53 4.1 Introduction

4. Gaussian derivatives

A difference which makes no difference is not a difference.
Mr. Spock (stardate 2822.3)

4.1 Introduction

We will encounter the Gaussian derivative function at many places throughout this book.
The Gaussian derivative function has many interesting properties. We will discuss them in
one dimension first. We study its shape and algebraic structure, its Fourier transform, and its
close relation to other functions like the Hermite functions, the Gabor functions and the
generalized functions. In two and more dimensions additional properties are involved like
orientation (directional derivatives) and anisotropy.

4.2 Shape and algebraic structure

When we take derivatives to x (spatial derivatives) of the Gaussian function repetitively, we
see a pattern emerging of a polynomial of increasing order, multiplied with the original
(normalized) Gaussian function again. Here we show a table of the derivatives from order O
(i.e. no differentiation) to 3.
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The function Factor takes polynomial factors apart.

The function gauss[x, o] is part of the standard set of functions (in FEV.m) with this
book, and is protected. To modify it, it must be Unprotected.

The zeroth order derivative is indeed the Gaussian function itself. The even order (including
the zeroth order) derivative functions are even functions (i.e. symmetric around zero) and the
odd order derivatives are odd functions (antisymmetric around zero). This is how the graphs
of Gaussian derivative functions look like, from order O up to order 7 (note the marked
increase in amplitude for higher order of differentiation):
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GraphicsArray|[
Partition[Table[Plot[Evaluate[D[gauss[x, 1], {x, n}]], {x, -5, 5},
PlotLabel -> StringJoin["Order=", ToString[n]], DisplayFunction ->
Identity], {n, 0, 7}], 4], ImageSize -> 500] // Show;
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Figure 4.1 Plots of the 1D Gaussian derivative function for order 0 to 7.

The Gaussian function itself is a common element of all higher order derivatives. We extract
the polynomials by dividing by the Gaussian function:

D[gauss[x, o], {x, n}]

Table [Evaluate| ]+ {n, 0, 4}] // Simplify

gauss[x, O]
x  x?-0? x> -3x0?2 x*-6x*c?+30*
{ll - oz r 04 r 06 r 08 }
These polynomials have the same order as the derivative they are related to. Note that the
highest order of x is the same as the order of differentiation, and that we have a plus sign for
the highest order of x for even number of differentiation, and a minus signs for the odd
orders.

These polynomials are the Hermite polynomials, called after Charles Hermite, a brilliant
French mathematician (see figure 4.2).

Show[Import["Charles Hermite.jpg"], ImageSize -> 150];

Figure 4.2 Charles Hermite (1822-1901).
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They emerge from the following definition: et = =D" H, (x) e . The function

xn
H,(x) is the Hermite polynomial, where n is called the order of the polynomial. When we
make the substitution x x / (0' vV 5), we get the following relation between the Gaussian
function G(x, o) and its derivatives: ntj’”) =(-1)" ! )G(x, o).

X
vy Miloys
In Mathematica the function H, is given by the function HermiteH[n, x]. Here are the
Hermite functions from zeroth to fifth order:

Table[HermiteH[n, x], {n, 0, 7}] // TableForm

1

2 X
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-120 + 720 x? - 480 x* + 64 x°
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The inner scale o is introduced in the equation by substituting x f/? . As a consequence,
(o

with each differentiation we get a new factor \1/5 . So now we are able to calculate the 1-D
(o

Gaussian derivative functions gd[x,n, o] directly with the Hermite polynomials, again
1
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incorporating the normalization factor
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Check:

Simplify[gd[x, 4, o], o> 0]
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The amplitude of the Hermite polynomials explodes for large x, but the Gaussian envelop
suppresses any polynomial function. No matter how high the polynomial order, the
exponential function always wins. We can see this graphically when we look at e.g. the 7"
order Gaussian derivative without (i.e. the Hermite function, figure left) and with its
Gaussian weight function (figure right). Note the vertical scales:
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DisplayTogetherArray[{Plot[f[x] , {x, -5, 5}],
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p2 = Plot[£[x] Exp|[- ) ], {x, -5, 5}]}, ImageSize -> 400];
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Figure 4.3 Left: The 7" order Hermite polynomial. Right: idem, with a Gaussian envelop
(weighting function). This is the 7" order Gaussian derivative kernel.

