Part II

Fourier Transform In Image Processing CS/BIOEN 6640 U of Utah **Guido Gerig** (slides modified from Marcel Prastawa 2012)

1D: Common Transform Pairs Summary

Fourier Transform Pairs

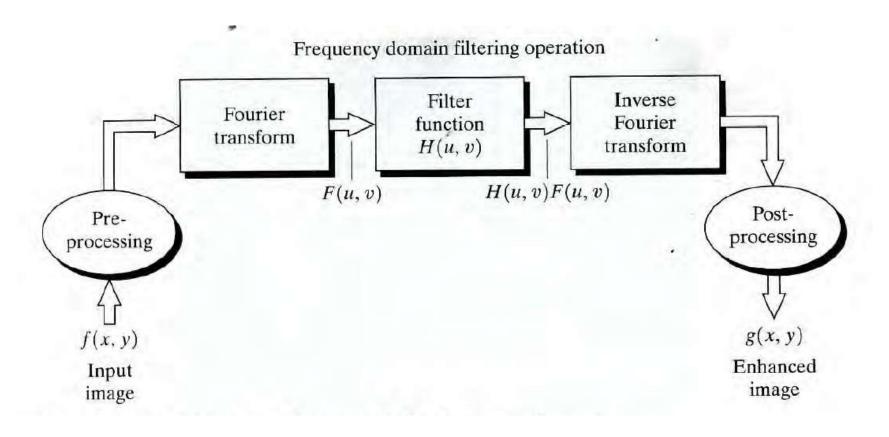
Pair Number	x(t)	X(f)		
1.	$\Pi\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc} \tau$		
2.	2W sinc 2Wt	$\Pi\left(\frac{f}{2W}\right)$		
3.	$\Lambda\left(\frac{t}{\tau}\right)$	$\tau \operatorname{sinc}^2 \overline{\eta}^*$		
4.	$\exp(-\alpha t)u(t),\alpha \geq 0$	$\frac{1}{\alpha + j2\pi f}$		
5.	$t \exp(-\alpha t)u(t), \alpha > 0$	$\frac{1}{(\alpha + j2\pi f)^2}$		
6.	$\exp(-\alpha t), \alpha \geq 0$	$\frac{2\alpha}{\alpha^2 + (2\pi f)^2}$		
7.	$e^{-w(s(\tau))^{j}}$	$\pi e^{-\pi(\beta n)^2}$		
8.	8(t)	1		
9.	1	8(f)		
10.	$\delta(t - t_0)$	$exp(-j2\pi ft_0)$		
11.	$exp(j2\pi f_0 t)$	$\delta(f-f)$		
12.	$\cos 2\pi f_0 I$	$\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)$		
13.	$\sin 2\pi f_0 t$	$\frac{\frac{1}{2}\delta(f - f_0) + \frac{1}{2}\delta(f + f_0)}{\frac{1}{2j}\delta(f - f_0) - \frac{1}{2j}\delta(f + f_0)}$		
14.	u(t)	$(j2\pi f)^{-1} + \frac{1}{2}\delta(f)$		
15.	sgn t	(j \u03cmf)^{-1}		
16.	1 77	$-j \operatorname{sgn}(f)$		
17.	$\hat{x}(t) = \frac{1}{\pi} \int_{-\pi}^{\pi} \frac{x(\lambda)}{t - \lambda} d\lambda$	$-j \operatorname{sgn}(f) X(f)$		
18.	$\sum_{m=-\infty}^{\infty} \delta(t - mT_s)$	$f_r \sum_{m=-\infty}^{\infty} \delta(f - mf_r),$		
		$f_{i} = T_{i}^{-1}$		

FT Properties: Convolution

- See book DIP 4.2.5:
- $\mathcal{F}[f(t) \otimes g(t)] = F(s). G(s)$ • Convolution in space/time domain is equiv. to multiplication in frequency domain.

Time Convolution $f(t) \star g(t)$ \leftrightarrow $F(\omega)G(\omega)$ Frequency Convolutionf(t)g(t) \leftrightarrow $\frac{1}{2\pi}F(\omega) \star G(\omega)$

Important Application



Filtering in frequency Domain

FT Properties

Functional relationships [edit]

The Fourier transforms in this table may be found in Erdélyi (1954) or Kam

	Function	Fourier transform unitary, ordinary frequency		
	f(x)	$\hat{f}(\xi) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \xi} dx$		
101	$a \cdot f(x) + b \cdot g(x)$	$a \cdot \hat{f}(\xi) + b \cdot \hat{g}(\xi)$		
102	f(x-a)	$e^{-2\pi i a \xi} \hat{f}(\xi)$		
103	$e^{2\pi iax}f(x)$	$\hat{f}(\xi-a)$		
104	f(ax)	$\frac{1}{ a }\hat{f}\left(\frac{\xi}{a}\right)$		
105	$\hat{f}(x)$	$f(-\xi)$		
106	$\frac{d^n f(x)}{dx^n}$	$(2\pi i\xi)^n \hat{f}(\xi)$		
107	$x^n f(x)$	$\left(\frac{i}{2\pi}\right)^n \frac{d^n \hat{f}(\xi)}{d\xi^n}$		
108	(f * g)(x)	$\hat{f}(\xi)\hat{g}(\xi)$		
109	f(x)g(x)	$(\hat{f} * \hat{g})(\xi)$		

Wikipedia Fourier Transforms

FT Properties

Linearity	$\alpha f(t) + \beta g(t) \leftrightarrow \alpha F(\omega) + \beta G(\omega)$		
Time Translation	$f(t - t_0)$	\leftrightarrow	$e^{-j \omega t_0} F(\omega)$
Scale Change	f(at)	\leftrightarrow	$\frac{1}{\ \boldsymbol{a}\ }F(\boldsymbol{\omega}/\boldsymbol{a})$
Frequency Translation	$e^{j\omega_0 t}f(t)$	\leftrightarrow	$F(\omega - \omega_0)$
Time Convolution	$f(t) \star g(t)$	\leftrightarrow	$F(\omega)G(\omega)$
Frequency Convolution	f(t)g(t)	\leftrightarrow	$\frac{1}{2\pi}F(\omega)\star G(\omega)$

$$(f*g)(x) = \int_{\mathbf{R}^d} f(y)g(x-y)\,dy = \int_{\mathbf{R}^d} f(x-y)g(y)\,dy$$

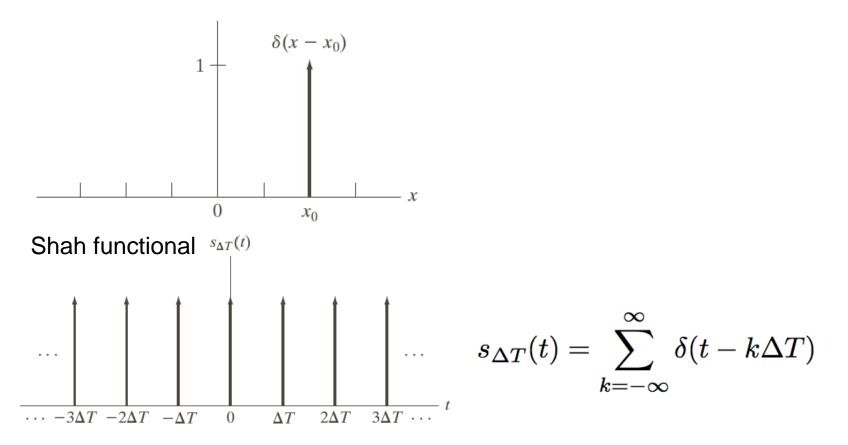
Aliasing

Discrete Sampling and Aliasing

- Digital signals and images are discrete representations of the real world
 - Which is continuous
- What happens to signals/images when we sample them?
 - Can we quantify the effects?
 - Can we understand the artifacts and can we limit them?
 - Can we reconstruct the original image from the discrete data?

