjjjjJ-Lxx + "#########################################4 Lxy2 + HLxx - LyyL2 + LyyNikjjjjjjjLxxy +

-4 Lxy Lxyy - HLxx - LyyL HLxxy - LyyyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#########################################4 Lxy2 + HLxx - LyyL2

+ Lyyy
y{zzzzzzzy{zzzzzzz, 0=

e2 = vk2 .Take@Grad@8k2, 0, 0<, Cartesian@x, y, zDD, 2D êê FullSimplify;
e2 êê shortnotation9-

1
ÅÅÅÅÅÅÅÅÅÅÅÅ4 Lxy

 
ikjjjjjjjikjjjjjjjLxxx + Lxyy +

4 Lxxy Lxy + HLxxx - LxyyL HLxx - LyyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#########################################4 Lxy2 + HLxx - LyyL2

y{zzzzzzzJ-Lxx - "#########################################4 Lxy2 + HLxx - LyyL2 + LyyNy{zzzzzzz,
-

1
ÅÅÅÅÅÅÅÅÅÅÅÅ4 Lxy

 
ikjjjjjjjJ-Lxx - "#########################################4 Lxy2 + HLxx - LyyL2 + LyyNikjjjjjjjLxxy +

4 Lxy Lxyy + HLxx - LyyL HLxxy - LyyyL
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ"#########################################4 Lxy2 + HLxx - LyyL2

+ Lyyy
y{zzzzzzzy{zzzzzzz, 0=

The  lines  defined  by  the  zerocrossings  of  each  of  these  two  extremalities  are  called  the
extremal lines [Thirion1995a, Thirion1996]. There are 4 types of these lines:
- lines of maximum largest principal curvature (these are called crest lines);
- lines of minimum largest principal curvature;
- lines of maximum smallest principal curvature;
- lines of minimum smallest principal curvature.

The  product  of  the  two  extremalities  is  called  the  Gaussian  extremality  # = e1 .e2 ,  a  true
local invariant [Thirion1996].  The boundaries of the regions where the Gaussian extremality
changes sign, are the extremal lines.

e1.e2 êê Simplify êê shortnotation

-HLxy2 HLxxx2 + 2 Lxxx Lxyy - 3 HLxxy2 + Lxyy2 LL +

Lxxx Lxyy HLxx - LyyL2 + 2 Lxxx Lxxy Lxy H-Lxx + LyyL +HLxx2 Lxxy - 2 Lxy Lxyy Lyy + 2 Lxx HLxy Lxyy - Lxxy LyyL + Lxxy H2 Lxy2 + Lyy2 LL Lyyy +

Lxy
2 Lyyy

2 L ê HLxx2 + 4 Lxy
2 - 2 Lxx Lyy + Lyy

2 L
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DisplayTogetherArray@
ListDensityPlot@Sign@e1.e2 ê. Derivative@nx_, ny_D@LD@x_, y_D Ø

gD@im0, nx, ny, #D ê. im0 Ø imDD & êü 82, 6, 10<, ImageSize Ø 400D;

Figure 6.33 Left: Gaussian extremality # = e1 e2  for a 2562  sagittal MR image at a scale of 2
pixels (left), 6 pixels (middle) and 10 pixels (right).

The mesh that these lines form on an iso-intensity surface in 3D is called the extremal mesh.
It  has  been  applied  for  3D  image  registration,  by  extracting  the  lines  with  a  dedicated
'marching lines' algorithm [Thirion1996].

Show@Import@"extremal mesh - Thirion.jpg"D, ImageSize Ø 250D;

Figure 6.34 Extremal mesh on a 3D skull from a 3D CT dataset. The extremal lines are found
with the marching lines algorithm. From [Thirion1993].