Due to the limiting extent of the Gaussian window function, the amplitude of the Gaussian
derivative function can be negligible at the location of the larger zeros. We plot an example,
showing the 20™ order derivative and its Gaussian envelope function:

n=20;o0=1; Display’.[‘ogether[{FilledPlot[gd[x, n, o], {x, -5, 5}1,

d[0, n, o] gauss[x, O
Plot[g [0,n, 0lg [x/ ], {x, -5, 5}]}, ImageSize -> 200];

gauss [0, o]
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Figure 4.4 The 20™ order Gaussian derivative's outer zero-crossings vahish in negligence.
Note also that the amplitude of the Gaussian derivative function is not bounded by the
Gaussian window. The Gabor kernels, as we will discuss later in section 4.7, are bounded by
the Gaussian window.

How fast the Gaussian function goes zero can be seen from its values at x = 30, x = 40
and x = 5o, relative to its peak value:

gauss[o, 1]

Table [ , {0, 3,5}]//N

gauss [0, 1]

{0.011109, 0.000335463, 3.72665 10 °}

and in the limit:
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Limit[gd[x, 7, 1], x -> Infinity]

0

The Hermite polynomials belong to the family of orthogonal functions on the infinite
interval (- , ) with the weight function e , f_ e H,(x)H,(x) x =2""p| Vr Onm »
where 6,,, is the Kronecker delta, or delta tensor. 6,,, = 1 for n = m, and 6,,, = 0 for
n  m.

Table[J Exp[-x?] HermiteH[k, x] HermiteH[m, x] x,
{k, 0, 3}, {m, O, 3}] // MatrixForm

N0 0 0
0 2+/7 0 0
0 0 8+/n 0
0 0 0  48+/r¢

The Gaussian derivative functions, with their weight function e~ 2 are not orthogonal. We
check this with some examples:

{j gd[x, 2, 1] gd[x, 3, 1] x, j gd[x, 2, 1] gd[x, 4, 1] x}

15
{0, - 16 v/ )

Other families of orthogonal polynomials are e.g. Legendre, Chebyshev, Laguerre, and
Jacobi polynomials. Other orthogonal families of functions are e.g. Bessel functions and the
spherical harmonic functions. The area under the Gaussian derivative functions is not unity,
e.g. for the first derivative:

SetOptions[Integrate, GenerateConditions -> False];

J gd[x, 1, o] x
V]

1

A2

4.3 Gaussian derivatives in the Fourier domain

The Fourier transform of the derivative of a function is (—i w) times the Fourier transform of
the function. For each differentiation, a new factor (—i w) is added. So the Fourier transforms
of the Gaussian function and its first and second order derivatives are:

o=.; Simplify[FourierTransform[
{gauss[x, o], xgauss[x, 0], (x,2j9auss[x, o]}, x, w], o> 0]
{j—%ozmz j—%ozmzw j—%ozmz wz}

Ver T Wano T N2n
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In general: 7 { "G } = (-iw)" F{G(x, 0)}.

xn
Gaussian derivative kernels also act as bandpass filters. The maximum is at w = Vn:

Iw)"

(- o? w?
n=.;a=1;Solve[Evaluate[D[ Exp[— 2 ],a)]] ==0,a)]

27
{fo 0n}, (o -vn}, (o a3}

The normalized powerspectra show that higher order of differentiation means a higher center
frequency for the bandpass filter. The bandwidth remains virtually the same.

o=1; pl =Table [Plot [Abs[

{w, 0, 6}, DisplayFunction -> Identity] ; {n, 1, 12}] ;
Show[pl, DisplayFunction -> $DisplayFunction, PlotRange -> All,

AxesLabel -> {"w", ""}, ImageSize -> 400];

0.8
0.6
04 -

02 r

1 2 3 4 5 6

Figure 4.5 Normalized power spectra for Gaussian derivative filters for order 1 to 12, lowest
order is left-most graph, o = 1. Gaussian derivative kernels act like bandpass filters.

A Task 4.1 Show with partial integration and the definitions from section 3.10 that
the Fourier transform of the derivative of a function is (—jiw) times the Fourier
transform of the function.