A Mathematical Model of Discrete Samples

Delta functional



A Mathematical Model of Discrete Samples

- Goal
 - To be able to do a continuous Fourier transform on a signal before and after sampling

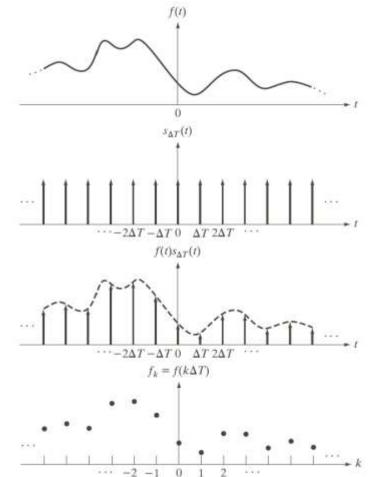
Discrete signal

 $f_k \quad k=0,\pm 1,\ldots$

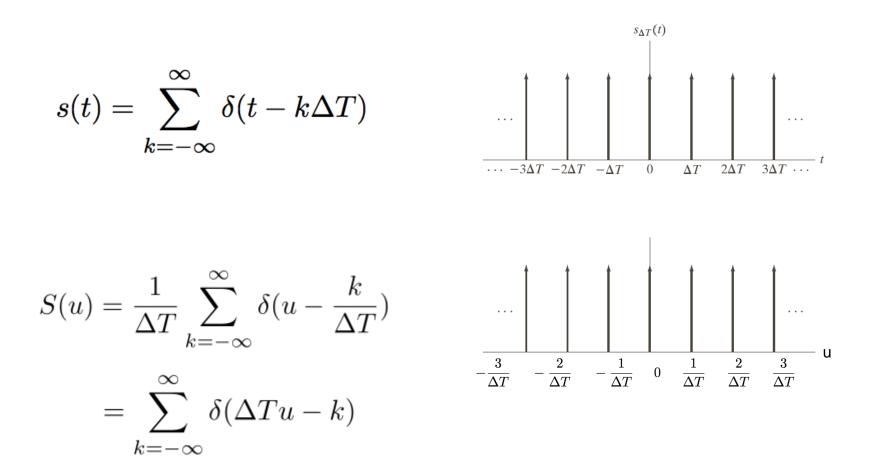
Samples from continuous function

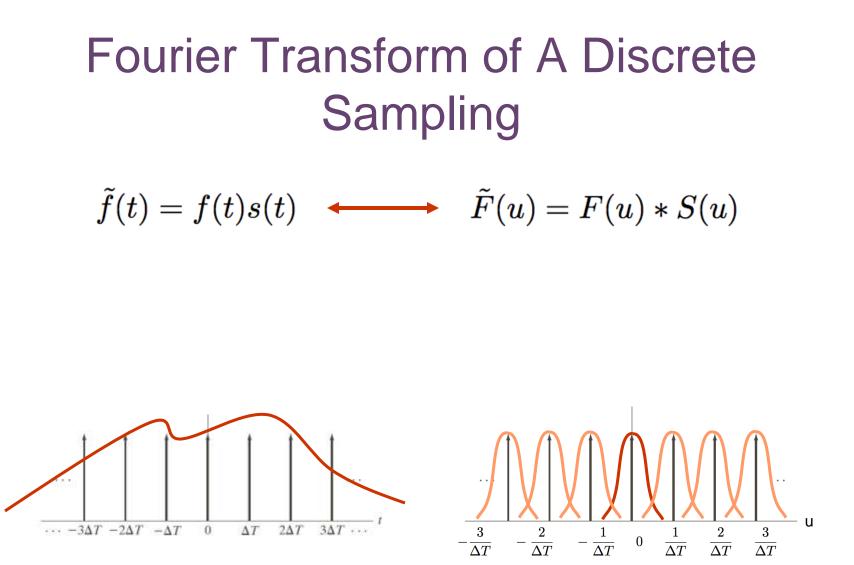
 $f_k = f(k\Delta T)$

Representation as a function of t • Multiplication of f(t) with Shah $\tilde{f}(t) = f(t)s_{\Delta T}(t) = \sum_{k=-\infty}^{\infty} f_k \delta(t - k\Delta T)$

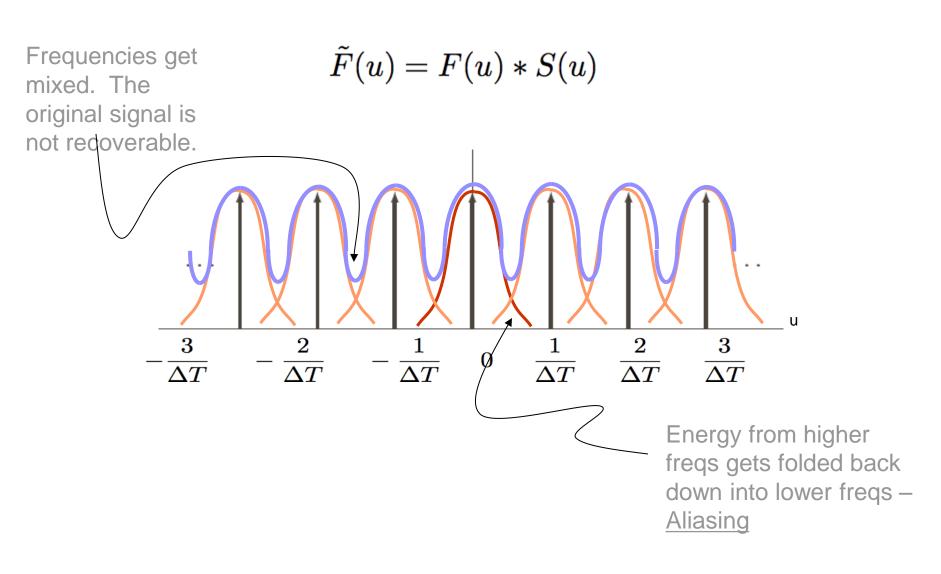


Fourier Series of A Shah Functional



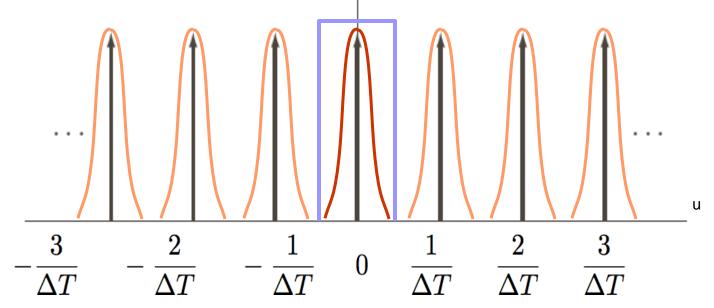


Fourier Transform of A Discrete Sampling



What if F(u) is Narrower in the Fourier Domain?

- No aliasing!
- How could we recover the original signal?



What Comes Out of This Model

- Sampling criterion for complete recovery
- An understanding of the effects of sampling
 - Aliasing and how to avoid it
- Reconstruction of signals from discrete samples

Shannon Sampling Theorem

• Assuming a signal that is band limited:

 $f(t) \longleftarrow F(u) \qquad |F(u)| = 0 \ \forall \ |u| > B$

- Given set of samples from that signal $f_k = f(k\Delta T)$ $\Delta T \le \frac{1}{2B}$
- Samples can be used to generate the original signal
 - Samples and continuous signal are equivalent

Sampling Theorem

- Quantifies the amount of information in a signal
 - Discrete signal contains limited frequencies
 - Band-limited signals contain no more information then their discrete equivalents
- Reconstruction by cutting away the repeated signals in the Fourier domain
 - Convolution with sinc function in space/time

