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Preliminaries



Function Representation

AX

Linear function:
f(X)=mx+Db m = AX/ Ay
Rewrite as:

f(x)=tan(@)+Db

Provides intuitive description of linear
functions:

*Angles

*Shifts

How to do this for generic functions?



Basis Decomposition

« Write a function as a weighted sum of
basis functions

f (X) =2wiBi(x)

 Whatis a good set of basis functions?
« How do you determine the weights?



Sine Waves

» Use sine waves of different frequencies
as basis functions?

sin(met)
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Limitation of Sines

* Sines are odd / anti-symmetric:

f--/\\/;/\\/---t f(t) ==f(-1)

 Sine basis cannot create even
functions:




Limitation of Cosines

« Cosines are even/ symmetric functions:

RO AN AR (GESC)
\VARV/

 Cosine basis cannot create odd
functions:




Combine Cosines and Sines

* Allow creation of both even and odd
functions with different combinations:

Even Oad
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Why Sines and Cosines?

* Represent functions as a combination of
basis with different frequencies

* Intuitive description of signals/ images:
— how much high frequency content?
— what do the low freqg. content look like?

* Image processing “language’.
— remove noise by reducing high freq content
— explains sampling / perception phenomena



The Fourier Transform



Reminder: Euler’s ldentity

e From calculus

X
&L cos x + jsin x

» ] IS the imaginary part of a complex
number



Fourier Transform

* Forward, mapping to frequency domain:
F(s) = / F(t)e—i2mst gy

» Backward, inverse mapping to time
domain:

f(t) = / T F(s)eizmst g

— OO



Space and Frequency

Fourier
Transform

F(u)= [ f(x)e ™ dx
Fourier - Fourier

Synthesis Analysis

f(x)= TF (w)e’ ™ du

Inverse
Fourier
Transform



Fourier Series

* Projection or change of basis
» Coordinates in Fourier basis:

2 - 21mTn
Cpn = f(t)e 77T tdt
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e Rewrite O[) as:

f(t) = Z cpel T
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Example: Step Function

Step function as sum of infinite sine waves
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Discrete Fourier Transform



Fourier Basis

 Why Fourier basis?

— Can represent integrable functions with
finite support

* Also
— Orthonormal in [-pi, pI]
— Periodic signals with different frequencies
— Continuous, differentiable basis



FT Properties

Linearity af @)+ pgl) & aF(w)+ fG(w)
Time Translation ft-10) & LY Z¢%)
Scale Change f (at) 4 ﬁF( w/a)
Frequency Translation & wolt(hy & Flw - Wy)
Time Convolution f(t) xglt) &  Flw)G(w)

Frequency Convolution f (el > ;—HF(w) * G(w)

9@ = [ fwee-ndy= [ fa- o)y



Common Transform Pairs

Dirac delta - constant

f(x) F(p)




Common Transform Pairs

Rectangle — sinc

sinc(X) = sin(x) / X

Fip)= a sinc(rpa)
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Common Transform Pairs

Two symmetric Diracs - cosine

yix) = A.cos (2.1.po.x)
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Common Transform Pairs

Comb — comb (inverse width)

ﬁ::;.:] = I][d
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Common Transform Pairs

Gaussian — Gaussian (inverse variance)

fix) Fip)
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Gaussian Function Fourier Transform



Common Transform Pairs

Discrete unit
impulse

Rectangle

Sine

Cosine

Graussian

Summary

olx,y)=1

sin(ua) sin(wvb) _
e

jm(ua+vh)
(mua)  (wovb)

rect|a. b] = a
sin(2mugx + 2aogy) <

jé[ﬁiu + Mug, v + Nvg) — 5(u— Mup. v — Nug)]
cos(2mupx + 2mgy) <

%[ﬁ(u + Muy. v+ Noy) + o(u — Mug, v — NTJ(]}]
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Quiz

What is the FT of a triangle function?

b

T4 T- X

Hint: how do you get triangle function from the
functions shown so far?



Answer

Triangle = box convolved with box

Soits FTIs sinc * sinc

A

-T4 T4 X

A
flx) == Ix| + A

sin(zTyp) e
_ 2
i :| = ATy sinc “ (aTqp)

F(p)= ATy
f(x)=0 [x|<Ty and [x|>T4



Quiz
« Whatis the FT?

1
_5tl~\: : /‘
-2 -1 0 1 2

* Hint: use FT properties and express as
functions with known transforms



Answer

5}\ : 4 f(x) = MN(x /4) = A(x /2) + .5A(X)

2 -1

1
= 2101 2 * 3/~

2 -1 0 1 2 \/ 1 0 1
-1
FT is linear, so

F(w) = 4sinc(4w) - 2sinc?(2w) + .5sinc?(w)



Fourier Transform of Images



2D Fourier Transform

* Forward transform:

Flu) = [ [~ flz,y)e™ 0z gy
* Backward transform:

flz,y) = f F(u,v)e” ) du dy

* Forward transform to freq. yields
complex values (magnitude and phase):

F(u,v) = F.(u,v) + jFi(u,v) = |F(u,v)|e? &)



2D Fourier Transform




Fourier Spectrum

Image

Retiled with org.