A Task 4.2 Note that there are several definitions of the signs occurring in the
Fourier transform (see the Help function in Mathematica under Fourier). Show
that with the other definitions it is possible to arrive to the result that the Fourier
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transform of the derivative of a function is (i w) times the Fourier transform of the
function. In this book we stick to the default definition.

4.4 Zero crossings of Gaussian derivative functions

]

gd[x_, n_, o_] := ( -t ] Hermitel-l[n, * ! Exp
oV2 a'\/E am

nmax = 20; o= 1;

Show[Graphics[Flatten[Table[{Pointsize[0.015] , Point [{n, x}1} /.

X
Solve [HermiteH[n, ] ==0, x] ; {n, 1, nmax}] ’ 1] ] ’
V2
AxesLabel -> {"Order", "Zeros of\nHermiteH"}, Axes -> True,
ImageSize -> 350] H
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Figure 4.6 Zero crossings of Gaussian derivative functions to 20" order. Each dot is a zero-
crossing.

How wide is a Gaussian derivative? This may seem a non-relevant question, because the
Gaussian envelop often completely determines its behaviour. However, the number of zero-
crossings is equal to the order of differentiation, because the Gaussian weighting function is
a positive definite function.

It is of interest to study the behaviour of the zero-crossings. They move further apart with
higher order. We can define the 'width' of a Gaussian derivative function as the distance
between the outermost zero-crossings. The zero-crossings of the Hermite polynomials
determine the zero-crossings of the Gaussian derivatives. In figure 4. 6all zeros of the first 20
Hermite functions as a function of the order are shown. Note that the zeros of the second
derivative are just one standard deviation from the origin:

o=.; Simplify[Solve[D[gauss[x, o], {x, 2}] ==0, x], o > 0]

{({x -0}, {x o}}
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An exact analytic solution for the largest zero is not known. The formula of Zernicke (1931)
specifies a range, and Szego (1939) gives a better estimate:

Block [ {$DisplayFunction = Identity},

pl =Plot[2$qrt[n+1—3.05'\3/m], {n, 5, 50}];
(* Zernicke upper limit *)

p2 = Plot[2Sqrt[n+1-1.15Vn+1], {n, 1, 50}];
(* Zernicke lower limit *)

p3 =Plot[2Vn+ .5 -2.338098/ Vn+ .5,

{n, 1, 50}, PlotStyle -> Dashing[{.01, .02}]]];
Show[{pl, p2, p3}, AxesLabel -> {"Order",
"Width of Gaussian\nderivative (in o)"}, ImageSize -> 260];

‘Widthof Gaussian
derivative(in o)
14

Order
10 20 30 40 50

Figure 4.7 Estimates for the width of Gaussian derivative functions to 50" order. Width is
defined as the distance between the outmost zero-crossings. Top and bottom graph:
estimated range by Zernicke (1931), dashed graph: estimate by Szego (1939).

For very high orders of differentiation of course the numbers of zero-crossings increases, but
also their mutual distance between the zeros becomes more equal. In the limiting case of
infinite order the Gaussian derivative function becomes a sinusoidal function:

lim,, 9 (x,0) = Sin(xy L (D).

4.5 The correlation between Gaussian derivatives

Higher order Gaussian derivative kernels tend to become more and more similar. This makes
them not very suitable as a basis. But before we investigate their role in a possible basis, let
us investigate their similarity.

In fact we can express exactly how much they resemble each other as a function of the
difference in differential order, by calculating the correlation between them. We derive the
correlation below, and will appreciate the nice mathematical properties of the Gaussian
function. Because the higher dimensional Gaussians are just the product of 1D Gaussian
functions, it suffices to study the 1D case.

Compare e.g. the 20™ and 24" derivative function:
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Block[{$DisplayFunction = Identity},
gl = Plot[gd[x, 20, 2], {x, -7, 7}, PlotLabel -> "Order 20"];
g2 = Plot[gd[x, 24, 2], {x, -7, 7}, PlotLabel -> "Order 24"]];
Show [GraphicsArray[{gl, g2}, ImageSize -> 400]];
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Figure 4.8 Gaussian derivative functions start to look more and more alike for higher order.
Here the graphs are shown for the 20" and 24™ order of differentiation.