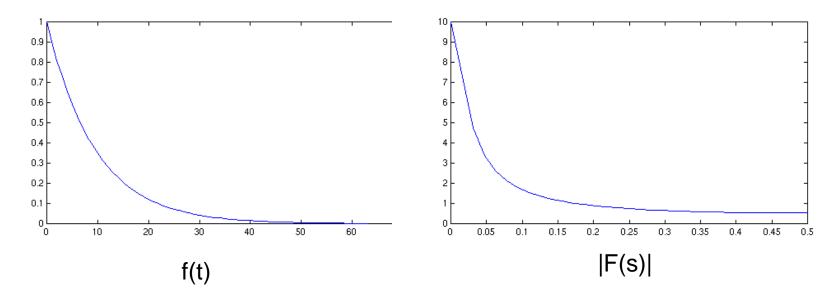
Reconstruction

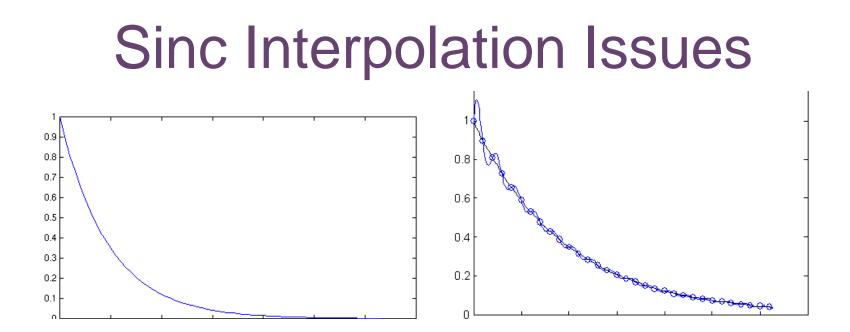
Convolution with sinc function

$$f(t) = \tilde{f}(t) * \mathbf{I} \mathbf{F}^{-1} \left[\operatorname{rect} (\Delta \mathrm{Tu}) \right]$$
$$= \left(\sum_{k} f_k \delta(t - k\Delta T) \right) * \operatorname{sinc} \left(\frac{\mathrm{t}}{\Delta \mathrm{T}} \right) = \sum_{k} f_k \operatorname{sinc} \left(\frac{\mathrm{t} - \mathrm{k}\Delta \mathrm{T}}{\Delta \mathrm{T}} \right)$$

Sinc Interpolation Issues

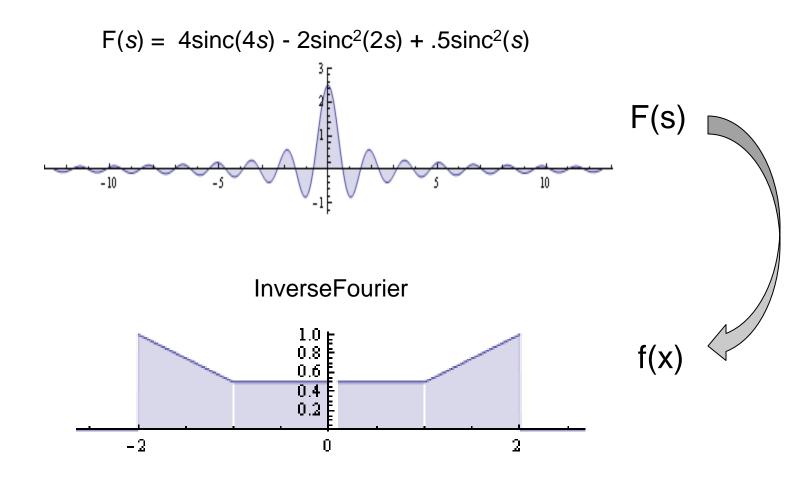
- Must functions are not band limited
- Forcing functions to be band-limited can cause artifacts (ringing)





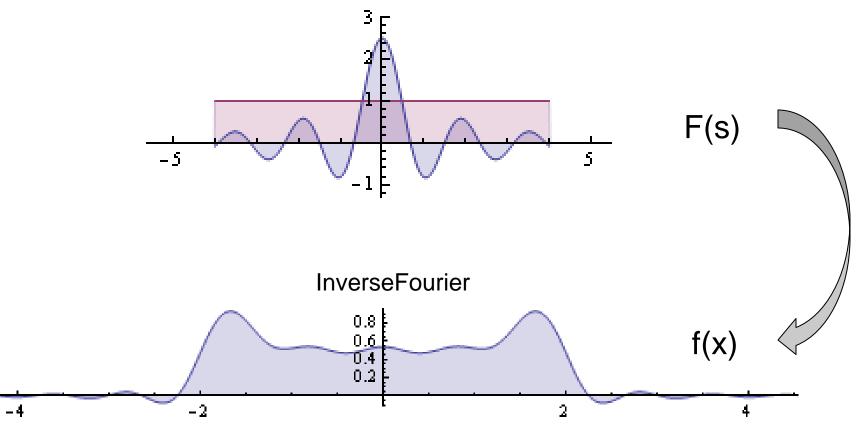
Ringing - Gibbs phenomenon Other issues: Sinc is infinite - must be truncated

Fourier Transform



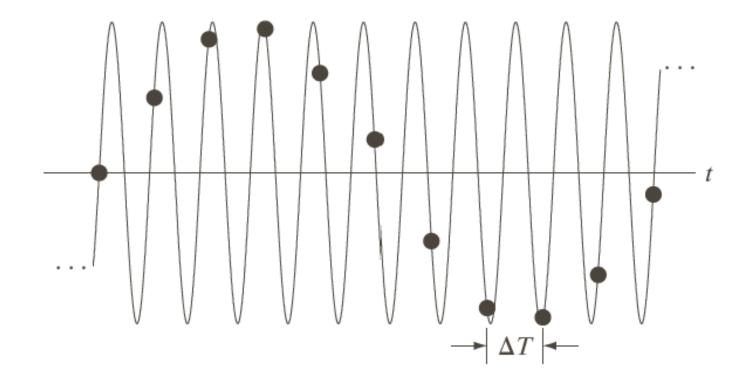
Cut-off High Frequencies

 $F(s) = (4sinc(4s) - 2sinc^2(2s) + .5sinc^2(s))^* (HeavisidePi(w/8))$

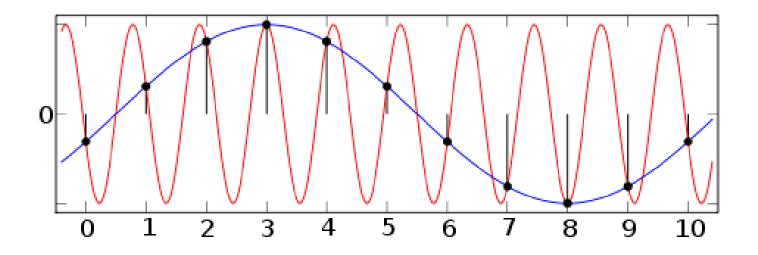


Aliasing

Reminder: high frequencies appear as
 low frequencies when undersampled

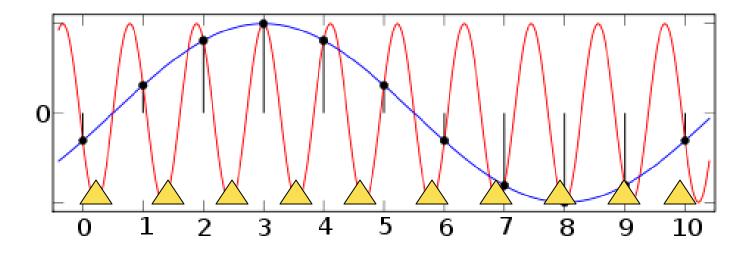


Sampling and Aliasing

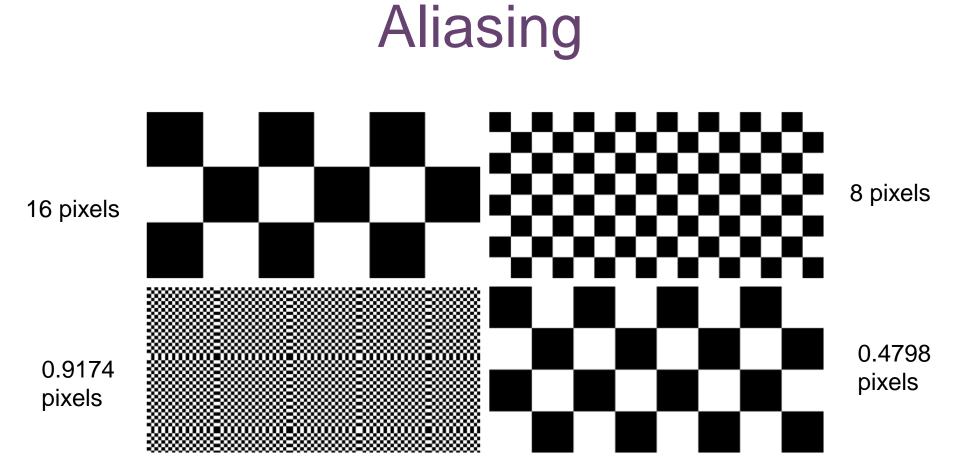


- Given the sampling rate, CAN NOT distinguish the two functions
- High freq can appear as low freq

