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Geom Trans: Distortion From

Op

Barrel Distortion
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Radial Distortion
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magnification/focal length different
for different angles of inclination

Can be corrected! (if parameters are know)




Geom Trans: Distortion From
Optics




Geom. Trans.: Brain
Template/Atlas

TBI Patient Brain Atlas with annotations
(Traumatic Brain Insury)



Geom. Trans.: Mosaicing
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Domain Mappings
Formulation

D {

(E. H. W. Meijering) L L .
g is the same (Iintensity) image as f, but

sampled on these new coordinates



Domain Mappings
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No Inverse?
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Example
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Transformation Examples

e Linear z' = Az + 7, A:(a 2)
C

' = ax + by + x
y' = cz+dy + yo
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iﬂ) 2D Rotation

* Rotate counter-clockwise about the origin by an angle &
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cosd |y
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L/{‘y Rotating About An Arbitrary Point

v

« What happens when you apply a rotation transformation to
an object that 1s not at the origin?

v
9
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7 Rotating About An Arbitrary

Point

« What happens when you apply a rotation transformation to
an object that 1s not at the origin?

— Tt translatesas well
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1]
{ E/ Now: First Rotate, then Translate

» Rotation followed by translation is not the same as
translation followed by rotation:

* T(R(object)) # R(T(object))
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Series of Transformations

2D Object: Translate, scale, rotate, translate again

Y y y y Y
A i LS
X | e X é—p—h’. <_ o X

P =T2+(R-S-(T1+P))

* Problem: Rotation, scaling, shearing are
multiplicative transforms, but translation is additive.
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Transformation Examples

e Linear z' = Az + 7, A:(a 2)
C

' = ax + by + x
y' = cz+dy + yo

20



Transformation Examples

e Linear z’' =Az+ zg A:(a 2)
C

' = ax + by + x
y' = cz+dy + yo

 Trick: Add one dimension

- 1 0 xq
F = y A = (0 1 y()) Example: Translation
1 0 0 1
- Az x: =x+ X
v y' =y + ¥
1=1 21



Transformation Examples

e Linear # = Az + A:(a 2)
C

' = ax + by + x
y' = cz+dy + yo

« Homogeneous coordinates

x a b xo
=\ vy A=\ ¢ d 1y
1 0 0 1
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* Use three numbers to represent a point

* (x,y)=(wx,wy,w) for any constant w=0
— Typically, (x,y) becomes (x,y,1)

— To go backwards, divideby w

* Translation can now be done with matrix multiplication!

/

Aﬂ

a

da

XX

yX

0

a

Xy

b

X

X

Homogeneous Coordinates
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 Translation:

* Scaling:

(o R = N

=

& @

S i O

S

=

Rotation:

cosé

sin &
0

Basic Transformations

—siné
cos @
0
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Special Cases of Linear

0 0 =z
Translation “={§ o * .

. cosf —sinf 0
ROtatlon A= | sinf cosf 0
0 0 1

Rigid = rotation + translation

p 0 O
Scaling A=(3 : ‘1’) D, g <1:expand

— Include forward and backward
rotation for arbitary axis

Reflection
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Resulting Transformations

s, 00 cosB —sin6 0 L0d,
S=10 5,0 R = |sin® cosH 0 =101 ff}_.
00 1 0 01 00 1]
. Y
new: PP=T2-R-S-T1-P

pefore: P’ = T2+ (R-S-(T1+P))



Cascading of Transformations

Excellent Introduction Materials (MIT):
http://groups.csail.mit.edu/graphics/classes/6.837/F01/LectureQ7/

Demo:
http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide09.html
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http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/
http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide09.html

§ 117 Excellent Materials for self study

http://aroups.csail.mit.edu/ raﬁ hics/classes/6.837/F01/Lecture07/Slide01.html

Problems with this Form

« Must consider Translation and Rotation separately
« Computmg the mverse transtorm mvolves multiple steps
o Order matters between the R and T parts

R(I (x)) =T (R(x))

These problem ceani be remedied by considermg our 2 dinensionial inage plane as a 2D
subspace within 3D.

