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Basis Decomposition

» Write a function as a weighted sum of
basis functions

f (X) =2ZwiBi(X)

* What is a good set of basis functions?
 How do you determine the weights?



Sine Waves

» Use sine waves of different frequencies
as basis functions?
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Limitation of Sines

* Sines are odd / anti-symmetric:
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 Sine basis cannot create even
functions:




Limitation of Cosines

» Cosines are even / symmetric functions:
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 Cosine basis cannot create odd
functions:




Combine Cosines and Sines

 Allow creation of both even and odd
functions with different combinations:
Even Odd
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Why Sines and Cosines?

* Represent functions as a combination of
basis with different frequencies



Why Sines and Cosines?

* Represent functions as a combination of
basis with different frequencies
* Intuitive description of signals / images:

— how much high frequency content?
— what do the low freq. content look like?



Why Sines and Cosines?

* Represent functions as a combination of
basis with different frequencies

* Intuitive description of signals / images:
— how much high frequency content?
— what do the low freq. content look like?

* Image processing “language™:
— remove noise by reducing high freq content
— explains sampling / perception phenomena



Jean Baptiste Joseph Fourier

Basic contributions 1807:

* Fourier Series: Represent any periodic function as a
weighted combination of sine and cosines of different

frequencies. S oA as,

* Fourier Transform: Even non-periodic functions with
finite area: Integral of welghted sme and cosine
functions. ]
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* Functions (signals) can be completely reconstructed
from the Fourier domain without loosing any
information.
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FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



The Fourier Transform



Reminder: Euler’'s Identity

e From calculus

Y .
&= CcoSX+ jsinX

* ] is the iImaginary part of a complex
number



Fourier Transform

* Forward, mapping to frequency domain:

F(s) = /_ F(t)e—i2mst gy

« Backward, inverse mapping to time
domain:

F(t) = / T F(s)er TSt s

— OO



Space and Frequency

Fourier
Transform

F(u)= _f f(x)e™ "™ dx
Fourier S Fourier

Synthesis Analysis

= TF (u)e’ ™ du

Inverse
Fourier
Transform



Fourier Series

* Projection or change of basis
» Coordinates (coeffs) in Fourier basis:
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Fourier Series: f(t) —F(s)

Function (¢ (in red) is a sum of six sine functions of
different amplitudes and harmonically related
frequencies. Their summation is called a Fourier
series. The Fourier transform, S(f (in blue), which
depicts amplitude vs frequency, reveals the 6
frequencies and their amplitudes.

source: http://en.wikipedia.org/wiki/Fourier series




Fourier Series: Approximation
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Visualisation of an approximation of a Visualisation of an approximation of a

square wave by taking the first 1, 2, 3 sawtooth wave of the same amplitude

and 4 terms of its Fourier series and frequency for comparison

Source:; http://en.wikipedia.org/wiki/Fourier series




Demonstration
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hitp:itasnaay falstad.com

http://www.falstad.com/fourier/




Fourier Basis

* Why Fourier basis?

— Can represent integrable functions with
finite support (J P Fourier 1807)

* Also
— Orthonormal in [-pi, pi]
— Periodic signals with different frequencies
— Continuous, differentiable basis



Orthonormality

-10 -

Example: Cos(x), Cos(2x), Cos(x)*Cos(2x)

i
j cos(x) cos(2x)dx =0
—pi



Fourier Transform

* Forward, mapping to frequency domain:

F(s) = /_ F(t)e—i2mst gy

« Backward, inverse mapping to time
domain:

F(t) = / T F(s)er TSt s

— OO



Sifting Property

« See text book DIP 4.2.3



Common Transform Pairs

Dirac delta - constant

f(x) F(p)
A -

o( x )
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FIGURE 4.4 (a) A simple function; (b) its Fourier transform; and (c) the spectrum. All functions extend to
infinity in both directions.

