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Canny Edge Detector

* Canny (1984)
introduces several
good 1deas to help.

* References: Canny, J.F.
A computational approach
to edge detection. IEEE
Trans Pattern Analysis
and Machine Intelligence,
8(6): 679-698, Nov 1986.




Optimal Edge Detector Design

« Canny derives his filter by optimizing a certain
performance index that favors true positive, true
negative and accurate localization of detected
edges

* Analysis is restricted to linear shift invariant filter
that detect unblurred 1D continuous step

 Other justifiable performance criteria are possible
and will lead to different filters.




What are Canny’s Criteria?

* Good detection: low probability of not marking
real edge points, and falsely marking non-edge
points.

jG(Xﬁ)f(x)dx(

=u

SNR =

W

n, o | 13 (x)dx

* f1s the filter, G 1s the edge signal, denominator is
the root-mean-squared response to noise 7(x) only.




Localization Criterion

* Good localization: close to center of the true edge
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 a measure that increases as localization improves.

» Use reciprocal of the rms distance of the marked
edge from the center of the true edge.




Eliminating Multiple Response

Only one response to a single edge: implicit in first
criterion, but make explicit to eliminate multiple

response.
The first two criteria can be trivially maximized by
setting f(x)=G(-x)!

What 1s this? This is a truncated step (difference
of box operator).

What is its problem?




“Optimal Operator” for Noisy Step
Edge: SNR*LOC
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Inter-maximum Spacing

 Ideally, want to make the distance between peaks in the
noise response approximate the width of the response of the
operator to a single step.

« The mean distance between two adjacent maxima in the

filtered response (or zero-crossing of their derivatives) can
be derived as: ;o /2
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 Set this distance a fraction & of the operator width W,
Seek f satisfies this constraint with a fixed £. X (f)=kW




Optimization

u IFilter Parameters | T A r
N | Zyar | DA r o W | 3 B N
L] 0.15 | 421 | 0.215 | 24.59550 | 0.12250 | 63.97566
203 2870313 [ 1247120 | 0.38284 | 31.26860 |
30 0.5 21310417 | 7.858G9 | 2.62856 | 18.28800
41 08 | 157 05151 5.06500 | 2.56770 | 11.06100 |
5] 1.0 1.33]0.561 | 3.45580 | 0.07161 | 4.80G84
6| 1.2 1.12]0.576] 2.05220 | 1.56939 | 2.01540
7] 1.4 10.75 | 0.484 | 0.00297 | 3.50350 | 7.47700 4

Fig. 4. Filter parameters and performance measures for the filters illus-
trated in Fig. 3.
> SNR

A: Localization (how close to true position)
X_max: distance between adjacent maxima (fraction of operator width)

r: multiple response performance



Optimal Operators
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Optimal Operator versus First
Derivative of Gaussian

Fig. 6. (a) The optimal step edge operator. (b) The first derivative of g
(Gaussian,



“Optimal Operator” for Noisy Step
Edge: SNR*LOC*MULT
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Fig. 1. {a) A n }' tep edge. (b) Difference of hoxes operator. (c) Dif-
ference fbc: operator ppl d th dgc {d) First derivative o f
Gaussian o pera,t . () First dest of Gaussian applied to the edge.



2D Edge Filter: Output at
3 different scales
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1st order Gaussian Derivatives

Figure 5.11 Detection of a very low contrast step-edge in noise. Left: original image, the step-edge is barely visible. At small scales
(second image, o = 2 pixels) the edge is not detected. We see the edges of the noise itself, cluttering the edge of the step-edge. Only at
large scale (right, & = 12 pixels) the edge is clearly found. At this scale the large scale structure of the edge emerges from the small scale
structure of the noise.



Response at different scales

Figure 5.11 Gradient edges detected at different scales (o = 0.5, 2, 5 pixels resp.).
coarser edges (right) indicate hierarchically more 'important’ edges.



Non-Maximum Suppression
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Detect local maxima and suppress all other signals.



What about 2D?

edge orientation
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Non-Maximum Suppression

e Canny: Interpolate Gradient along
gradients (plus and minus a certain
distance) and check if center Is larger
than neighbors.

o Simplified: Test for each Gradient
Magnitude pixel if neighbors along B
gradient direction (closest neighbors)

are smaller than center: Mark C as
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maximum If A<C and B<C @/




Non-maximum suppression

At each point, compute its edge gradient, compare with the
gradients of its neighbors along the gradient direction. If
smaller, turn 0; 1f largest, keep it.

Edge Direction




Estimation of Gradient

Sampling is discrete, how to estimate gradient?

Pick 2 pts in support closest to u.

The gradient magnitudes at 3 pts define a plane,
use this plane to locally approximate the gradient

magnitude surface and to estimate the value at a
point on the line. The interpolated

gradient magnitude at A, for example, 18
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Estimation of Gradient

The interpolated gradient on the other side 1s given

”_1, H_I T HJ.
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Mark P, asa maximum if G(xy)>G, and G(x,y)> G,

Interpolation always involve 1 diagonal and 1 non-diagonal
point. Avoid division by multiplying through by 4 .




Non-maximum suppression

* This scheme involves 4 multiplication per point, but it 1s not excessive.
«  Works better than simpler scheme which compares the points P, with
two of its neighbors.




Results
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Fig. 7. (a) Parts image, 576 by 454 pixels. (b) Image thesholded at T,. (c)
Image thresholded @t 2 T,. (d) Image thresholded with hysteresis using

both the thresholds in (a) and (b),



Canny Edge Detection

» Basic idea 1s to detect at the zero-crossings of the
second directional derivative of the smoothed

Image

* 1n the direction of the gradient where the gradient
magnitude of the smoothed image being greater
than some threshold depending on image statistics.

* It seeks out zero-crossings of

0°(G*1)/0n° =d([0G /dn]*1)/on

n is the direction of the gradient of the smoothed image.




Canny’s zero-crossings

* Canny zero-crossings correspond to the first-
directional-derivative’s maxima and minima in the

direction of the gradient.

* Maxima in magnitude reasonable choice for
locating edges.




Canny: Hysteresis Thresholding

e Thresholding/binarization of edge map:

— Noise and image structures have different
structure

— Simple thresholding: If too low, too many
structures appear, If too high, contours are
broken into pieces

— ldea: Hysteresis: Upper and lower threshold,
keep all connected edges (d,,, metric) that are
connected to upper but above lower threshold



Hysteresis Thresholding
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(@) Parts image, 576 by 454 pixels. (b) Image thesholded at T. (¢}
Image thresholded at 2 T,. (d) Image thresholded with hysteresis using

baoth the thresholds in {a) and (b)),

Fig. 7.






Optimal Operators for Other
Structures

Fig. 3. A roof profile and an optimal operator for reofs.

Resembles 2"9 derivative of Gaussian



Gaussian Derivatives
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2"d Derivative Operator to detect
lines and curves




Multidimensional Derivatives

Nabla operator; V = [ i. -. ;,}

Gradient: V_Lis the gradient of L
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Laplacian: V.VL)= 5 + 53
Hessian: (oL 2L
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(matrix of 2" derivatives, gradient of
gradient of L)



Laplacian
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Laplacian of 2D Gaussian kernel



Laplacian of Gaussian (LoG)

Enhances line-like structures (glasses), creates zero-crossing at edges (positive
and negative response at both sides of edges)

Source: http://homepages.inf.ed.ac.uk/rbf/HIPR2/log.htm



Often used: Zero-Crossings of

Hint: Remember that edge positions are extrema of first derivative — zero-
crossings of 2nd derivatives. Be careful: Extrema or maxima & minima!



Line/Ridge Detection