Link: http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide01.html »g



http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide01.html

Linear Transformations

Also called “affine”
— 6 parameters

Rigid -> 3 parameters
Invertibility

— lnvert matrix
What does it mean if A is not invertible?

T '(z)=A'z

30



Affine: General Linear
Transformation

x a b xzo 6 parameters for Trans (2), Scal
Y A=| ¢ d 1wy (2), Rot (1), Shear X and Shear
1 B B Y — 7 Parameters 7?7777

]
I

T amowm | Gemm =
! ity 00 r-v A
2% P T 1 0 = B
T = AZ [ | ]
1)

Tramslation




Affine: General Linear
Transformation

T a b =z 6 parameters for Trans (2), Scal
T = Yy A= c d yo (2), Rot (1), Shear X and Shear
1

0 0 1



Affine: General Linear

Transformation
a b =z 6 parameters for Trans (2), Scal
A= c d g (2), Rot (1), Shear X and Shear
0 0 1 Y — 7 Parameters 77777
Rot 90deg Shear X Rot -90deg

ShearY can be formulated as
Shear X applied to rotated
Image -> There is only one
Shear parameter

Shear Y
33



Implementation

Two major procedures:

1. Definition or estimation of
transformation type and parameters

2. Application of transformation: Actual
transformation of image
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Implementation — Two
Approaches

1. Pixel filling — backward mapping
T() takes you from coords in g() to coords in f()
Need random access to pixels in ()
Sample grid for g(), interpolate f() as needed

f 9

T S
—/ / .E

T
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Interpolation: Binlinear

* Successive application of linear
Interpolation along each axis

Xe A, Q,,

: 5 rus L | ,
) ‘P f(Ry) = —— Q1) p— F(Q21)
| 1o T — T
f(R2) = — F(Qr2) A - _mlf(sz)
o, [P~ 2R+ T2 (R,
] i S i Y2 — W Y2 — Y1

Source: Wilkipedia
36



Binlinear Interpolation

* Notlinearinx,y

f(Qu)

flz,y)~ (w2 — x1)(y2 — 11

f(Qa1)

)(Iz —z)(y2 — y)

Eil | ng | E'.i';gy | ELLIy

(x — 1) (42 — y)

T o) (e — )

f(Q12)

T =) (v — 1)

f(Qan)

(2 —x)(y — 1)

(x2 — x1)(y2 — 1)

(x —x1)(y—11)-

by = f(0,0)

by = f(1,0) = f(0,0)
by = f(0,1) — f(0,0)
by = f(I],D)—f(l,D}

_f(n11}‘|‘f(111}
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Binlinear Interpolation

« Convenient form
— Normalize to unit grid [0,1]x[0,1]

f(2,y) ~ £(0,0) (1—2)(1—y) + f(1,0) (1 —y) + £(0,1) (L—2)y + F(L, )zy.

N f(0,0) fO,1)|1-y
flzy)=[1 -z 2 lm,uj flfl,lI!” y ]

 Bilinear is NONLINEAR Inx and y !
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Implementation — Two
Approaches

2. Splatting — forward mapping
T-1() takes you from coords in f() to coords in g()
You have f() on grid, but you need g() on grid

Push grid samples onto g() grid and do
iInterpolation from unorganized data (kernel)

)
)
-

B
T~ /. —
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Scattered Data Interpolation With Kernels
Shepard’s method

» Define kernel
— Falls off with distance, radially symmetric

K(Z1,%2) = K(|Z1 — Z2|)

1 |8y —dg|2
K(z,,&2) = e 27

Qmwer?
1
9 szf K(Z1,Z3) = — -
z] =1Wj ;=1 |Z1 — TP
- s ‘
'wj=K(/|m—T (:c\’&) . |- g
Rgguired Grid coordinates in f ’ [,
ri o T
J Transformed

coordinates ORI
ing coord. from f = i

Univ of Utah, CS66402010
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Shepard’'s Method
Implementation

* If points are dense enough

— Truncate kernel

— For each point in f() Data and weights

o accumulated here
 Form a small box around it in g() — beyond
which truncate

« Put weights and data onto grid in g()
— Accumulate contributions at grid g()
— Divide total data by total weights: B/A