Ideal Solution: More Samples



- Faster sampling rate allows us to distinguish the two signals
- Not always practical: hardware cost, longer scan time

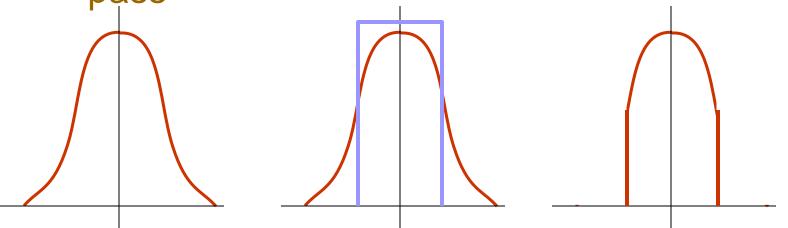


Aliasing

Aliasing in digital videos Video1 Video2

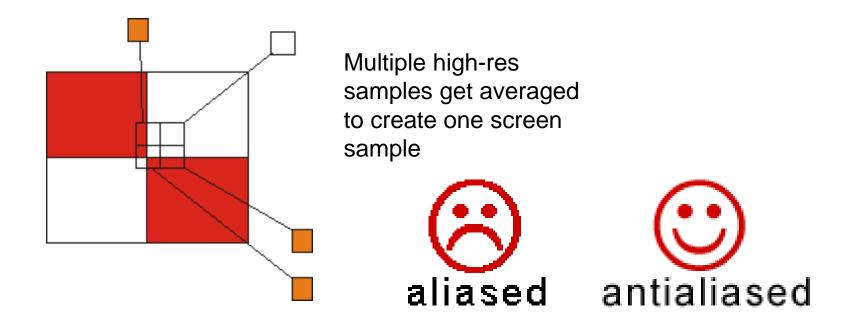
Overcoming Aliasing

- Filter data prior to sampling
 - Ideally band limit the data (conv with sinc function)
 - In practice limit effects with fuzzy/soft low pass



Antialiasing in Graphics

 Screen resolution produces aliasing on underlying geometry



Antialiasing

Interpolation as Convolution

 Any discrete set of samples can be considered as a functional

$$ilde{f}(t) = \sum_k f_k \delta(t - k\Delta T)$$

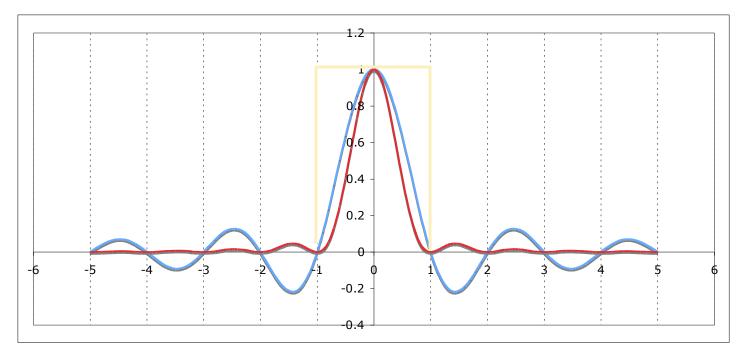
- Any linear interpolant can be considered as a convolution
 - Nearest neighbor rect(t)

-Linear - tri(t)

$$\operatorname{tri}(t) = \begin{cases} t+1 & -1 \le t \le 0\\ 1-t & 0 \le t \le t\\ 0 & \text{otherwise} \end{cases}$$

Convolution-Based Interpolation

- Can be studied in terms of Fourier Domain
- Issues
 - Pass energy (=1) in band
 - Low energy out of band
 - Reduce hard cut off (Gibbs, ringing)



Fourier Transform of Images

2D Fourier Transform

• Forward transform:

$$F(u,v) = \int \int_{-\infty}^{\infty} f(x,y) e^{-j2\pi(xu+yv)} dx \, dy$$

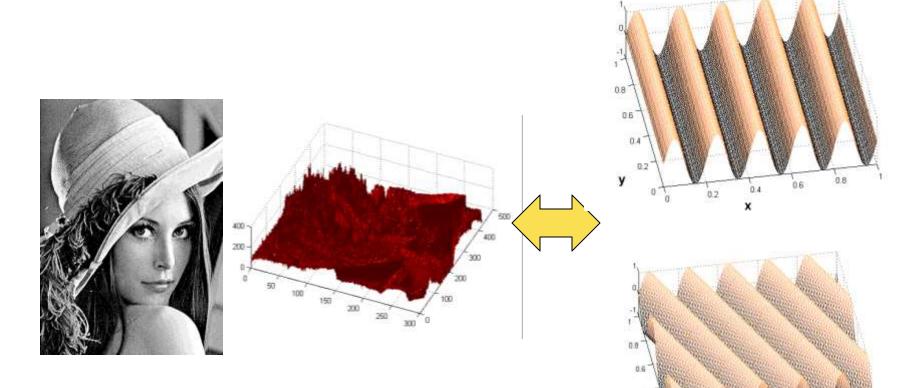
• Backward transform:

$$f(x,y) = \int \int_{-\infty}^{\infty} F(u,v) e^{j2\pi(xu+yv)} du \, dv$$

 Forward transform to freq. yields complex values (magnitude and phase):