6.8.5 Minimal surfaces and zero Gaussian curvature surfaces

Surfaces  that  have  everywhere  mean  curvature  zero,  are  called  minimal  surfaces.  There  are
many  beautiful  examples  of  such  surfaces  (see  e.g.  the  Scientific  Grahics  Project,
http://www.msri.org/publications/sgp/SGP/indexc.html .  Soap  bubbles  are  famous  and  much
studied examples of minimal surfaces.

From  the  wonderful  interactive  book  by  Alfred  Gray  [Gray1993]  (written  in  Mathematica)
we  plot  two  members  of  the  family  of  zero  Gaussian  curvature  manifolds  that  can  be
constructed by a moving straight line through 3D space:
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heltocat@t_D@u_, v_D := Cos@tD 8Sinh@vD Sin@uD, -Sinh@vD Cos@uD, u< +
Sin@tD 8Cosh@vD Cos@uD, Cosh@vD Sin@uD, v<;

moebiusstrip@u_, v_D := 8Cos@uD + v Cos@u ê 2D Cos@uD,
Sin@uD + v Cos@u ê 2D Sin@uD, v Sin@uê 2D<;

DisplayTogetherArray@8ParametricPlot3D@
Evaluate@heltocat@0D@u, vDD, 8u, -p, p<, 8v, -p, p<,
PlotPoints -> 30, Axes -> None, BoxRatios -> 81, 1, 1<,
PlotRange -> 88-13, 13<, 8-13, 13<, 8-p, p<<D,

ParametricPlot3D@moebiusstrip@u, vD êê Evaluate,8u, 0, 2 Pi<, 8v, -.3, .3<, PlotPoints -> 830, 4<,
Axes -> NoneD<, ImageSize Ø 390D;

Figure  6.35  Surfaces  with  zero  Gaussian  curvature.  Left  the  helicoid,  a  member  of  the
heltocat  family.  Right  the  Moebius  strip.  Both  surfaces  can  be  constructed  by  a  moving
straight line. From [Gray1993].

Ú Task  6.9  Which  surfaces  have  constant  mean  curvature?  And  which  surfaces
have constant Gaussian curvature?

Ú Task  6.10  If  I  walk  with  my  principal  coordinate  frame  over  an  egg,  something
goes wrong when I walk through an umbilical point. What?

6.9 Third order image structure: T-junction detection

An  example  of  third  order  geometric  reasoning  in  images  is  the  detection  of  T-junctions
[TerHaarRomeny1991a,  TerHaarRomeny1993b].  T-junctions  in  the  intensity  landscape  of
natural images occur typically at occlusion points. Occlusion points are those points where a
contour  ends  or  emerges  because  there  is  another  object  in  front  of  the  contour.  See  for an
artistic example the famous painting 'the blank cheque' by Magritte.
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Show@Import@"blank cheque.jpg"D, ImageSize -> 210D;

Figure  6.36  The  painting  'the  blank  cheque'  by  the  famous  Belgian  surrealist  painter  René
Magritte (1898 - 1967). Source: Paleta (www.paletaworld.org).

In  this  section  we  develop  a  third  order  detector  for  "T-junction-likeniness".  In  the  figure
below the circles indicate a few particular T-junctions:

blocks = Import@"blocks.gif"D@@1, 1DD;
ListDensityPlot@blocks,
Epilog -> Hcircles = 8Circle@8221, 178<, 13D, Circle@8157, 169<, 13D,

Circle@890, 155<, 13D, Circle@8148, 56<, 13D,
Circle@8194, 77<, 13D, Circle@8253, 84<, 13D<L, ImageSize -> 300D;

Figure 6.37 T-junctions often emerge at occlusion boundaries. The foreground edge is most
likely  to  be  the  straight  edge  of  the  "T",  with  the  occluded  edge  at  some  angle  to  it.  The
circles indicate some T-junctions in the image.