N N
A= ij B = Zwif (T~%(2f)) e
j=1 i=1

42



ESTIMATION OF
TRANSFORMATIONS

43



Determine Transformations

 All polynomials of (x,y)
* Any vector valued function with 2 inputs

« How to construct transformations?
— Define form or class of a transformation

— Choose parameters within that class
* Rigid - 3 parameters (T,R)
 Affine - 6 parameters

44



Correspondences

 Also called “landmarks” or “fiducials”

45



Question: How many
landmarks for affine T7



Question: How many
landmarks for affine T7

* Estimation of 6 parameters— 3 corresponding
point pairs with (x,y) coordinates

The coordinates of three corresponding pomnts umquely determine and Atfine Transtform

If we know where we would like at least three points to map to, we can golve for an Affine
transtorm that will zive thiz mapping.



Transformations/Control Points
Strategy

. Define a functional representation for
i T(8,z)
T with k parameters (IT(5; 3 = (81 Bor... Brc)

. Define (pick) N correspondences

. FIind B so that

c.=T(8,¢;) i=1,...,N

. If overconstrained (K < 2N) then solve

arg min {Z (8l —T{(8, 61)2}

B i=1

48



Example Affine Transformation: 3

Corresponding Landmarks

Solution Method

We've used this technique several
tunes now. We set up 6 hnear
equations m terms of owr 6
nnknown values. In tlus case. we
know the coordmates betore and
after the mappmg, and we wish to
golve tor the entries m our Affine
transform matrrx.

This gives the followmg solution:

X'x'=a

—_

’

X

x » 10 0 @,
0 0 0 x ¥ a,,
x ¥y, 1 0 0 a,
0O 0 0 x y, a,,
x ¥, 1 0 0 s,
L O 0 0 x5 |y |

X



Left: source_letter T .4f
Right: target_letter_T.4f
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Example ctd.

When choose all the marked points of the letter T image, | get the result:

! I ne_t 1 roe A - . -
attey_lancmarks sifine_transionm_3: points. soue: fefler. T.8¢ after_landmarks_affine_transform_12_paints_source_letter_ T .&6f

difference_between_source_and_target 3_points_source_letter_T.tif difference_between_source_and_target_12_points_source_letter_T.4f S



Example: Quadratic

Transformation

T, = P + B0z + 8%y + Bllzy + 2022 + B9%y?
T, = B2 + B°z + B0y + B, zy + 82022 + 0%y

Denote (_39; = (Cm,ivcy,i)

Correspondences must match
1 _ 00 10 01 11 20, 02 .2
Y, /By + ﬁy C‘:I:,'i + )Gy C“y,i + /By C$,ic'y,'i, + /By _I_ /8y Y,

! __ 200 10 01 11 20 .2 02 .2
Cri = /ch + /Bsc Cr,i T ﬁm Cy,i + ﬁm Cz,iCy,i + Py Cz,i + POy Cy,i

Note: these equations are linear in the unkowns
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Write As Linear System

' 2
C;r,] Cy.‘l C:I,‘,lcy,l cﬁ',] cg_.]
CI‘Q (:y.z (:1'2(..yy'2 6:2‘.'2 Cy‘z
. . . v "o 2
('2:, N ("y,‘Nr ('I,A'V (,y"NI' (’z“N’ ('yvN
1
1
0
1

A — matrix that depends on the (unprimed)

0
2 "
Cz1 Cya CzaCya Cpj ’312.1
2
C.'L'.2 cy|2 (:Iszcyyz CI,2 Cy,?