$$F(u,v) = F_r(u,v) + jF_i(u,v) = |F(u,v)| e^{j \angle F(u,v)}$$

2D Fourier Transform

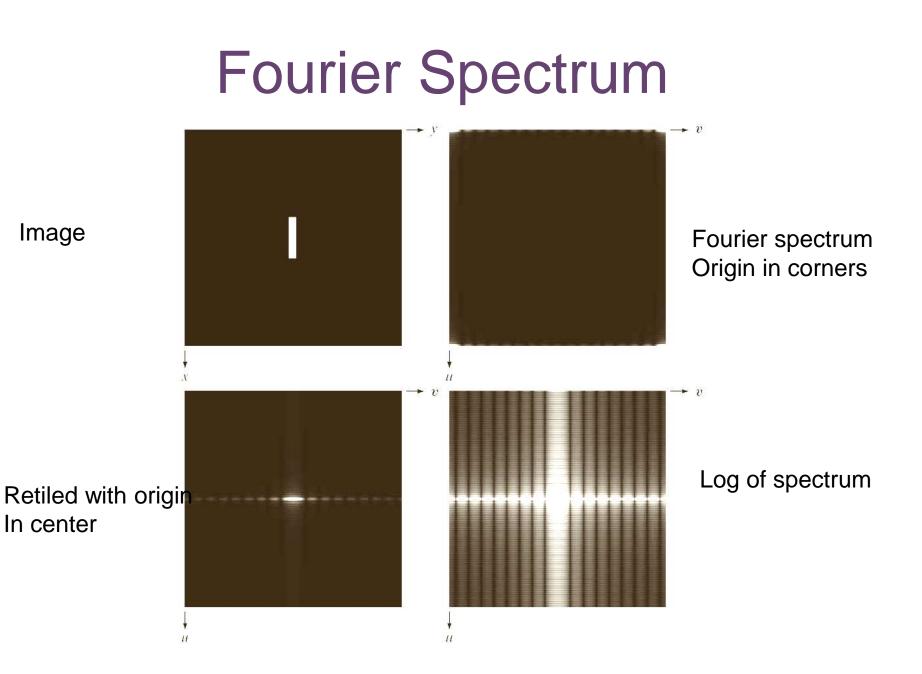


y

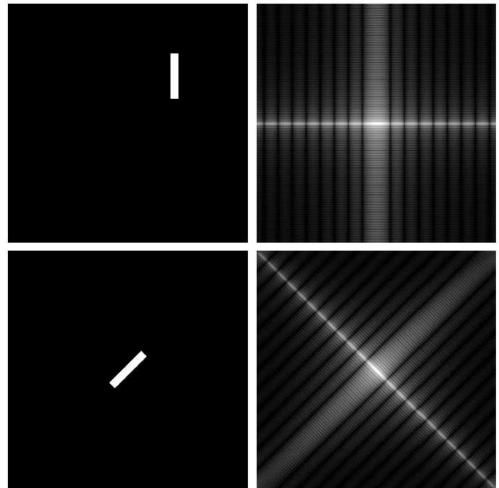
0.6

0.4

0.2



Fourier Spectrum – Translation and Rotation



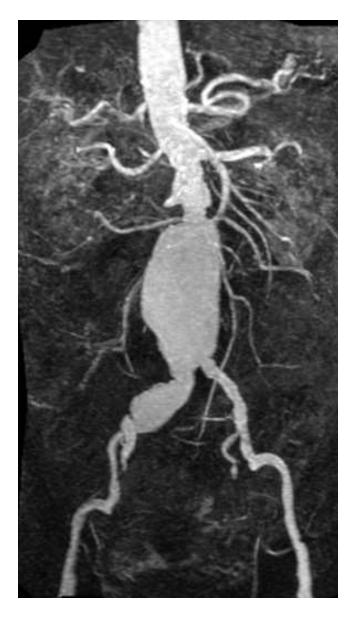
Phase vs Spectrum

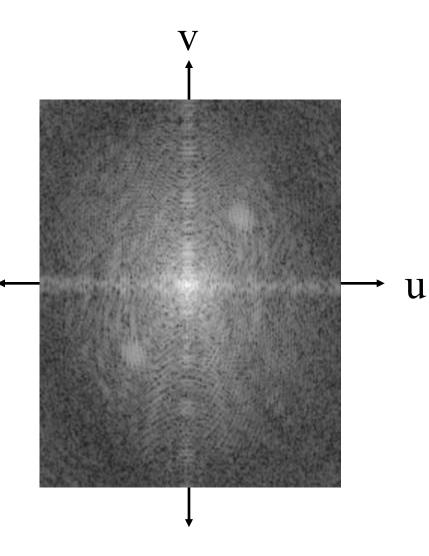
Image

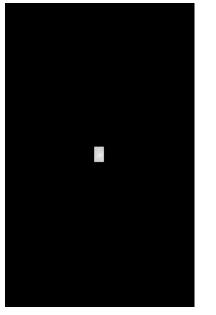
Reconstruction from phase map

Reconstruction from <u>spectrum</u>

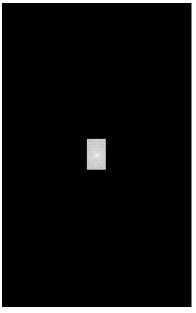
Fourier Space



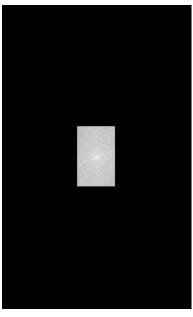




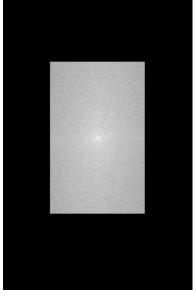
5 %



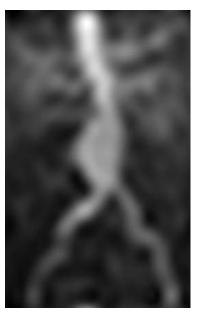
10 %



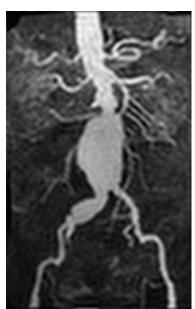
20 %



50 %



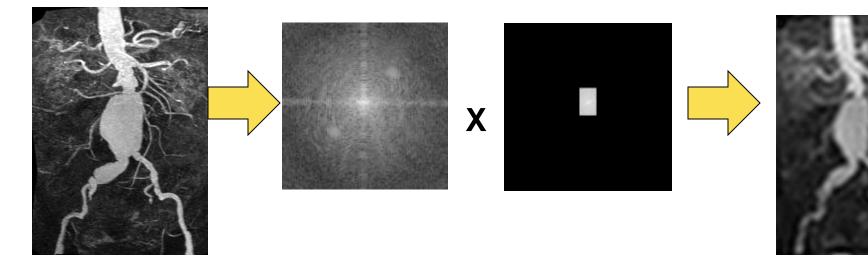




Fourier Spectrum Demo

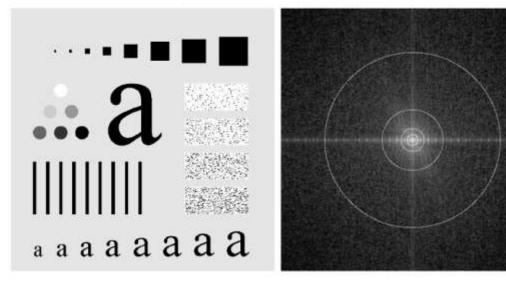
http://bigwww.epfl.ch/demo/basisfft/demo.html

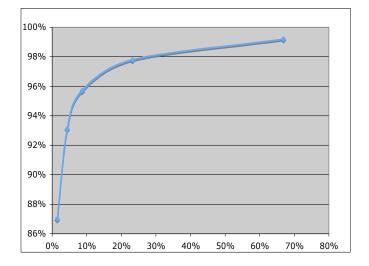
Filtering Using FT and Inverse



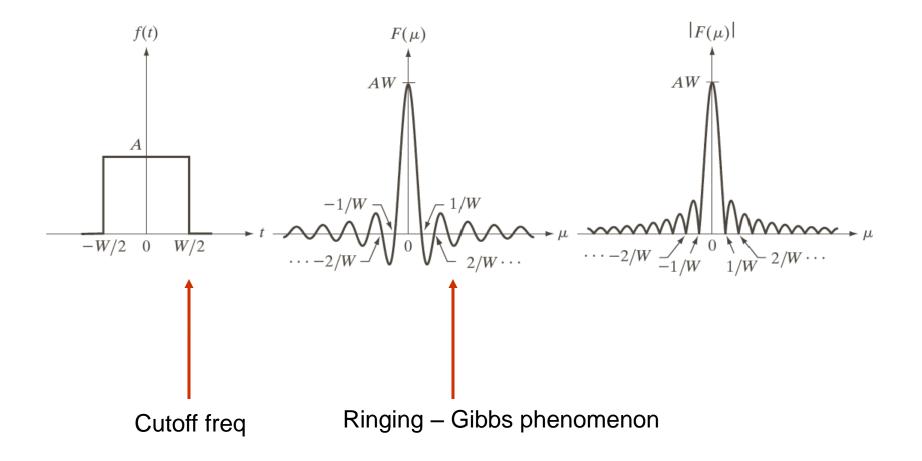
Low-Pass Filter

- Reduce/eliminate high frequencies
- Applications
 - Noise reduction
 - uncorrelated noise is broad band
 - Images have spectrum that focus on low



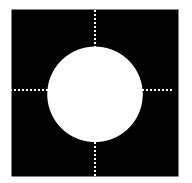


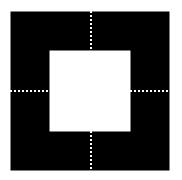
Ideal LP Filter – Box, Rect



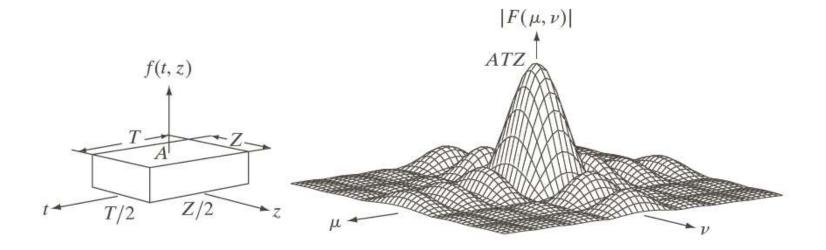
Extending Filters to 2D (or higher)

- Two options
 - Separable
 - H(s) -> H(u)H(v)
 - Easy, analysis
 - Rotate
 - H(s) -> H((u² + v²)^{1/2})
 - Rotationally invariant