When  we zoom  in  on  the  T-junction  of an  observed  image  and inspect  locally  the  isophote
structure at a T-junction, we see that at a T-junction the derivative of the isophote curvature k
in  the  direction  perpendicular  to  the  isophotes  is  high.  In  the  figure  below  the  isophote
landscape of a blurred T-junction illustrates the direction of maximum change of k:
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When  we zoom  in  on  the  T-junction  of an  observed  image  and inspect  locally  the  isophote
structure at a T-junction, we see that at a T-junction the derivative of the isophote curvature k
in  the  direction  perpendicular  to  the  isophotes  is  high.  In  the  figure  below  the  isophote
landscape of a blurred T-junction illustrates the direction of maximum change of k:

im = Table@If@y < 64, 0, 1D + If@y < x && y > 63, 2, 1D, 8y, 128<, 8x, 128<D;
DisplayTogetherArray@ListDensityPlot@imD,
ListContourPlot@gD@im, 0, 0, 7D, Contours Ø 15,
PlotRange Ø 8-0.3, 2.8<D, ImageSize -> 280D;

Figure  6.38  The  isophote  structure  (right)  of  a  simple  idealized  and  observed  (blurred)  T-
junction  (left)  shows  that  isophotes  strongly  bend  at  T-junctions  when  we walk  through  the
intensity landscape.

When we study  the curvature  of  the isophotes  in the  middle of  the image,  at  the location  of
the  T-junction,  we  see  the  isophote  'sweep'  from  highly  curved  to  almost  straight  for
decreasing intensity.  So the geometric reasoning is the "the isophote curvature changes  a lot
when we traverse the image in the w  direction". It seems to make sense to study ∑kÅÅÅÅÅÅÅÅ∑w :

We recall that the isophote curvature k is defined as k = - Lv vÅÅÅÅÅÅÅÅÅÅLw
:

k =
gauge2D@L@x, yD, 2, 0D
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
gauge2D@L@x, yD, 0, 1D ; k êê Simplify êê shortnotation

-2 Lx Lxy Ly + Lxx Ly2 + Lx2 LyyÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHLx2 + Ly2L3ê2
The  derivative  of  the  isophote  curvature  in  the  direction  of  the  gradient,  ∑kÅÅÅÅÅÅÅÅ∑w  is  quite  a
complex  third  order  expression.  The  formula  is  derived  by  calculating  the  directional
derivative of the curvature in the direction of the normalized gradient. We define the gradient
(or nabla: “) operator with a pure function:

grad = 8∑x #, ∑y #< &;

dkdw =
grad@L@x, yDD

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
grad@L@x, yDD.grad@L@x, yDD .grad@kD;

dkdw êê Simplify êê shortnotation

1
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHLx2 + Ly2L3  HLxxy Ly5 + Lx4 H-2 Lxy2 + Lx Lxyy - Lxx LyyL - Ly4 H2 Lxy2 - Lx HLxxx - 2 LxyyL + Lxx LyyL +

Lx
2 Ly

2 H-3 Lxx
2 + 8 Lxy

2 + Lx HLxxx - LxyyL + 4 Lxx Lyy - 3 Lyy
2 L +

Lx3 Ly H6 Lxy HLxx - LyyL + Lx H-2 Lxxy + LyyyLL +

Lx Ly
3 H6 Lxy H-Lxx + LyyL + Lx H-Lxxy + LyyyLLL
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To avoid singularities  at vanishing gradients  through the division by HLx
2 + Ly

2 L3
= Lw

6  we
use as our T-junction detector t = ∑kÅÅÅÅÅÅÅÅ∑w  Lw

6 :