2

2
Cz,N CyN CzxNCyN CpnN cy.N )

Ax =b

correspondences and the transformation

X — unknown parameters of the

transformation

b — the primed correspondences

300
(o
'531
3,31: 1
520
:Béz
300
o
B 1
Bql
'350

\ 5% )
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Linear Algebra Background

Axz =b
@111+ ... +ainzNy = b1
@211+ ... +aanzny = bo
aypy1r1+ ... taynry = by

Simple case: Ais square (M=N) and invertible (det[A] not zero)

A Az =TIz =2=A"1b

Numerics: Don’t find A inverse. Use Gaussian elimination or
some kind of decomposition of A
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Linear Systems — Other

Ccases

« M<N or M = N and the equations are
degenerate or singular

— System is underconstrained — lots of
solutions

* Approach
— Impose some extra criterion on the solution

— Find the one solution that optimizes that
criterion

— Regularizing the problem

55



Linear Systems — Other

Cases
e M>N
— System is overconstrained
— No solution
* Approach

— Find solution that is best compromise
— Minimize squared error (least squares)

z = argmin |Ax — bl
X

56



Solving Least Squares
Systems

* Psuedoinverse (normal equations)
AT Az = AT
z=(ATA)"1ATb

— Issue: often not well conditioned (nearly
singular)
 Alternative: singular value
decomposition SVD

57



Singular Value Decomposition

( ) ( \ (@

A =UWVT = U

\ . J\o

w2

U

ot

()

I=U"U=U0U"=V'V=VV"

Invert matrix A with SVD

ATt =vwlUT w1 = (

w1

0

= 5
wa
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SVD for Singular Systems

* |f a system is singular, some of the w’s
will be zero
z=VW*UTb

ot — 1/w; |w;| > €
J 0  otherwise

* Properties:

— Underconstrained: solution with shortest
overall length

— Overconstrained: least squares solution

59



Landmark-free Image
Registration

* Use “image match” function between
source and transformed target image to
calculate transformation parameters.

« Common: SSD between target and
transformed source images:

pixels

TIMEL Y (WG = TG
=1

60



Concept via Joint Histograms:
Intensity similarity btw transformed
Images

4 Images Aligned 4 Translated by 0 to 20 pixels

v

Misalignment causes dispersion

Courtesy Lydia NG, SPIE 2006: Medical Image Analysis with ITK , February 11, 2(



Choices: Linear/Nonlinear

Original Rigid Elastic

Target
rigid: ‘Mirit’
(F.Maes)
elastic: ‘Demons’

Subject 1

(J.P. Thirion)

Subject 2




Example Nonlinear B-Spline warping

N
e e
) b " ';:'.H -ﬂr\ i
‘-‘ P a-w.]= .
7 ImEEE
F =
P | | o
[\ T | i
I | | =
Target H
image
(Tiw
MRI)

Source image
(Baseline DTI image)

IRTK Software (Image Registration Toolkit,
Daniel Rueckert, Imperial College:
http://www.doc.ic.ac.uk/~dr/software/



http://www.doc.ic.ac.uk/~dr/software/

SPECIFYING “WARPS” VIA
SPARSE SET OF LANDMARKS

64



Specifying Warps — Another Strategy

Let the # DOFs in the warp equal the # of
control points (x1/2)

— Interpolate with some grid-based interpolation

[ <7
\ /
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Landmarks Not On Grid

Landmark positions driven by application

Interpolate transformation at unorganized
correspondences

— Scattered data interpolation

How do we do scattered data interpolation?
— ldea: use kernels!

Radial basis functions

— Radially symmetric functions of distance to
landmark

66



Concept
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Figure 1. Warping a 2D mesh with RBFs: a)
origina
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Fig. 5 Radial basis interpolation of a regular grid. based on the random
motion of 7 landmarks.

Warping a Neuro-Anatomy Atlas on 3D MRI Data with Radial Basis Functions
H.E. Bennink, J.M. Korbeeck, B.J. Janssen, B.M. ter Haar Romeny
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RBF Formulation

* Please see Gerig handouts for
formulation
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RBF Warp — Example

78



What Kernel Should We Use

« Gaussian

— Variance is free parameter — controls
smoothness of warp

From: Arad et al. 1994 79



RBFs — Aligning Faces

Mona Lisa — Target Venus — Source Venus — Warped

80



Symmetry?

Image-based Talking Heads using Radial Basis
Functions James D. Edge and Steve Maddock

(d) (e) (H

Figure 2. Image metamorphasis with RBFs:
a) source image /,;; b) destination image /,;
c¢) forward warping /,, with d,, ,,: d) backward
warping /. with «, .; e) result of morphing
between /, and /, ; f) cross-dissolved image.
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Symmetry?

