
Fourier Transform  

in 

Image Processing 

CS6640, Fall 2012 

Guest Lecture 

Marcel Prastawa, SCI Utah 



Preliminaries 



Function Representation 

Linear function: 

 

 

Rewrite as: 

 

 

 

Provides intuitive description of linear 

functions: 

•Angles 

•Shifts 

 

How to do this for generic functions? 
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Basis Decomposition 

• Write a function as a weighted sum of 

basis functions 

 

 

• What is a good set of basis functions? 

• How do you determine the weights? 
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Sine Waves 

• Use sine waves of different frequencies 

as basis functions? 



Limitation of Sines 

• Sines are odd / anti-symmetric: 

 

 

• Sine basis cannot create even 

functions: 



Limitation of Cosines 

• Cosines are even / symmetric functions: 

 

 

• Cosine basis cannot create odd 

functions: 

 



Combine Cosines and Sines 

• Allow creation of both even and odd 

functions with different combinations: 
Odd Even 



Why Sines and Cosines? 

• Represent functions as a combination of 

basis with different frequencies 

• Intuitive description of signals / images: 

– how much high frequency content? 

– what do the low freq. content look like? 

• Image processing “language”: 

– remove noise by reducing high freq content 

– explains sampling / perception phenomena  



The Fourier Transform 



Reminder: Euler’s Identity 

• From calculus 

 

 

 

• j is the imaginary part of a complex 

number 

xjxe sincos 
jx



Fourier Transform 

• Forward, mapping to frequency domain: 

 

 

• Backward, inverse mapping to time 

domain: 

+ 



Space and Frequency 

 



Fourier Series 

• Projection or change of basis 

• Coordinates in Fourier basis: 

 

 

• Rewrite f as: 



Example: Step Function 

Step function as sum of infinite sine waves 



Discrete Fourier Transform 

 



Fourier Basis 

• Why Fourier basis? 

– Can represent integrable functions with 

finite support 

• Also 

– Orthonormal in [-pi, pi] 

– Periodic signals with different frequencies 

– Continuous, differentiable basis 

 



FT Properties 



Common Transform Pairs 

Dirac delta - constant 



Common Transform Pairs 

Rectangle – sinc 

 

sinc(x) = sin(x) / x 



Common Transform Pairs 

Two symmetric Diracs - cosine 



Common Transform Pairs 

Comb – comb (inverse width) 



Common Transform Pairs 

Gaussian – Gaussian (inverse variance) 



Common Transform Pairs 

Summary 



Quiz 

What is the FT of a triangle function? 

 

 

 

 

 

 

Hint: how do you get triangle function from the 

functions shown so far? 



Answer 

Triangle = box convolved with box 

 

So its FT is sinc * sinc 



Quiz 

• What is the FT? 

 

 

 

 

• Hint: use FT properties and express as 

functions with known transforms  



Answer 

f(x) = Π(x /4) – Λ(x /2) + .5Λ(x) 

FT is linear, so 

 

F(w) =  4sinc(4w) - 2sinc2(2w) + .5sinc2(w) 



Fourier Transform of Images 



• Forward transform: 

 

• Backward transform: 

 

 

• Forward transform to freq. yields 

complex values (magnitude and phase): 

2D Fourier Transform 



2D Fourier Transform 



Fourier Spectrum 

Fourier spectrum 

Origin in corners 

Retiled with origin 

In center 

Log of spectrum 

Image 



Fourier Spectrum – 

Translation and Rotation 



Phase vs Spectrum 

Image Reconstruction from 

phase map 

Reconstruction from 

spectrum 



u 

v 

        Image                       Fourier Space 
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Fourier Spectrum Demo 

http://bigwww.epfl.ch/demo/basisfft/demo.html 

http://bigwww.epfl.ch/demo/basisfft/demo.html


Filtering Using FT and Inverse 

X 



Low-Pass Filter 
• Reduce/eliminate high frequencies 

• Applications 

– Noise reduction 

• uncorrelated noise is broad band 

• Images have sprectrum that focus on low 

frequencies 
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Ideal LP Filter – Box, Rect 