The correlation coefficient between two functions is defined as the integral of the product of
the functions over the full domain (in this case — to + ).

Because we want the coefficient to be unity for complete correlation (when the functions are
identical by an amplitude scaling factor) we divide the coefficient by the so-called
autocorrelation coefficients, i.e. the correlation of the functions with themselves.

We then get as definition for the correlation coefficient r between two Gaussian derivatives
of order n and m:

_ [ s x
VI go@P x[ gm@? x

'nm

with g(”) (x) = n‘i (nx) . The Gaussian kernel g(x) itself is an even function, and, as we have
seen before, g(”) (x) is an even function for » is even, and an odd function for n is odd. The
correlation between an even function and an odd function is zero. This is the case when n

and m are both not even or both not odd, i.e. when (n —m) is odd. We now can see already
two important results:

Fom = 0 for (n — m) odd;

Fam= 1forn=m.

The remaining case is when (n—m) is even. We take n>m. Let us first look to the
nominator, f_ g™ (x)g™(x) x. The standard approach to tackle high exponents of
functions in integrals, is the reduction of these exponents by partial integration:

[ g"®eg™ ) x=
gL [ g PWeg" N x=D [ g Pwe" P x
when we do the partial integration k times. The 'stick expression' g~V (x) g (x) |_ is zero

because any Gaussian derivative function goes to zero for large x. We can choose k& such that
the exponents in the integral are equal (so we end up with the square of a Gaussian derivative
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(n—m)

function). So we make (n—k)=(m+k), ie. k= 5

(n —m) is even, k is an integer number. We then get:

. Because we study the case that

DF [ g P gm ) x=(=1"" [ g"Mweg " x

The fotal energy of a function in the spatial domain is the integral of the square of the
function over its full extent. The famous theorem of Parceval states that the total energy of a
function in the spatial domain is equal to the total energy of the function in the Fourier
domain, i.e. expressed as the integral of the square of the Fourier transform over its full
extent. Therefore

n—-m n+m n+m Parceval n—m 1 . nm
D [ g we 2 m x =T (=D L, [ (W) g w=
(_1)n;m zlﬂ j‘_ Wt g2 (w) W= (_1)n—2m 217r L W e_o_zwz w
We now substitute w' = o w, and get finally: -7 21ﬂ a"+lm+1 f_ @' gm0y,

This integral can be looked up in a table of integrals, but why not let Mathematica do the job
(we first clear n and m):

2

Clear([n, m]; j x""e™ x

; (1+(-1)™") Gamma| ; (l+m+n)| Log[e]z "1™
The function Gamma is the Euler gamma function. In our case Re [m+n]>-1, so we get for
our correlation coefficient for (n — m) even:

(_1):1—2m 1 1 r( m+2n+1 ) B (_1)”’2”’ I-( m+;z+1 )

2 gntm+l

Tan = =
\/ 21n inﬂ I-(2;1;1) zlﬂ Fz}m I-(zmzﬂ) \/r(2n2+1 )I-(zmz+1)

Let's first have a look at this function for a range of values for #n and m (0-15):

n-m m+n+1 2n+1 2m+ 1
rin_,m] :=(-1) 2 Gamma[ 2 ]/\/Gamma[ 2 ]Gamma[ 2 ];

ListPlot3D[Table[Abs[r[n, m]], {n, O, 15}, {m, O, 15}],
Axes -> True, AxesLabel -> {"n", "m", "Abs\nr[n,m]"},
ViewPoint -> {-2.348, -1.540, 1.281}, ImageSize -> 220];
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Figure 4.9 The magnitude of the correlation coefficient of Gaussian derivative functions for
0<n<15and 0 <m< 15. The origin is in front.
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Here is the function tabulated:.

Table [NumberForm[r[n, m] // N, 3], {n, O, 4}, {m, O, 4}] // MatrixForm

1. 0.-0.798 -0.577 0.+0.412 0.293
0.+0.798 1. 0.-0.921 -0.775 0.+0.623
-0.577 0.+0.921 1. 0.-0.952 -0.845
0.-0.412 -0.775 0.+0.952 1. 0.-0.965
0.293 0.-0.623 -0.845 0.+0.965 1.