tjunction = dkdw Hgrad@L@x, yDD.grad@L@x, yDDL3;
tjunction êê shortnotation

Lx5 Lxyy + Ly4 H-2 Lxy2 + Lxxy Ly - Lxx LyyL +

Lx3 Ly H6 Lxx Lxy + Lxxx Ly - Lxyy Ly - 6 Lxy LyyL +

Lx Ly3 H-6 Lxx Lxy + Lxxx Ly - 2 Lxyy Ly + 6 Lxy LyyL -

Lx4 H2 Lxy2 + 2 Lxxy Ly + Lxx Lyy - Ly LyyyL +

Lx2 Ly2 H-3 Lxx2 + 8 Lxy2 - Lxxy Ly + 4 Lxx Lyy - 3 Lyy2 + Ly LyyyL
Finally,  we  apply  the  T-junction  detector  on  our  blocks  at  a  rather  fine  scale  of  s = 2  (we
plot -tjunction  to invert the contrast):

s = 2; ListDensityPlot@
tjunction ê. Derivative@nx_, ny_D@LD@x, yD -> gD@im0, nx, ny, sD ê.
im0 -> blocks, Epilog -> circles, ImageSize -> 230D;

Figure 6.39 Detection of T-junctions in the image of the blocks with the detector  t = ∑kÅÅÅÅÅÅÅÅ∑w  Lw
6 .

The same circles have been drawn as in figure 6.32.

Compare  the  detected  points  with  the  circles  in  the  input  image.  Note  that  in  medical
tomographic  images  (CT,  MR,  PET,  SPECT,  US)  there  is  no  occlusion  present.  One  can
however  use  third  order  properties  in  any  geometric  reasoning  scheme,  as  the  'change  of  a
second order property'.

Ú Task  6.11  Investigate  if  the  expression  for  the  T-junction  t = ∑kÅÅÅÅÅÅÅÅ∑w  Lw
6  is  affine

invariant.

Ú Task  6.12  Another  definition  for  a  T-junction  detector  might  be  the magnitude  of

the  gradient  of  the  curvature:  t = $%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%H ∑kÅÅÅÅÅÅÅÅ
∑w

L2
+ H ∑kÅÅÅÅÅÅÅÅ

∑w
L2

 Lw
6 ,  or  the  derivative  of  the

curvature in the v  direction: ∑kÅÅÅÅÅÅÅ
∑v

 Lw
6 . Study and explain the differences.
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6.10 Fourth order image structure: junction detection

As  a  final  fourth  order  example,  we  give  an  example  for  a  detection  problem  in  images  at
high order  of  differentiation  from algebraic  theory.  Even at  orders of  differentiation  as high
as  4,  invariant  features  can  be  constructed  and  calculated  for  discrete  images  through  the
biologically  inspired  scaled  derivative  operators.  Our  example  is  to  find  in  a  checkerboard
the  crossings  where  4  edges  meet.  We  take  an  algebraic  approach,  which  is  taken  from
Salden et al. [Salden1999a]. 

When  we  study  the  fourth  order  local  image  structure,  we  consider  the  fourth  order
polynomial terms from the local Taylor expansion:

pol4 = Lxxxx x4 + 4 Lxxxy x3 y + 6 Lxxyy x2 y2 + 4 Lxyyy x y3 + Lyyyy y4;

The  main  theorem  of  algebra  states  that  a  polynomial  is  fully  described  by  its  roots:  e.g.
ax2 + bx + c = Hx - x1 L Hx - x2 L .  It  was  shown  more  than  a  century  ago  by  Hilbert
[Hilbert1890]  that  the  'coincidencesness'  of  the  roots,  or  how  well  all  roots  coincide,  is  a
particular invariant condition. From algebraic theory it is known that this 'coincidenceness'  is
given by the discriminant, defined below (see also [Salden1999a]):

Discriminant@p_, x_D :=

WithA8m = Exponent@p, xD<, CancelA H-1L 1ÅÅÅÅ2 m Hm-1L Resultant@p, ∑x p, xD
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

Coefficient@p, x, mD EE
The resultant of two polynomials a  and b , both with leading coefficient one, is the product of
all  the  differences   ai - b j  between  roots  of  the  polynomials.  The  resultant  is  always  a
number or a polynomial. The discriminant of a polynomial is the product of the squares of all
the  differences  of  the  roots  taken  in  pairs.  We  can  express  our  function  in  two  variables8x, y<  as a function in a single variable xÅÅÅÅy  by the substitution y Ø 1 . Some examples:

Discriminant@Lxx x2 + 2 Lxy x y + Lyy y2, xD ê. 8y Ø 1<
-4 H-Lxy2 + Lxx LyyL

The  discriminant  of  second  order  image  structure  is  just  the  determinant  of  the  Hessian
matrix, i.e. the Gaussian curvature. Here is our fourth order discriminant:

Discriminant@pol4, xD ê. 8y Ø 1< êê Simplify

256 H-27 Lxxxy4 Lyyyy2 + Lxxxy3 H-64 Lxyyy3 + 108 Lxxyy Lxyyy LyyyyL -

12 Lxxxx Lxxxy Lxyyy H-9 Lxxyy Lxyyy2 + 15 Lxxyy2 Lyyyy + Lxxxx Lyyyy2L -
6 Lxxxy2 H-6 Lxxyy2 Lxyyy2 + 9 Lxxyy3 Lyyyy +

Lxxxx Lxyyy2 Lyyyy - 9 Lxxxx Lxxyy Lyyyy2L +
Lxxxx H-54 Lxxyy3 Lxyyy2 + 81 Lxxyy4 Lyyyy + 54 Lxxxx Lxxyy Lxyyy2 Lyyyy -

18 Lxxxx Lxxyy2 Lyyyy2 + Lxxxx H-27 Lxyyy4 + Lxxxx Lyyyy3LLL
It looks like an impossibly complicated  polynomial  in fourth order  derivative images,  and it
is.  Through  the  use  of  Gaussian  derivative  kernels  each  separate  term  can  easily  be
calculated.  We replace (with the operator /.) all the partial derivatives into scaled Gaussian
derivatives:
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It looks like an impossibly complicated  polynomial  in fourth order  derivative images,  and it
is.  Through  the  use  of  Gaussian  derivative  kernels  each  separate  term  can  easily  be
calculated.  We replace (with the operator /.) all the partial derivatives into scaled Gaussian
derivatives:

discr4@im_, s_D := Discriminant@pol4, xD ê.8y Ø 1, Lxxxx Ø gD@im, 4, 0, sD, Lxxxy Ø gD@im, 3, 1, sD,
Lxxyy Ø gD@im, 2, 2, sD, Lxyyy Ø gD@im, 1, 3, sD, Lyyyy Ø gD@im, 0, 4, sD<

Let us apply this high order function on an image of a checkerboard,  and we add noise with
twice the maximum image intensity to show its robustness, despite the high order derivatives
(see figure 6.40).

Note that we have a highly symmetric situation here: the four edges that come together at the
checkerboard  vertex  cut  the  angle  in  four.  The  symmetry  can  be  seen  in  the  complex
expression  for  discr4:  only  pure  partial  derivatives  of  fourth  order  occur.  For  a  less
symmetric  situation  we  need  a  detector  which  incorporates  in  its  expression  also  the  lower
order partial derivatives. For details see [Salden1999a].

t1 = Table@If@Hx > 50 && y > 50L »» Hx § 50 && y § 50L, 0, 100D + 200* Random@D,8x, 100<, 8y, 100<D;
t2 = Table@If@Hx + y - 100 > 0 && y - x < 0L »» Hx + y - 100 § 0 && y - x ¥ 0L,

0, 100D + 200* Random@D, 8x, 100<, 8y, 100<D;
noisycheck = Transpose@Join@t1, t2DD;
DisplayTogetherArray@ListDensityPlot êü8noisycheck, discr4@noisycheck, 5D<, ImageSize -> 400D;

Figure 6.40 Left: A noisy checkerboard detail at two orientations. Right: the output of the 4th

order discriminant. The detection clearly is rotation invariant, robust to noise, and there is no
detection at corners (e.g. center of the image).