Cutoff freq Ringing – Gibbs phenomenon 



Extending Filters to 2D (or 

higher) 

• Two options 

– Separable 

• H(s) -> H(u)H(v) 

• Easy, analysis 

– Rotate 

• H(s) -> H((u2 + v2)1/2) 

• Rotationally invariant 



Ideal LP Filter – Box, Rect 



Ideal Low-Pass  

Rectangle With Cutoff of 2/3 

Image Filtered Filtered  

+  

Histogram Equalized 



Ideal LP – 1/3 



Ideal LP – 2/3 



Butterworth Filter 

Control of cutoff and slope 

Can control ringing 



Butterworth - 1/3 



Butterworth vs Ideal LP 



Butterworth – 2/3 



Gaussian LP Filtering 
Ideal LPF Butterworth LPF Gaussian LPF 

F1 

F2 



High Pass Filtering 

• HP = 1 - LP 

– All the same filters as HP apply 

• Applications 

– Visualization of high-freq data (accentuate) 

• High boost filtering 

– HB = (1- a) + a(1 - LP) = 1 - a*LP 



High-Pass Filters 

 



High-Pass Filters in Spatial 

Domain 



High-Pass Filtering with IHPF 



BHPF 



GHPF 



HP, HB, HE 



High Boost with GLPF 

 



High-Boost Filtering 

 



Band-Pass Filters 

• Shift LP filter in Fourier domain by 

convolution with delta 

LP 

BP 
Typically 2-3 parameters 

-Width 

-Slope 

-Band value 



Band Pass - Two Dimensions 

• Two strategies 

– Rotate 

• Radially symmetric 

– Translate in 2D 

• Oriented filters 

 

• Note: 

– Convolution with delta-pair in FD is 

multiplication with cosine in spatial domain  



Band Bass Filtering 

 



SEM Image and Spectrum 



Band-Pass Filter 



Radial Band Pass/Reject 

 



Band Reject Filtering 



Band Reject Filtering 



Band Reject Filtering 



Aliasing 



Discrete Sampling and 

Aliasing 
• Digital signals and images are discrete 

representations of the real world  

– Which is continuous 

• What happens to signals/images when we 

sample them? 

– Can we quantify the effects?   

– Can we understand the artifacts and can we limit 

them? 

– Can we reconstruct the original image from the 

discrete data? 



Sampling and Aliasing 

• Given the sampling rate,  CAN NOT 

distinguish the two functions 

• High freq can appear as low freq 



Ideal Solution: More Samples 

• Faster sampling rate allows us to distinguish 

the two signals 

• Not always practical: hardware cost, longer 

scan time 



A Mathematical Model of Discrete 

Samples 
Delta functional 

Shah functional 



A Mathematical Model of Discrete 

Samples 

Discrete signal 

Samples from continuous function 

Representation as a function of t 

• Multiplication of f(t) with Shah 

• Goal 

– To be able to do a continuous Fourier 

transform on a signal before and after 

sampling 



Fourier Series of A Shah 

Functional 

u 



Fourier Transform of A Discrete 

Sampling 

u 



Fourier Transform of A Discrete 

Sampling 

u 

Energy from higher 

freqs gets folded back 

down into lower freqs – 

Aliasing 

Frequencies get 

mixed.  The 

original signal is 

not recoverable. 



What if F(u) is Narrower in the Fourier 

Domain? 

u 

• No aliasing! 

• How could we recover the original 

signal? 