The correlation is unity when n = m, as expected, is negative when n —m = 2, and is positive
when n —m =4, and is complex otherwise. Indeed we see that when n —m = 2 the functions

are even but of opposite sign:

Block[{$DisplayFunction = Identity},
pl = Plot[gd[x, 20, 2], {x, -5, 5}, PlotLabel -> "Order 20"];
p2 = Plot[gd[x, 22, 2], {x, -5, 5}, PlotLabel -> "Order 22"]];
Show [GraphicsArray[{pl, p2}, ImageSize -> 450]];

Order22
600

Order20

10 400
4 2 4 -4 2 4
B -200
50
—40

—600

—-100
Figure 4.10 Gaussian derivative functions differing two orders are of opposite polarity.

and when n —m = 1 they have a phase-shift, leading to a complex correlation coefficient:

Block[{$DisplayFunction = Identity},
pl = Plot[gd[x, 20, 2], {x, -5, 5}, PlotLabel -> "Order 20"];
p2 = Plot[gd[x, 21, 2], {x, -5, 5}, PlotLabel -> "Order 21"]];

Show [GraphicsArray[{pl, p2}, ImageSize -> 450]];
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Figure 4.11 Gaussian derivative functions differing one order display a phase shift.

Of course, this is easy understood if we realize the factor (—iw) in the Fourier domain, and
that i=e™ 2. We plot the behaviour of the correlation coefficient of two close orders for

large n. The asymptotic behaviour towards unity for increasing order is clear.
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Plot[-r[n, n+2], {n, 1, 20}, DisplayFunction -> $DisplayFunction,
AspectRatio -> .4, PlotRange -> {.8, 1.01},
AxesLabel -> {"Order", "Correlation\ncoefficient"}];

Correlation
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Order

095

09

0.85

08 L

Figure 4.12 The correlation coefficient between a Gaussian derivative function and its ever
neighbour up quite quickly tends to unity for high differential order.

4.6 Discrete Gaussian kernels

1 -x? 1
o=2; Plot[{ Exp [ , ], BesselI[x, o°] /BesselI[0, o°]},
2 7t o? 20 2 7t o2
{x, 0, 8}, Plotstyle {RGBColor[O, O, 0], Dashing[{0.02, 0.02}1]1},
PlotLegend {"Gauss", "Bessel"}, LegendPosition {1, 0},
LegendLabel "o = 2", PlotRange All, ImageSize 400];

0.2

Gauss

0.15

\ — — — — Bessel

0.1 \

005 t N

Figure 4.13 The graphs of the Gaussian kernel and the modified Bessel function of the firs
kind are very alike.

Lindeberg [Lindeberg1990] derived the optimal kernel for the case when the Gaussian kernel
was discretized and came up with the "modified Bessel function of the first kind". In
Mathematica this function is available as BesselI. This function is almost equal to the
Gaussian kernel for o > 1, as we see in the figure on the previous page. Note that the Bessel
function has to be normalized by its value at x = 0. For larger o the kernels become rapidly
very similar.
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4.7 Other families of kernels

The first principles that we applied to derive the Gaussian kernel in chapter 2 essentially
stated "we know nothing" (at this stage of the observation). Of course, we can relax these
principles, and introduce some knowledge. When we want to derive a set of apertures tuned
to a specific spatial frequency % in the image, we add this physical quantity to the matrix of
the dimensionality analysis:

m = {{11 _ll '21 '21 _l}l {ol ol ll 1! 0]’]’;
TableForm[m,
TableHeadings -> {{"meter", "candela"}, {"o", "w", "LO", "L", "k"}}]

w L0 L k
meter -1 -2 -2 -1
candela 0 0 1 1 0

= Q

The nullspace is now:

NullSpace[m]

{{¢, 0, 0,0, 1}, {0, 0, -1, 1, 0}, {1, 1,0, 0, 0}}

Following the exactly similar line of reasoning, we end up from this new set of constraints
with a new family of kernels, the Gabor family of receptive fields, with are given by a
sinusoidal function (at the specified spatial frequency) under a Gaussian window.

In the Fourier domain: Gabor(w, o, k) = @ o ik @, which translates into the spatial
domain:

x2

1
gabor[x_, o_] :=Sin[x] Exp[-
2 o2

2 7t o2

E

The Gabor function model of cortical receptive fields was first proposed by Marcelja in 1980
[Marceljal980]. However the functions themselves are often credited to Gabor [Gabor1946]
who supported their use in communications.