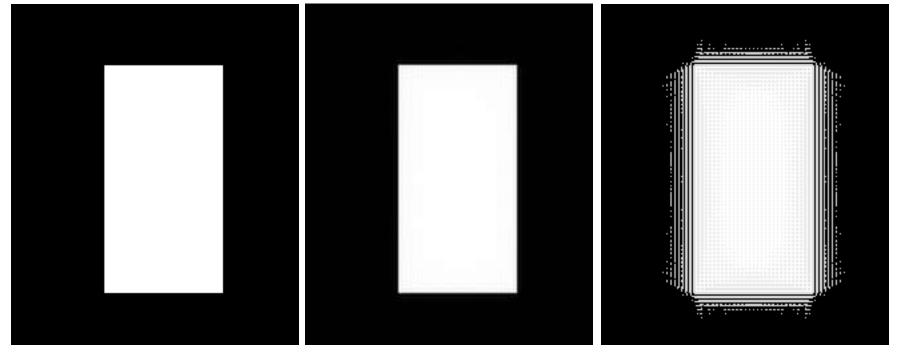




Ideal LP Filter – Box, Rect



Ideal Low-Pass Rectangle With Cutoff of 2/3



Image

Filtered

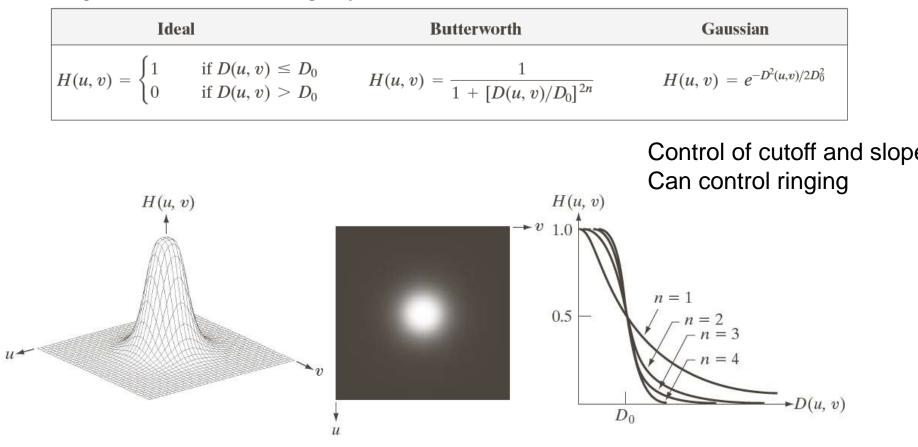
Filtered + Histogram Equalized

Ideal LP - 1/3

Ideal LP – 2/3

Butterworth Filter

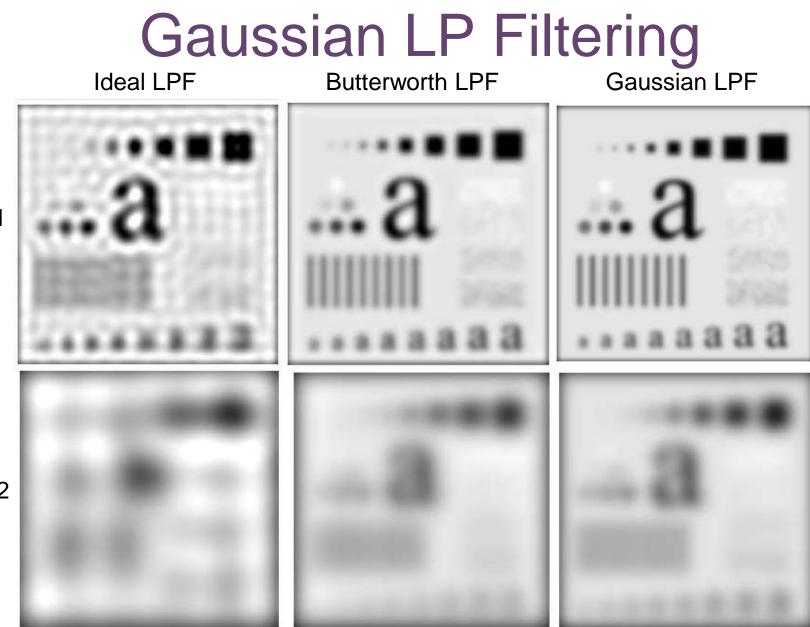
Lowpass filters. D_0 is the cutoff frequency and *n* is the order of the Butterworth filter.



Butterworth - 1/3

Butterworth vs Ideal LP

Butterworth – 2/3



F1

F2

High Pass Filtering

- HP = 1 LP
 - All the same filters as HP apply
- Applications
 - Visualization of high-freq data (accentuate)
- High boost filtering

-HB = (1-a) + a(1 - LP) = 1 - a*LP

High-Pass Filters

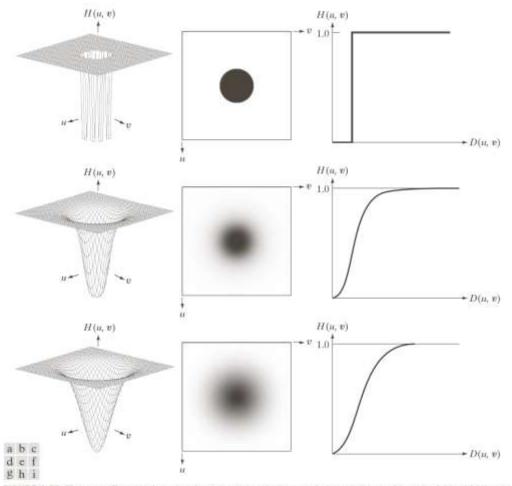
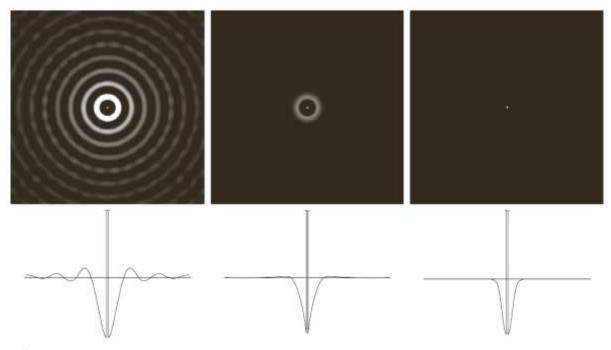


FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

High-Pass Filters in Spatial Domain



abc

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain highpass filters, and corresponding intensity profiles through their centers.

High-Pass Filtering with IHPF

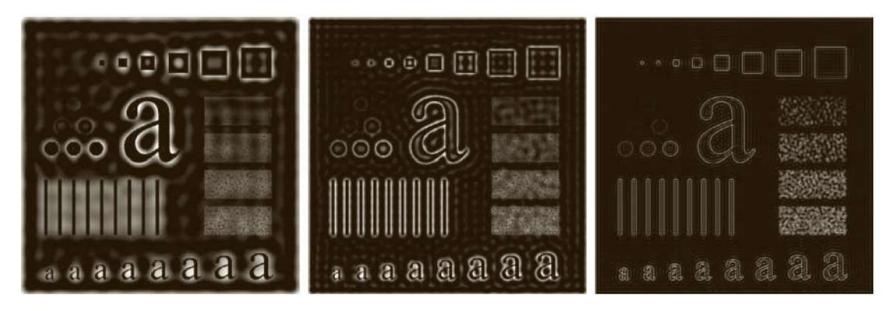
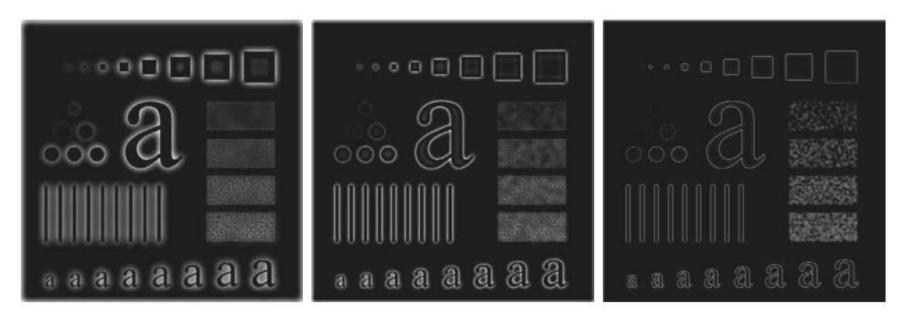


FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with $D_0 = 30, 60, \text{ and } 160$.

