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Goal 

• Image intensity transformations 

• Intensity transformations as mappings 

• Image histograms 

• Relationship btw histograms and 

probability density distributions 

• Repetition: Probabilities 

• Image segmentation via thresholding 

• Image segmentation using pdf’s 
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Intensity transformation 

example 
g(x,y) = log(f(x,y)) 

f(x1,y1) g(x1,y1) 

g(x1,y1) = log ( f(x1,y1)  ) 

f(x2,y2) g(x2,y2) 

g(x2,y2) = log ( f(x2,y2)  ) 

•We can drop the (x,y) and represent this kind of filter as an intensity 

transformation s=T(r). In this case s=log(r) 
-s: output intensity  

-r: input intensity 
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Intensity transformation 

s  T (r)
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Gamma correction 

s  cr

© 1992–2008  R. C. Gonzalez & R. E. Woods  



6 

Gamma transformations 
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Gamma transformations 
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Piecewise linear intensity 

transformation 

© 1992–2008  R. C. Gonzalez & R. E. Woods  

•More control 

•But also more     

parameters for 

user to specify 
•Graphical user 

interface can be 

useful 
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More intensity transformations 
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Histogram of Image Intensities 

• Create bins of intensities and count 

number of pixels at each level 

– Normalize or not (absolute vs % frequency) 

Grey level value 
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Histograms and Noise 

• What happens to the histogram if we 

add noise?   

– g(x, y) = f(x, y) + n(x, y) 

Grey level value 
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• S = Set of possible outcomes of a random 

event 

• Toy examples 

– Dice 

– Urn 

– Cards 

• Probabilities 

 

 

Sample Spaces 
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Conditional Probabilities 

• Multiple events 
– S2 = SxS Cartesian produce - sets 

– Dice - (2, 4) 

– Urn - (black, black) 

• P(A|B) - probability of A in second experiment 
knowledge of outcome of first experiment 
– This quantifies the effect of the first experiment on 

the second 

• P(A,B) - probability of A in second experiment 
and B in first experiment 

• P(A,B) = P(A|B)P(B) 
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Independence 

• P(A|B) = P(A) 
– The outcome of one experiment does not affect 

the other 

• Independence -> P(A,B) = P(A)P(B) 

• Dice 
– Each roll is unaffected by the previous (or history) 

• Urn 
– Independence -> put the stone back after each 

experiment 

• Cards 
– Put each card back after it is picked 
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Random Variable (RV) 

• Variable (number) associated with the 
outcome of an random experiment 

• Dice 
– E.g. Assign 1-6 to the faces of dice 

• Urn 
– Assign 0 to black and 1 to white (or vise versa) 

• Cards 
– Lots of different schemes - depends on application 

• A function of a random variable is also a 
random variable 
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Cumulative Distribution Function 

(cdf) 

• F(x), where x is a RV 

• F(-infty) = 0, F(infty) = 1 

• F(x) non decreasing 
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Continuous Random Variables 

• f(x) is pdf (normalized to 1) 

• F(x) –  cdf continuous 

– –> x is a continuous RV 
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Probability Density Functions 

• f(x) is called a probability density function (pdf) 

 

 

 

• A probability density is not the same as a probability 

• The probability of a specific value as an outcome of 
continuous experiment is (generally) zero 

– To get meaningful numbers you must specify a 
range 
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Expected Value of a RV 

 

 

 

 

• Expectation is linear 

– E[ax] = aE[x] for a scalar (not random) 

– E[x + y] = E[x] + E[y] 

• Other properties 

– E[z] = z –––––– if z is not random 
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Mean of a PDF 

• Mean: E[x] = m  

– also called “” 

– The mean is not a random variable–it is a 

fixed value for any PDF 

• Variance: E[(x - m)2] = E[x2] - 2E[mx] + 

E[m2] = E[x2] - m2 = E[x2] - E[x]2  

– also called “2” 

– Standard deviation is  

– If a distribution has zero mean then: E[x2] 

= 2 
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Sample Mean 

• Run an experiments 

– Take N samples from a pdf (RV) 

– Sum them up and divide by N 

• Let M be the result of that experiment 

– M is a random variable 
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Sample Mean 
• How close can we expect to be with a sample mean to the true mean? 

• Define a new random variable: D = (M - m)2. 

– Assume independence of sampling process 

 

 

 

Root mean squared difference between true mean and sample mean is stdev/sqrt(N). 

As number of samples –> infty, sample mean –> true mean. 