Gabor functions are defined as the sinus function under a Gaussian window with scale o.
The phase ¢ of the sinusoidal function determines its detailed behaviour, e.g. for ¢ =/2 we

get an even function.Gabor functions can look very much like Gaussian derivatives, but there
are essential differences:

- Gabor functions have an infinite number of zero-crossings on their domain.

- The amplitudes of the sinusoidal function never exceeds the Gaussian envelope.
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gabor[x_, ¢_, o_] :=Sin[x + ¢] gauss[x, o];

Block[{$DisplayFunction = Identity, p, pg},
p = Plot[gabor([x, #, 10], {x, -30, 30}, PlotRange -> {-.04, .04}] &;
pg = Plot[gauss[x, 10], {x, -30, 30}, PlotRange -> {-.04, .04}];
pl3 = Sshow[p[0], pg]l; p23 = Show[p[7 /2], pgl];

Show [GraphicsArray[{pl3, p23}], ImageSize -> 450];

0.0 0.0
2 .02]
-30 S2(0 \/—1 v \/20 30 -30 —20\/ 1 1 \/ 20 30
0.02 =00
-0.0: -0.04

Figure 4.14 Gabor functions are sinusoidal functions with a Gaussian envelope. Left: Sin[x
G[x,107; right: Sin[x+71/2] G[x,10].

Gabor functions can be made to look very similar by an appropriate choice of parameters:

1 x?
o=1; gd[x_, a_]=D[ Exp[- 2],x];
2 v o2 20
Plot[{- 1.2 gabor[x, 1.2], gd[x, 1]}, {x, -4, 4},
PlotStyle {Dashing[{0.02, 0.02}], RGBColor[0O, O, O]},
PlotLegend {"Gabor", "Gauss"},
LegendPosition {1.2, -0.3}, ImageSize -> 320];
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Figure 4.15 Gabor functions can be made very similar to Gaussian derivative kernels. In ¢
practical application then there is no difference in result. Dotted graph: Gaussian first
derivative kernel. Continuous graph: Minus the Gabor kernel with the same o as the
Gaussian kernel. Note the necessity of sign change due to the polarity of the sinusoidal
function.

If we relax one or more of the first principles (leave one or more out, or add other axioms),
we get other families of kernels. E.g. when we add the constraint that the kernel should be
tuned to a specific spatial frequency, we get the family of Gabor kernels [Florack1992a,
Florack1997a]. It was recently shown by Duits et al. [Duits2002a], extending the work of
Pauwels [Pauwels1995], that giving up the constraint of separability gives a new family of
interesting Poisson scale-space kernels, defined by the solution of the Dirichlet problem
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f = —(-=A)* L. For @ = 1 we find the Gaussian scale-space, for a = ;

séale-space. In this book we limit ourselves to the Gaussian kernel.

we get the Poisson

We conclude this section by the realization that the front-end visual system at the retinal
level must be uncommitted, no feedback from higher levels is at stake, so the Gaussian
kernel seems a good candidate to start observing with at this level. At higher levels this
constraint is released.

The extensive feedback loops from the primary visual cortex to the LGN may give rise to
'geometry-driven diffusion' [TerHaarRomeny1994f], nonlinear scale-space theory, where the
early differential geometric measurements through e.g. the simple cells may modify the
kernels LGN levels. Nonlinear scale-space theory will be treated in chapter 21.

A Task 4.2 When we have noise in the signal to be differentiated, we have two
counterbalancing effect when we change differential order and scale: for higher
order the noise is amplified (the factor (-iw)" in the Fourier transform
representation) and the noise is averaged out for larger scales. Give an explicit
formula in our Mathematica framework for the propagation of noise when filtered
with Gaussian derivatives. Start with the easiest case, i.e. pixel-uncorrelated
(white) noise, and continue with correlated noise. See for a treatment of this
subject the work by Blom et al. [Blom1993al].

A Task 4.3 Give an explicit formula in our Mathematica framework for the
propagation of noise when filtered with a compound function of Gaussian

derivatives, e.g. by the Laplacian zx? + zyf . See for a treatment of this subject

the work by Blom et al. [Blom1993a].