What Comes Out of This 

Model 

• Sampling criterion for complete 

recovery  

• An understanding of the effects of 

sampling 

– Aliasing and how to avoid it 

• Reconstruction of signals from discrete 

samples 



Shannon Sampling Theorem 

• Assuming a signal that is band limited: 

 

• Given set of samples from that signal 

 

• Samples can be used to generate the 

original signal 

– Samples and continuous signal are 

equivalent 



Sampling Theorem 

• Quantifies the amount of information in 

a signal 

– Discrete signal contains limited frequencies 

– Band-limited signals contain no more 

information then their discrete equivalents 

• Reconstruction by cutting away the 

repeated signals in the Fourier domain 

– Convolution with sinc function in 

space/time 



Reconstruction 

• Convolution with sinc function 



Sinc Interpolation Issues 

• Must functions are not band limited 

• Forcing functions to be band-limited can 

cause artifacts (ringing) 

 

f(t) |F(s)| 



Sinc Interpolation Issues 

 

 

Ringing - Gibbs phenomenon 

Other issues: 

 Sinc is infinite - must be truncated 

  



Aliasing 

• Reminder: high frequencies appear as 

low frequencies when undersampled 



Aliasing 

16 pixels 
8 pixels 

0.9174 

pixels 

0.4798 

pixels 



Aliasing 

 

 

 

Aliasing in digital videos 



Overcoming Aliasing 

• Filter data prior to sampling 

– Ideally - band limit the data (conv with sinc 

function) 

– In practice - limit effects with fuzzy/soft low 

pass 

 



Antialiasing in Graphics 

• Screen resolution produces aliasing on 

underlying geometry 

Multiple high-res 

samples get averaged 

to create one screen 

sample 



Antialiasing 

 



Interpolation as Convolution 

• Any discrete set of samples can be 
considered as a functional 

 

 

• Any linear interpolant can be considered 
as a convolution 

– Nearest neighbor - rect(t) 

– Linear - tri(t) 



Convolution-Based Interpolation 

• Can be studied in terms of Fourier Domain 

• Issues 

– Pass energy (=1) in band 

– Low energy out of band 

– Reduce hard cut off (Gibbs, ringing) 
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Fast Fourier Transform 

With slides from Richard 

Stern, CMU 



DFT 

• Ordinary DFT is O(N2) 

• DFT is slow for large images 

 

• Exploit periodicity and symmetricity 

• Fast FT is O(N log N) 

• FFT can be faster than convolution 

 



Fast Fourier Transform 

• Divide and conquer algorithm 

• Gauss ~1805 

• Cooley & Tukey 1965 

 

• For N = 2K 



The Cooley-Tukey Algorithm 

• Consider the DFT algorithm for an integer power of 2, 

 

 

• Create separate sums for even and odd values of n: 

 

 

• Letting              for n even and                  for n odd, we 

obtain                            

 

  

N  2



X[k]

n0

N1

 x[n]WN
nk 

n0

N1

 x[n]e j2nk /N ;  WN  e j2 /N



X[k]  x[n]WN
nk 

n  even

 x[n]WN
nk

n  odd



n  2r n  2r 1

X[k]  x[2r]WN
2rk 

r0

N / 2 1

 x[2r 1]WN
2r1 k

r0

N /2 1





The Cooley-Tukey Algorithm 

• Splitting indices in time, we have obtained 

 

 

 

• But                                                      and 

So … 

 

 

                  N/2-point DFT of x[2r]      N/2-point DFT of x[2r+1] 

 

X[k]  x[2r]WN
2rk 

r0

N / 2 1

 x[2r 1]WN
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r0

N /2 1



WN
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2rkWN
k WN

kWN / 2
rk

X[k]

n0

(N/ 2)1

 x[2r]WN /2
rk WN

k

n0

(N/ 2)1

 x[2r 1]WN / 2
rk



Example: N=8 

• Divide and reuse 



Example: N=8, Upper Part 

• Continue to divide and reuse 



Two-Point FFT 

• The expression for the 2-point DFT is: 

 

 

• Evaluating for              we obtain 

 

 

 

 which in signal flowgraph notation looks like ... 

 

X[k]

n0

1

 x[n]W2
nk 

n0

1

 x[n]e j2nk / 2

k  0,1

X[0]  x[0] x[1]

X[1] x[0] e j21/ 2x[1] x[0] x[1]

This topology is referred to as the 

basic butterfly 



Modern FFT 

• FFTW 

  http://www.fftw.org/ 