6.11 Scale invariance and natural coordinates

The intensity of images and invariant features at larger scale decreases fast. This is due to the
non-scale-invariant  use  of  the  differential  operators.  For,  if  we  consider  the  transformation
xÅÅÅÅÅs Ø x̀ ,  then x̀  is dimensionless.  At every scale now distances  are measured  with a distance

yardstick with is scaled relative to the scale itself. This is the scale-invariance. 

The  dimensionless  coordinate  is  termed  the  natural  coordinate.  This  implies  that  the
derivative operator in natural coordinates has a scaling factor: ∑n

ÅÅÅÅÅÅÅÅÅ∑x̀n Ø sn ∑n
ÅÅÅÅÅÅÅÅÅ∑xn .

Here we generate a scale-space of the intensity gradient. To study the absolute intensities, we
plot every image with the same intensity plotrange of {0,40}:
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im = Import@"mr128.gif"D@@1, 1DD; BlockA8$DisplayFunction = Identity<,
p1 = TableAgrad =

, HgD@im, 1, 0, sD2 + gD@im, 0, 1, sD2L;
ListDensityPlot@#, PlotRange -> 80, 40<D & êü 8grad, s grad<
, 8s, 1, 5<EE; Show@GraphicsArray@Transpose@p1DD, ImageSize Ø 450D;

Figure 6.41 The gradient of a 1282  image plotted at 5 scales, for s = 1, 2, 3, 4 and 5 pixels
respectively.  All  images  (in both  rows) are plotted at  a fixed  intensity range {0,40}.  Top row
shows  the  regular  gradient,   clearly  showing  the  decrease  in  intensity  for  larger  blurring.
Bottom  row:  the  gradient  in  natural  coordinates  (multiplied  by  s).  The  intensity  dynamic
range is now kept more or less constant. 

Clearly the gradient  magnitude  expressed in the natural coordinates keeps its average output
range.  For  a   Laplacian  scale-space  stack  in  natural  coordinates  we  need  to  multiply  the  
Laplacian   with  s2 :  ∑2

ÅÅÅÅÅÅÅÅÅ
∑x̀2 + ∑2

ÅÅÅÅÅÅÅÅÅÅ
∑ỳ2 = s2 I ∑2

ÅÅÅÅÅÅÅÅÅ∑x2 + ∑2
ÅÅÅÅÅÅÅÅÅÅ∑y2 M ,  and  so  on  for  higher  order  derivative

operators in natural coordinates.

Block@8$DisplayFunction = Identity<,
p1 = Table@lapl = gD@im, 2, 0, sD + gD@im, 0, 2, sD;
ListDensityPlot@#, PlotRange -> 8-90, 60<D & êü 8lapl, s2 lapl<
, 8s, 1, 5<DD; Show@GraphicsArray@Transpose@p1DD, ImageSize Ø 450D;

Figure 6.42 The  Laplacian of a 1282  image plotted at 5 scales, for s = 1, 2, 3, 4 and 5 pixels
respectively.  Top   row:  Laplacian  in  regular  coordinates.  Bottom  row:  Laplacian  in  natural
coordinates. Top and bottom rows at fixed intensity range of {-90,60}. 
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6.12 Irreducible invariants

Invariant  differential  features  are  independent  of  changes  in  specific  groups  of  coordinate
transformations.  Note  that  the  transformations  of  the  coordinates  are  involved  as  the  basic
physical  notion,  as the  particular  choice  of coordinates  is just  a mean to describe  the world,
the  real  situation  should  be  independent  of  this  choice.  This  is  often  misunderstood,  e.g.
when rotation invariance is interpreted as that all results are the same when the image itself is
rotated.  Rotation  invariance  is  a  local  property,  and  as  such  a  coordinate  rotation  and  an
image rotation are only the same when we consider a single point in the image. 