4.8 Higher dimensions and separability

Gaussian derivative kernels of higher dimensions are simply made by multiplication. Here
again we see the separability of the Gaussian, i.e. this is the separability. The function
gd2D[x,y,n,m,0x,0y] is an example of a Gaussian partial derivative function in 2D,
first order derivative to x, second order derivative to y, at scale 2 (equal for x and y):
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gd2D[x_,y_,n_, m_, ox_, oy_] :=gd[x, n, ox] gd[y, m, oy];
Plot3D[gd2D[x, vy, 1, 2, 2, 2], {x, -7, 71},

{y, -7, 7}, AxesLabel -> {x, y, ""}, PlotPoints -> 40,

PlotRange -> All, Boxed -> False, Axes -> True, ImageSize -> 190];

Figure 4.16 Plot of zf(“;;y). The two-dimensional Gaussian derivative function can be

constructed as the product of two one-dimensional Gaussian derivative functions, and so for
higher dimensions, due to the separability of the Gaussian kernel for higher dimensions.

The ratio (‘:“ is called the anisotropy ratio. When it is unity, we have an isotropic kernel,
:

which diffuses in the x and y direction by the same amount. The Greek word 'isos' (t00g)

means 'equal’, the Greek word 'tropos' (tpomog) means 'direction' (the Greek word 'topos'

Tomo§) means 'location, place').
S p

In 3D the iso-intensity surfaces of the Gaussian kernels are shown (and can be interactively
manipulated) with the command MVContourPlot3D from the OpenGL viewer 'MathGL3D'

by J.P.Kuska
(phong.informatik.uni-leipzig.de/~kuska/mathgl3dv3):

<< MathGL3d OpenGLViewer" ;

MVClear[]; o=1;

2, .2 2
pl = Table [MVContourPlot3D [Evaluate [D[E_x o  {x%, n}] ] , {x, -6, 6},
{y, -4, 4}, {2z, -3, 0}, Contours Range[-.6, .6, .1], PlotPoints 60,
BoxRatios {2, 2, 1}, DisplayFunction Identity] s {n, 1, 3}];
Show [GraphicsArray[pl], ImageSize 400];

Figure 4.17 Iso-intensity surface for Gaussian derivative kernels in 3D. Left: f ; middle: zxf
3G
x3

right:

The sum of 2 of the three 2" order derivatives is called the 'hotdog' detector:
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MVClear[]; o=1;

x2 +y2 422 x2 +y2 +22

pl =MVContourPlot3D[Evaluate[ xxE 22  + , ,E 20 ], {x, -6, 6},
{y, -4, 4}, {z, -3, 0}, Contours Range[-.6, .6, .1],
PlotPoints 60, BoxRatios {2, 2, 1}, ImageSize -> 150];

2G 2G
x2 FC

Figure 4.18 Iso-intensity surface for the Gaussian derivative in 3D
4.9 Summary of this chapter

The Gaussian derivatives are characterized by the product of a polynomial function, the
Hermite polynomial, and a Gaussian kernel. The order of the Hermite polynomial is the same
as the differential order of the Gaussian derivative. Many interesting recursive relations exist
for Hermite polynomials, making them very suitable for analytical treatment. The shape of
the Gaussian derivative kernel can be very similar to specific Gabor kernels. One essential
difference is the number of zerocrossing: this is always infinite for Gabor kernels, the
number of zerocrossings of Gaussian derivatives is equal to the differential order. The
envelope of the Gaussian derivative amplitude is not the Gaussian function, as is the case for
Gabor kernels.

The even orders are symmetric kernels, the odd orders are asymmetric kernels. The
normalized zeroth order kernel has unit area by definition, the Gaussian derivative kernels of
the normalized kernel have no unit area.

Gaussian derivatives are not orthogonal kernels. They become more and more correlated for
higher order, if odd or even specimens are compared. The limiting case for infinite order
leads to a sinusoidal (for the odd orders) or cosinusoidal (for the even orders) function with a
Gaussian envelope, i.e. a Gabor function.

In the vision chapters we will encounter the Gaussian derivative functions as suitable and
likely candidates for the receptive fields in the primary visual cortex.