Fourier spectrum
Origin in corners

Log of spectrum

In center




Fourier Spectrum —
Translation and Rotation




Phase vs Spectrum

Reconstruction from Reconstruction from
phase map spectrum
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Fourier Spectrum Demo

http://bigwww.epfl.ch/demo/basisfft/demo.html



http://bigwww.epfl.ch/demo/basisfft/demo.html

Filtering Using FT and Inverse




Low-Pass Filter

* Reduce/eliminate high frequencies

» Applications
— Noise reduction
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|deal LP Filter — Box, Rect

f(o) F(w) |F(_u)|

.
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Cutoff freq Ringing — Gibbs phenomenon



Extending Filters to 2D (or
higher)

* Two options
— Separable ) -
— Rotate n




|deal LP Filter — Box, Rect

|F(u,v)|
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ldeal Low-Pass
Rectangle With Cutoff of 2/3

Image Filtered Filtered

Histogram Equalized



ldeal LP — 1/3




ldeal LP — 2/3




Butterworth Filter

Lowpass filters. Dy is the cutoff frequency and n is the order of the Butterworth filter.

Ideal Butterworth Gaussian
1 if D(u, v) = Dy 1 P )
H(u,v) = H(u,v) = H(u, v) = e Dwv)/2Di
() {U if D(u, v) > Dy (u, v) 1 + [D(u, v)/Dp] ™ (u, v)

Control of cutoff and slop

Can control ringing
H(u, v) H(u, v)
A

J
—? 1.0

0.5

U+ "=

»D(u, v)



Butterworth - 1/3




Butterworth vs Ideal LP




Butterworth — 2/3




Gaussian LP Filtering

Ideal LPF

Butterworth LPF

Gaussian LPF
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High Pass Filtering

e HP=1-LP
— All the same filters as HP apply
* Applications
— Visualization of high-freq data (accentuate)

« High boost filtering
—~-HB=(1-a)+a(l-LP)=1-a*LP



High-Pass Filters

H{u, v) H(u, )
—= U 1.0+
D(u, v)
u
H(u, v)
%10
D(u, v)
u
H(u, v)
VY10
a
D(u, v
. (4v)
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



High-Pass Filters in Spatia
Domain

ab e

FIGURE 4.53 Spatial representation of typical {(a) ideal. (b} Butterworth, and (¢} Gaussian frequency domain
highpass hilters, and corresponding intensity profiles through their centers.



High-Pass Filtering with IHPF

a bc

FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with D, — 30, 60, and 160.



BHPF

a b ¢

FIGURE 4.55 Results of highpass filtering the image in Fig. 441 (a) using a BHPF ot order 2 with £, = 30, 60,
and 160, corresponding to the circles in Fig. 441D} These results are much smoother than those obtained

with an IHPE



GHPF

FIGURE 4.56 Recsults of highpass filtering the image in Frgo 44 1(a) using o GHPEF with ), = 30,60, and 160,
corresponding to the circles in Fie. 44 1(b). Compare with Figs. 434 and 4.55.
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High Boost with GLPF




High-Boost Filtering




Band-Pass Filters

» Shift LP filter in Fourier domain by
convolution with delta

d(s — sg) +d(s+ so)
LP

Typically 2-3 parameters BP
-Width
-Slope
-Band value




Band Pass - Two Dimensions

* Two strategies
— Rotate

— Translate in 2D

 Note:

— Convolution with delta-pair in FD Is
multiplication with cosine in spatial domain



Band Bass Filtering




SEM Image and Spectrum




Band-Pass Filter




Radial Band Pass/Reject

Ideal Butterworth

Gaussian

H(u,v) = {

0 ifDo—%ngDDJr% H(u,v) =

1 otherwise
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Band Reject Filtering
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Band Reject Filtering
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Band Reject Filtering




Allasing



Discrete Sampling and
Allasing

 Digital signals and images are discrete
representations of the real world

— Which is continuous

« What happens to sighals/images when we
sample them?
— Can we gquantify the effects?

— Can we understand the artifacts and can we limit
them?

— Can we reconstruct the original image from the
discrete data?



Sampling and Aliasing

I\ \ N /”\
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* Given the sampling rate, CAN NOT
distinguish the two functions

« High freq can appear as low freq



ldeal Solution: More Samples

\ T
TG

« Faster sampling rate allows us to distinguish
the two signals

* Not always practical: hardware cost, longer
scan time




A Mathematical Model of Discrete
Samples

Delta functional

&(x = xp)

I | .
OX,D

Shah functional ssr(

sar(t)= ) 6(t—kAT)

k=—o0

t
-+« =3AT —2AT —-AT 0O AT 2AT 3AT --.



A Mathematical Model of Discrete
Samples

f@

 Goal
— To be able to do a continuous Fourier /\/\/\
transform on a signal before and after \_/\/‘\
sampling 0 '
Discrete signal S”@
e B SERNRARARARARE

©=2AT—-ATO0 AT2AT -+

. . f@O)sar(t)
Samples from continuous function

fi = f(EAT) ~ATTw -
k 0 Thgren

©r=2AT—-ATO0 AT2AT -

t

Representation as a function of t fo = FRAT)
 Multiplication of f(t) with Shah .
ft) = f®sar®) = Y fid(t — kAT) T e
I I S A B 1| I \ \ k

k:—m eee =7 -1 0



Fourier Series of A Shah

sar(?)