What can we say about symmetry: A-
>B and B->A ?

82



Application

=+ Modeling of lip
motion Iin
speech with

e Synthesis via
motion of
landmarks.

Figure 4. Synthesized viseme transitions.
Central column contains transitional frames
between the source and destination visemes.

few landmarks.
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Application: Image Morphing

« Combine shape and intensity with time

parameter t

— Just blending with amounts t produces “fade”
I(t)=(1—t)[1 +tl

— Use control points with interpolation in t
&(t) = (1 — t)e; + tes

— Use c,, c(t) landmarks to define T,, and c,,c(t)

landmarks to define T,

85



Image Morphing

* Create from blend of two warped

iImages 1:(z) = (1 = 1)1, (T1(%)) + t1z (T2(Z))

3

-

I,

\./

1,

.
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Image Morphing




Application: Image
Templates/Atlases

« Build image templates that capture statistics
of class of images
— Accounts for shape and intensity
— Mean and variability

 Purpose

— Establish common coordinate system (for
comparisons)

— Understand how a particular case compares to the
general population

88



Templates — Formulation

N landmarks over M different
Su bJeCtS/SampIeS Correspondences

Images i ... Cp
I’ (z) c; :
cM cM
1 M
Mean of correspondences Ci = M Zéi
(template) j=1

Transformations from mean to subjects Templated image

& =Ti(&) i(z) = ZIJ Ti(z

89
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Car Landmarks and Warp
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Car Landmarks and Warp

92



Car Mean

93
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Brain Template




APPLICATIONS
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Warping Application: Lens

Distortion

« Radial transformation — lenses are
generally circularly symmetric

— Optical center is known
— Model of transformation:

' =Z (14 kir*+

k?gTA —|— k?3?"6 —|— .. )
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Correspondences

« Take picture of known grid — crossings

HH HAH
A e
. s i
* Measure set of landmark pairs —

Estimate transformation, correct imageg




Image Mosaicing

Piecing together images to create a larger
mosaic

Doing it the old fashioned way
— Paper pictures and tape

— Things don't line up

— Translation is not enough

Need some kind of warp

Constraints

— Warping/matching two regions of two different
Images only works when...

101



Applications

102
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Speclal Cases

« Nothing new In the scene is uncovered in one
view vs another

— No ray from the camera gets behind another

1) Pure rotations—arbitrary scene 2) Arbitrary views of planar surfaces
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3D Perspective and Projection

e Camera model




Perspective Projection
Properties

Lines to lines (linear) \ "

Conic sections to conic sections () \

Convex shapes to convex shapes@ Q

Foreshortening N\ /
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Image Homologies

mages taken under cases 1,2 are
nerspectively equivalent to within a
Inear transformation

— Projective relationships — equivalence is

()= () =) ()

108



Transforming Images To Make

¥ =P%

Perspective equivalence

Mosalics

Linear transformation with matrix P

P11 P12 P13 z
P=1 pa p2 pzs y
p3s1 p32 1 z

fIJ’ — puZztpiaytpis
p31z+pa2y+1
yl —  P21Ttp2aytpas

pi1&tpsay+1

—Zo —Yo -1

Linear system, solve for P

0 0 0 =z wz) )

0 0 0 2oz Yoxs

0 0 0 =zyzly ynzh
-z =y -1 myp Y

—zo —Yyo —1 my; oy

—TN —yN —1 .'L'NyJIV yNyA{V }

P + piey + P13
P21 + P22y + P23
P31 + pay + 1

p312Z’ + p32yz’ — p11x — P12y — P13
312y’ + p32yy’ — p21T — P22y — P23

Multiply by denominator and reorganize terms

/

-
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Image Mosaicing

110



4 Correspondences

111



5 Correspondences

112



6 Correspondences

113



Mosaicing Issues

Need a canvas (adjust
coordinates/origin)

Blending at edges of images (avoid
sharp transitions)

Adjusting brightnesses
Cascading transformations

114