Independence –> E[xy] = E[x]E[y] 

Number of terms off 

diagonal 
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Application: Noisy Images 

• Imagine N images of the same scene with 

random, independent, zero-mean noise 

added to each one 

– Nuclear medicine–radioactive events are random 

– Noise in sensors/electronics 

• Pixel value is s+n 

 

True pixel 

value 

Random noise: 

•Independent from one image to the next 

•Variance =  
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Application: Noisy Images 

• If you take multiple images of the same scene you have 
– si = s + ni 

– S = (1/N) si = s + (1/N) ni  

– E[(S - s)2] = (1/N) E[ni 
2] = (1/N) E[ni 

2] - (1/N) E[ni]
2 = (1/N)2 

– Expected root mean squared error is /sqrt(N) 

• Application: 
– Digital cameras with large gain (high ISO, light sensitivity) 

– Not necessarily random from one image to next 

• Sensors CCD irregularity 

– How would this principle apply 

 

Zero mean 
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Averaging Noisy Images Can Improve Quality 
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Gaussian Distribution 

• “Normal”  or “bell curve” 

• Two parameters:  - mean,   – standard 

deviation 
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Gaussian Properties 

• Best fitting Guassian to some data is gotten 

by mean and standard deviation of the 

samples 

• Occurrence 

– Central limit theorem: result from lots of random 

variables 

– Nature (approximate) 

• Measurement error, physical characteristic, physical 

phenomenon 

•  Diffusion of heat or chemicals 
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What is image segmentation? 
• Image segmentation is the process of 

subdividing an image into its constituent 

regions or objects. 

• Example segmentation with two regions: 

Input image 

intensities 0-255 

Segmentation output 

0 (background)  

1 (foreground) 
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Thresholding 

• How can we choose T?  
– Trial and error 

– Use the histogram of f(x,y) 

Input image f(x,y) 

intensities 0-255 

Segmentation output g(x,y) 

0 (background)  

1 (foreground) 
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Choosing a threshold  

T=100 

Histogram 
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Role of noise 

T=120 
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Low signal-to-noise ratio 

T=140 
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Effect of noise on image 

histogram 

Images 

 

 

 

Histograms 

No noise         With noise        More noise  
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Effect of illumination on 

histogram 

Images 

 

 

 

Histograms 

f             x          g             =          h 

Original           Illumination             Final 

 image     image        image 
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Histogram of Pixel Intensity 

Distribution 
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Checkerboard with 

values 96 and 160. 
 

Histogram: 

  - horizontal: intensity 

  - vertical: # pixels 

Checkerboard with 

additive Gaussian noise  

(sigma 20). 
 

Regions: 50%b,50%w 

Histogram: Distribution of intensity values 

(count #pixels for each intensity level) 

 vp

255 0 

255 0 

# 

# 
96 160 



Classification by Thresholding 
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255 0 

# 

128 

50%b 

50%w 

50%b 

50%w 

50%b 

50%w 

Optimal Threshold: 

128
2

16096

2
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Important! 

• Histogram does not represent image 

structure such as regions and shapes, 

but only distribution of intensity values 

• Many images share the same histogram 

38 



Is the histogram suggesting 

the right threshold? 
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Proportions of 

bright and dark 

regions are  

different  Peak  

presenting bright  

regions becomes 

dominant. 
  

Threshold value 128 

does not match with 

valley in distribution. 

0 

# 

0 

# 

255 

255 

36%b 

64%w 

19%b 

81%w 

128 



Histogram as Superposition of PDF’s 
(probability density functions) 

Regions with  

2 brightness levels, 

different proportions 

Corruption with 

Gaussian noise, 

individual distributions 

Histogram: 

Superposition of 

distributions 

Statistical Pattern Recognition 
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Gaussian Mixture Model 
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Example: MRI 
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Example: MRI 
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Fit with 3 weighted Gaussians 
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Nonlinear optimization 

 

Estimate 9 parameters for best fit: 

 

 

 

 

Result: Weighted sum of Gaussians (pdf’s): 

 



Segmentation: Learning pdf’s 
• We learned: histogram can be 

misleading due to different size 

of regions. 

• Solution:  

– Estimate class-specific pdf’s via 

training (or nonlinear optimization) 

– Thresholding on mixed pdf’s. 
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Class 1 

Class 2 

Class 3 

Intensity 
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Segmentation: Learning pdf’s 
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Classification 
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Histogram Processing and 

Equalization 

• Notes 
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Histograms 

• h(rk) = nk  

– Histogram: 
number of times 
intensity level rk 

appears in the 
image 

• p(rk)= nk/NM 

– normalized 
histogram 

– also a probability 
of occurence 
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Histogram  

equalization 

• Automatic 

process of 

enhancing the 

contrast of any 

given image 
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Histogram Equalization 
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Adaptive Histogram 

Equalization: AHE 



Next Class 

• Continue with histogram equalization 

and matching 

• Read chapters 3.1/3.2 (repetition) and  

3.3 as introduction to next class. 
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