For  medical  imaging  the  most  important  groups  are  the  orthogonal  transformations,  such as
translations,  rotations,  mirroring  and  scaling,  and  the  affine  transformations,  such  as  shear.
There are numerous other groups of transformations,  but it  is beyond the scope of this book
to  treat  this.  The  differential  invariants  are  the  natural  building  blocks  to  express  local
differential structure.

It  has  been  shown  by  Hilbert  [Hilbert1893]  that  any  invariant  of  finite  order  can  be
expressed  as  a  polynomial  function  of  a  set  of  irreducible  invariants.  This  is  an  important
result. For e.g. scalar images these invariants form the fundamental set of image primitives  in
which  all  local  intrinsic  properties  can  be  described.  In  other  words:  any  invariant  can  be
expressed in a polynomial combination of the irreducible invariants.

Typically,  and  fortunately,  there  are  only  a  small  number  of  irreducible  invariants  for  low
order. E.g. for 2D images up to second order there are only 5 of such irreducibles.  We have
already encountered one mechanism to find the irreducible set: gauge coordinates.  We found
the following set:

Zeroth order L
First order Lw
Second order Lv v , Lv w , Lw w
Third order Lv v v , Lv v w , Lv w w , Lw w w
etc.

Each of these irreducible invariants cannot be expressed in the others. Any invariant property
to  some  finite  order  can  be  expressed  as  a  combination  of  these  irreducibles.  E.g.  isophote
curvature, a second order local invariant feature, is expressed as: k = -Lv v ê Lw .
Note that the first derivative to v  is missing. But Lv ª 0  is just the gauge condition! There is
always  that  one  degree  of  freedom  to  rotate  the  coordinate  system  in  such  a  way  that  the
tangential  derivative  vanishes.  This  gives  a  way  to  estimate  the  number  of  irreducible
invariants for a given order: It is equal  to the number of partial derivative coefficients in the
local  Taylor  expansion,  minus  1 for the  gauge condition.  E.g.  for  the  4th  order  we have the
partial  derivatives  Lv v v v ,  Lv v v w ,  Lv v w w ,  Lv w w w ,  and  Lw w w w ,  so  in  total  we  have
1 + 1 + 3 + 4 + 5 = 14 irreducible invariants for the 4th  order.
These  irreducibles  form  a  basis  for  the  differential  invariant  structure.  The  set  of  5
irreducible  grayvalue  invariants  in  2D  images  has  been  exploited  to  classify  local  image
structure by Schmidt et al. [Schmidt1996a, Schmidt1996b] for statistical object recognition.
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This  assigns  the  three  RGB  channels  of  a  color  image  to  the  irreducible  invariants8L, Lw and Lv v + Lw w<  of a scalar grayvalue image for s = 2 pixels:

im = Import@"mr256.gif"D; px = im@@1, 1DD; s = 2;

r = gD@px, 0, 0, sD; g =
"#################################################################################
gD@px, 1, 0, sD2 + gD@px, 0, 1, sD2 ;

b = gD@px, 2, 0, sD2 + gD@px, 0, 2, sD2;
g = g

255
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Max@gD ; b = b

255
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
Max@bD ; imtr = Transpose@8r, g, b<, 83, 1, 2<D;

im@@1, 1DD = imtr; im@@1, 4DD = ColorFunction Ø RGBColor; Show@im, ImageSize -> 150D;

Figure 6.43 RGB color coding with the triplet of differential invariants 8L, Li  Li , Li i < .

Intermezzo: Tensor notation

There  are  many  ways  to  set  up  an  irreducible  basis,  but  it  is  beyond  the  scope  of  this
introductory  book  to  go  in  detail  here.  We  just  give  one  example  of  another  often  used
scheme  to  generate  irreducible  invariants:  tensor  notation  (see  for  details  e.g.
[Florack1993a]). Here tensor indices  denote partial derivatives  and run over the dimensions,
e.g.  Li  denotes  the  vector  8Lx , Ly < ,  Li j  denotes  the  second  order  matrix  (the  Hessian)ikjjj Lx x Lx y

Ly x Ly y

y{zzz , etc. 