© 1992-2008 R. C. Gonzalez & R. E. Woods



Common Transform Pairs

Rectangle — sinc

sinc(x) = sin(x) / x

F(p)= a sinc(rpa)
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My =0.-w< x < -al2

=1-al2 < x <a? \//\\/
=0, a2 < x < O p=




Common Transform Pairs

Cosine - Two symmetric Diracs

” y(x) = A.cos (2.7n.pg.X) A.b(p+po)  A.5(p-po)

P Po

T=1{pg)



Common Transform Pairs

Gaussian — Gaussian (inverse variance)

f(x) F(p)
1 4
0.5 4
0 = = X
0 0

Gaussian Function Fourier Transform



Common Transform Pairs

Comb — comb (inverse width)




Quiz

What is the FT of a triangle function?

b
A

/N

-T4 T4 X

Hint: how do you get triangle function from the
functions shown so far?



Answer

Triangle = box convolved with box

Soits FT is sinc * sinc

A

F(p)
AT4

-T1 T4 X 1 2 3 p

A
fi(x)=- 5—|x| *+A : e
T Ism d .2 ,
T F(p)= ATy iTﬂlm} = AT4 sinc “ (=Tqp)
fix)=0 |x|<Ty and |x|>Tjy '



Quiz
e Whatisthe FT?

1
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* Hint: use FT properties and express as
functions with known transforms



Answer

5¥\ /‘ f(x) = M(x /4) = A(x 12) + 5A(X)

2 =

1
- . %™ 240 1 3 ® S/

2 -1 0 1 2 \/ 1 0 1
1
FT is linear, so

F(s) = 4sinc(4s) - 2sinc?(2s) + .5sinc?(s)



Fourier Transform

F(s) = 4sinc(4s) - 2sinc?(2s) + .5sinc?(s)
3.

InverseFourier
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Cut-off High Frequencies

F(s) = (4sinc(4s) - 2sinc?(2s) + .5sinc?(s))*(HeavisidePi(w/8)

. . F(s)
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InverseFourier
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1D: Common Transform Pairs
Summary

Fourier Transform Pairs

Pair
Number x(r) XN
F Il( :,) rsine 7f
e f
2. 2W sinc 2Wr n| —
3. .\( i] Tsinc? 7f
4 = |
! exp(—=anu(t), a >0 a+ j2nf
1
5. rexp(—anu(r), a >0 - 2
" (a + j2mf)’
2a
6 exp(—air).a >0 m—
7_ e~ "y e " Y
8 &n 1
9. 1 &f)
10. &r = 1) expl(—j2mft,)
i1, exp(2nf ) (=1
12. cos 27y W = f) + 18+ f)
: | 1
13, sin 2mfyt 50 =)= ;S + 1)
=) =/
14, ulr) (2af)' + 18
15. sgn I (aN)!
16 l =J sgn(
| = J sgn(f)
A 1 ™ x(A) .
17. x(r) = —,
x(1) ﬂI-'_AdA J sgn(NX(f)
18 S &t - mT) f, X S = mf).

LT source




FT Properties: Convolution
* See book DIP 4.2.5:

Flf@)®@g(t)] = F(s).G(s)

» Convolution in space/time domain is
equiv. to multiplication in frequency
domain.

Time Convolution f() xgt) & Flw)G(w)

Frequency Convolution f(He(t) © %F( w) * G(w)



Important Application

Frequency domain filtering operation

: Filter Inverse
Fourier : g
function Fourier
transform I
H(u, v) transform

H(u,v)F(u,v)

Pre- Post-
processing processing
flx.y) g(x, y)
Input Enhanced

image image

Filtering in frequency Domain



FT Properties

Linearity af (i) + Be(d) ¢ aF(w)+ AG(w)
Time Translation ft-10) © eJW0R (w)
Scale Change fla o "aL"F(w/a)
Frequency Translation & “’°tf(t) o  Fw- wp)
Time Convolution f() xg(t) & Fw)G(w)

Frequency Convolution f(He( © %F(w) * G(w)

(F+9@ = [ fWola-v)dy= | fz=va(s)dy.
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