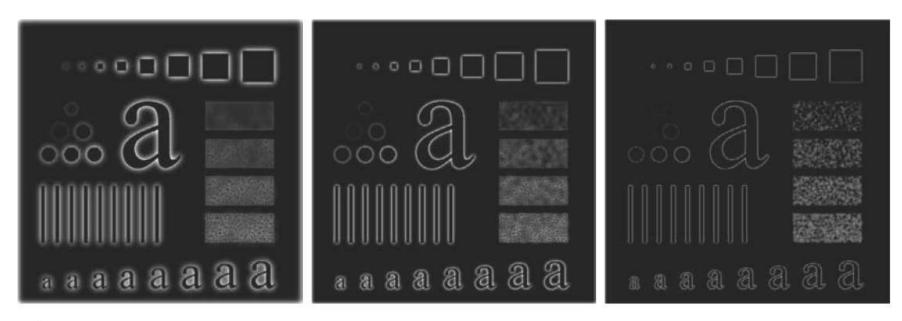
BHPF



a b c

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with $D_0 = 30, 60$, and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained with an IHPF.

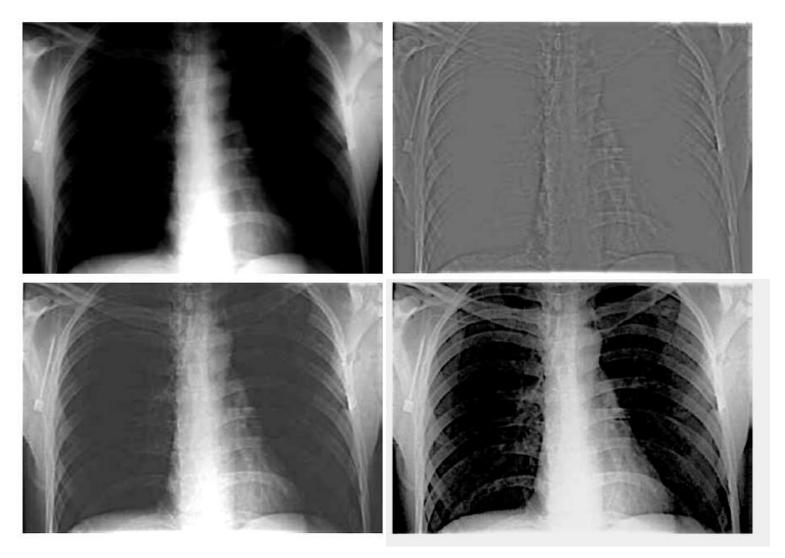
GHPF



a b c

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with $D_0 = 30, 60, \text{ and } 160, \text{ corresponding to the circles in Fig. 4.41(b)}$. Compare with Figs. 4.54 and 4.55.

HP, HB, HE

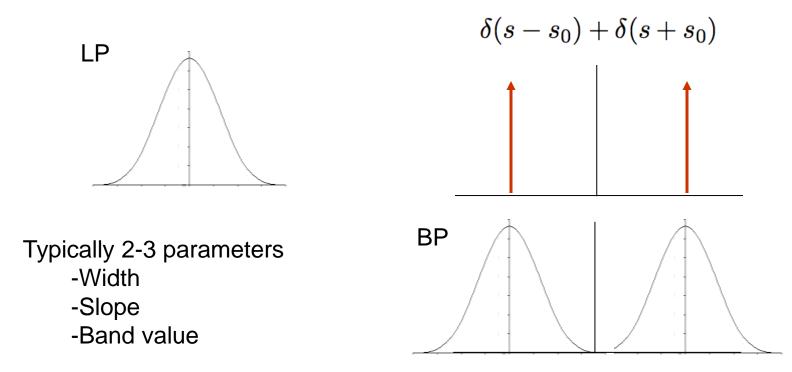


High Boost with GLPF

High-Boost Filtering

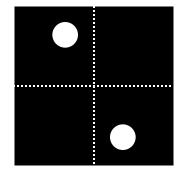
Band-Pass Filters

 Shift LP filter in Fourier domain by convolution with delta

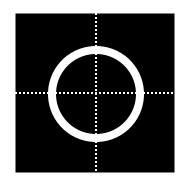


Band Pass - Two Dimensions

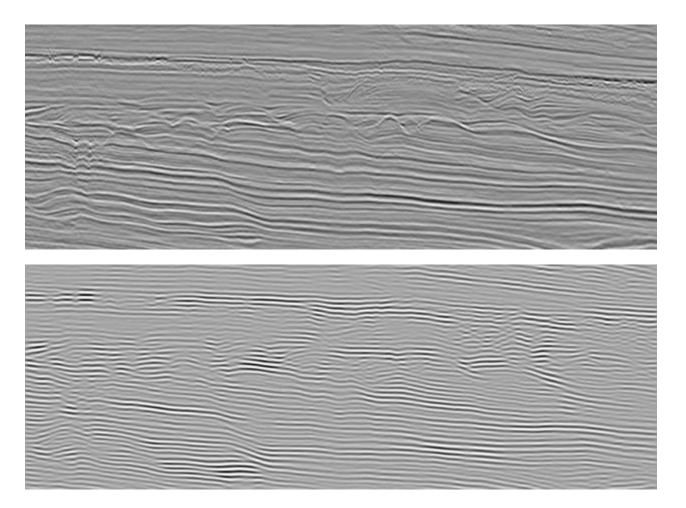
- Two strategies
 - Rotate
 - Radially symmetric
 - Translate in 2D
 - Oriented filters



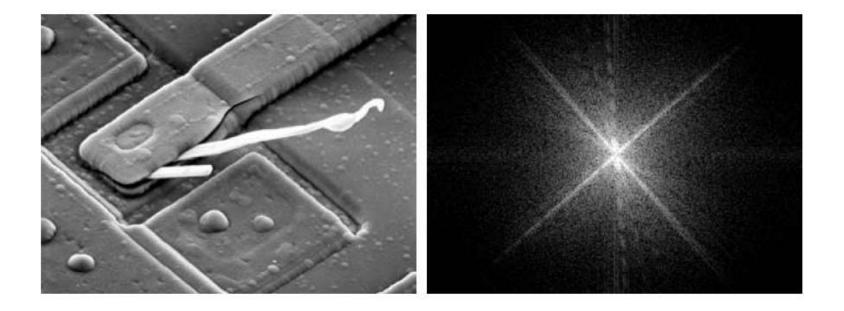
- Note:
 - Convolution with delta-pair in FD is multiplication with cosine in spatial domain