When  indices  come  in  pairs,  summation  over  the  dimensions  is  implied  (the  so-called
Einstein summation convention, or contraction): Li i = ⁄i=x

D Li i = Lx x + Ly y , etc. So we get:

Zeroth order L
First order Li  Li  (= Lx  Lx + Ly  Ly , the gradient)
Second order Li i  (= Lx x + Ly y , the Laplacian)

Li j  Lj i  (= Lx x
2 + 2 Lx y + Ly y

2 , the 'deviation from flatness'),
Li  Li j  Lj (= Lx

2  Lx x + 2 Lx  Ly  Lx y + Ly
2  Ly y , 'curvature')

etc.

Some statements by famous physicists:
-  "Gauge invariance  is  a classic  case of a  good idea  which was  discovered  before  its  time."
(K. Moriyasu, An Elementary Primer for Gauge Theory, World Scientific, 1984).
-  "The  name  'gauge'  comes  from the  ordinary  English  word  meaning  'measure'.  The  history
of  the  use  of  this  name  for  a  class  of  field  theories  is  very  roundabout,  and  has  little  to  do
with  their  physical  significance  as  we  now  understand  it."  (S.  Weinberg,  "The  Forces  of
Nature", Am. Scientist, 65, 1977).
- "As far as I see, all a priori statements in physics have their origin in symmetry." (H. Weyl,
Symmetry, 1952).

135 6.12 Irreducible invariants



Some statements by famous physicists:
-  "Gauge invariance  is  a classic  case of a  good idea  which was  discovered  before  its  time."
(K. Moriyasu, An Elementary Primer for Gauge Theory, World Scientific, 1984).
-  "The  name  'gauge'  comes  from the  ordinary  English  word  meaning  'measure'.  The  history
of  the  use  of  this  name  for  a  class  of  field  theories  is  very  roundabout,  and  has  little  to  do
with  their  physical  significance  as  we  now  understand  it."  (S.  Weinberg,  "The  Forces  of
Nature", Am. Scientist, 65, 1977).
- "As far as I see, all a priori statements in physics have their origin in symmetry." (H. Weyl,
Symmetry, 1952).

6.13 Summary of this chapter

Invariant  differential  feature  detectors  are  special  (mostly)  polynomial  combinations  of
image  derivatives,  which  exhibit  invariance  under  some  chosen  group  of  transformations.
We  only  discussed  invariance  under  translations  and  rotations,  the  most  common  groups,
especially  for medical  images.  The derivatives  are easily  calculated  from the image through
the multi-scale Gaussian derivative kernels.

The notion of invariance is crucial for geometric relevance. Non-invariant  properties have no
value  in  general  feature  detection  tasks.  A  convenient  paradigm  to  calculate  features
invariant under Euclidean coordinate transformations is the notion of gauge coordinates. For
first  order  in  2D  they  are  defined  as  a  local  frame  with  one  unit  vector  w”÷÷  pointing  in  the
direction  of  the  gradient,  the  other  perpendicular  unit  vector  v”  pointing  in  the  direction
tangential  to  the  isophote.  Any  combination  of  derivatives  with  respect  to  v  and  w  is
invariant  under  Euclidean  transformations.  We  discussed  the  second  order  examples  of
isophote  and  flowline  curvature,  cornerness  and  the  third  order  example  of  T-junction
detection in this framework.

Mathematica  offers  a  particularly  attractive  framework,  in  that  it  combines  the  analytical
calculation  of features  under the  Euclidean  invariance  condition  with a  final  replacement  of
the  analytical  derivatives  with  numerical  Gaussian  derivatives.  In  this  way  even  high  order
(up to order 4) examples could be discussed and calculated.
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