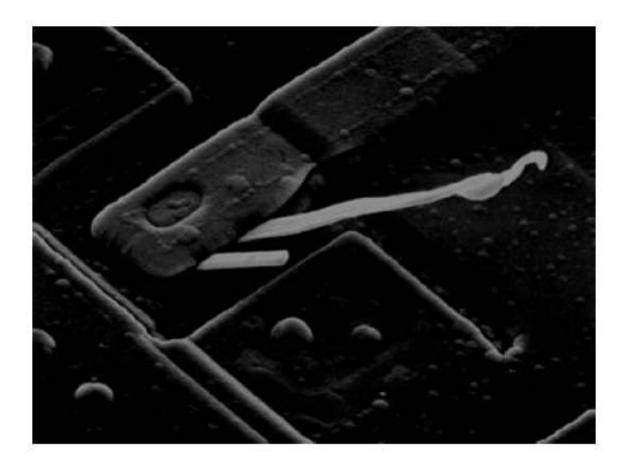
Band Bass Filtering



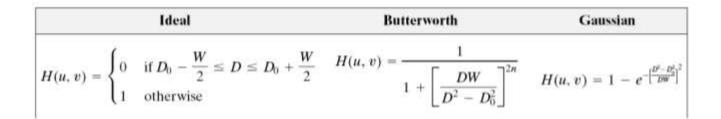
SEM Image and Spectrum

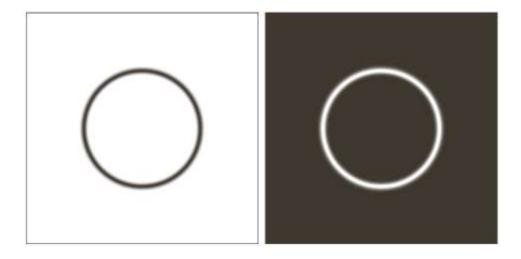


Band-Pass Filter

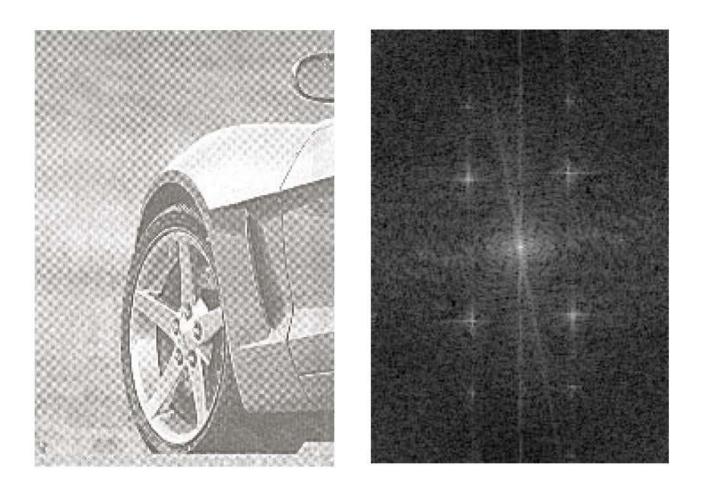


Radial Band Pass/Reject

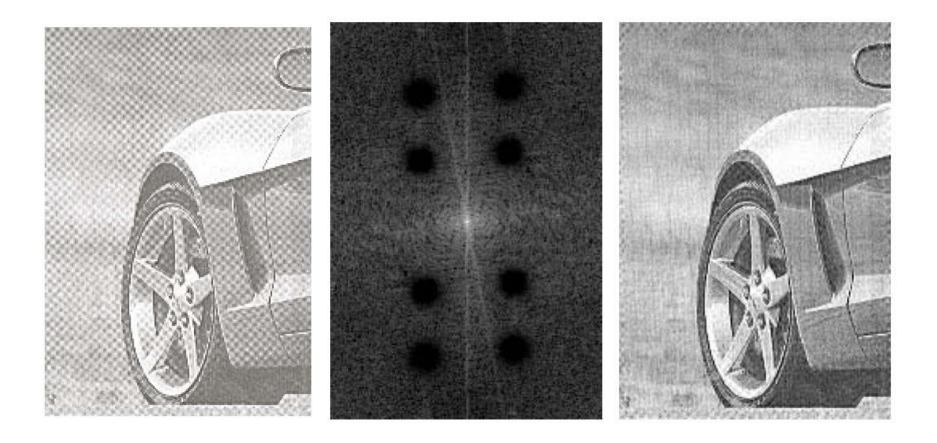




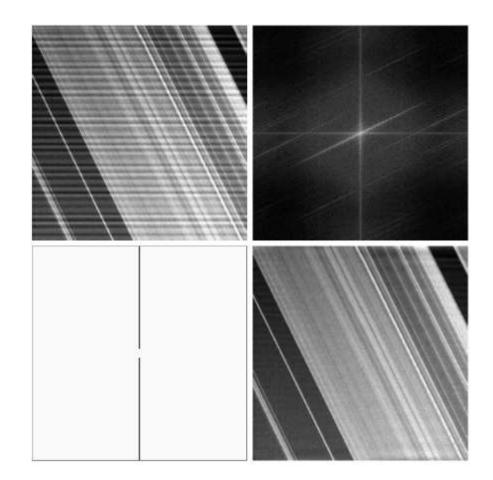
Band Reject Filtering



Band Reject Filtering



Band Reject Filtering



Fast Fourier Transform

With slides from Richard Stern, CMU

DFT

- Ordinary DFT is O(N²)
- DFT is slow for large images

- Exploit periodicity and symmetricity
- Fast FT is O(N log N)
- FFT can be faster than convolution

Fast Fourier Transform

- Divide and conquer algorithm
- Gauss ~1805
- Cooley & Tukey 1965

• For $N = 2^{K}$

The Cooley-Tukey Algorithm

- Consider the DFT algorithm for an integer power of 2, $N=2^{\nu}$ $X[k] = \sum_{n=0}^{N-1} x[n]W_N^{nk} = \sum_{n=0}^{N-1} x[n]e^{-j2\pi nk/N}; W_N = e^{-j2\pi/N}$
- Create separate sums for even and odd values of *n*:

$$X[k] = \sum_{n \text{ even}} x[n] W_N^{nk} + \sum_{n \text{ odd}} x[n] W_N^n$$

• Letting n=2r for n even and 2r+1 for n odd, we obtain $X[k] = \sum_{r=0}^{(N/2)-1} x[2r]W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1]W_N^{(2r+1)k}$

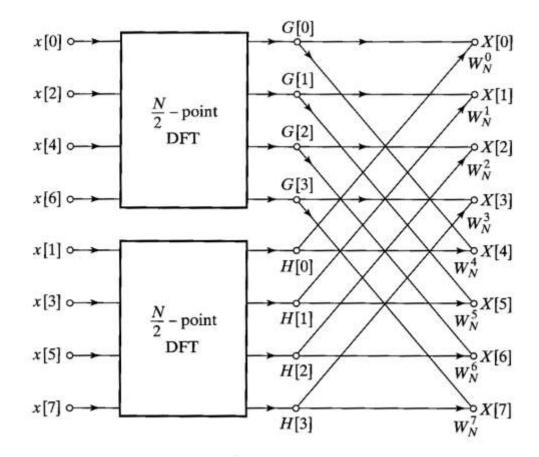
The Cooley-Tukey Algorithm

• Splitting indices in time, we have obtained $X[k] = \sum_{r=0}^{(N/2)-1} x[2r]W_N^{2rk} + \sum_{r=0}^{(N/2)-1} x[2r+1]W_N^{(2r+1)k}$

• But $W_N^2 = e^{-j2\pi 2/N} = e^{-j2\pi/(N/2)} = W_{N/2}$ and $W_N^{2rk}W_N^k = W_N^k W_{N/2}^{rk}$ So ... $X[k] = \sum_{n=0}^{(N/2)-1} x[2r]W_{N/2}^{rk} + W_N^k \sum_{n=0}^{(N/2)-1} x[2r+1]W_{N/2}^{rk}$ N/2-point DFT of x[2r] N/2-point DFT of x[2r+1]

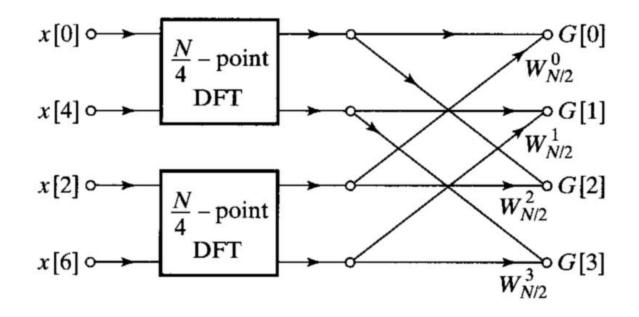
Example: N=8

Divide and reuse



Example: N=8, Upper Part

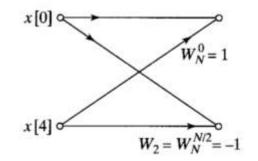
Continue to divide and reuse



Two-Point FFT

- The expression for the 2-point DFT is: $X[k] = \sum_{n=0}^{1} x[n]W_2^{nk} = \sum_{n=0}^{1} x[n]e^{-j2\pi nk/2}$
- Evaluating for k = 0, 1 we obtain X[0] = x[0] + x[1] $X[1] = x[0] + e^{-j2\pi 1/2}x[1] = x[0] - x[1]$

which in signal flowgraph notation looks like ...



This topology is referred to as the basic butterfly

Modern FFT

• FFTW

http://www.fftw.org/