AT 2AT 3AT ---

Functional
s(t) = i 5(t — kAT) ‘ ‘ ‘
k=—o00
S(U)zﬁ 3 5(u—%) ‘ ‘ ‘
= i S(ATu — k) A
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Fourier Transform of A Discrete
Sampling

f(t) = f(t)s(t) F(u) = F(u) * S(u)

\

VAN AN
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... =3AT —2AT —AT 0 AT 2AT 3AT - 3 2
N

AT AT At ' AT AT AT



Fourier Transform of A Discrete
Sampling

o~

Frequencies get Flu)= F(u)*x S(u
mixed. The ( ) ( ) S( )
original signal is
not redoverable.

AT AT AT AT AT AT

Energy from higher
freqs gets folded back
down into lower freqs —

Aliasing



What if F(u) is Narrower in the Fourier
o Domain?
* No aliasing!
« How could we recover the original
signal? ‘

4 4

52 1 12 3
AT AT AT AT AT AT




What Comes Qut of This
Model

« Sampling criterion for complete
recovery

* An understanding of the effects of
sampling
— Aliasing and how to avoid it

* Reconstruction of signals from discrete
samples



Shannon Sampling Theorem

« Assuming a signal that is band limited:

f@)«—>F(u)  |[Fu)|=0V |u/>B
* Glven set of samples from that signal
fe = f(EAT) AT < %

« Samples can be used to generate the
original signal

— Samples and continuous signal are
equivalent



Sampling Theorem

* Quantifies the amount of information in
a signal
— Discrete signal contains limited frequencies
— Band-limited signals contain no more
iInformation then their discrete equivalents
« Reconstruction by cutting away the
repeated signals in the Fourier domain

— Convolution with sinc function In
space/time



Reconstruction

 Convolution with sinc function

F(t) = F&)xF ! [rect (ATU)}

_ (Z Fud(t — kAT)) *sinc (ﬁ) =) fi sinc
k




Sinc Interpolation Issues

 Must functions are not band limited

* Forcing functions to be band-limited can
cause artifacts (ringing)

£(t)
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Sinc Interpolation Issues
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Ringing - Gibbs phenomenon
Other Issues:
Sinc iIs infinite - must be truncated



Allasing

* Reminder: high frequencies appear as
low frequencies when undersampled
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Allasing

e :.:.:. % -

0.4798
pixels

0.9174
pixels




Allasing

Aliasing in digital videos



Overcoming Aliasing

* Filter data prior to sampling

— Ideally - band limit the data (conv with sinc
function)

— In practice - limit effects with fuzzy/soft low
pass

L




Antialiasing in Graphics

* Screen resolution produces aliasing on
underlying geometry

Multiple high-res
samples get averaged
to create one screen

sample

® ©

allased antialiased




Antialiasing
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Interpolation as Convolution

* Any discrete set of samples can be
considered as a functional

ft)y = D frdé(t — kAT)

* Any linear interpolant can be considered
as a convolution

— Nearest neighbor - rect(t)

— Linear - tri(t) { t+1 —1<t<0 /\
trift) =< 1—¢t 0<t<t
0 otherwise




Convolution-Based Interpolation

« Can be studied in terms of Fourier Domain
* Issues

— Pass energy (=1) in band

— Low energy out of band

— Reduce hard cut off (Gibbs, ringing)




Fast Fourier Transform

With slides from Richard
Stern, CMU



DFT

Ordinary DFT is O(N?)
DFT Is slow for large images

Exploit periodicity and symmetricity
Fast FT is O(N log N)
FFT can be faster than convolution



Fast Fourier Transform

Divide and conguer algorithm
Gauss ~1805
Cooley & Tukey 1965

For N = 2K



The Cooley-Tukey Algorithm

- Consider the DFT algorithm for an integer power of 2, N=2"
N-1 N-1 | |
X[k]= D, X[n]WNnk: Y x[n]e—]27mk/N; WN:e—]27z/N
n=0 n=0
* Create separate sums for even and odd values of n:

X[k]=  Yx{nlvy™ + Y xin]wy™*

n even n odd
» Letting =2, forneven and2s+1 for n odd, we
obtain  (n/2)-1 (N/2)-1

XK= > xrwnEh > xr+ 1y 2rtDE
r=0 r=0



The Cooley-Tukey Algorithm

« Splitting indices in time, we have obtained
(N/2)-1 (N/2)-1
Xkl= > x[2rwnEh 4 Y x[r+1ywy(2rtDE
r=0 r=0

So ... (N/2)-1 . (N12)-1
Xkl= D, x[2r] N/2+WN > x 2r+1]WN/2
n=0 n=0

| | | |
N/2-point DFT of x[2r]  N/2-point DFT of x[2r+1]




Example: N=8
 Divide and reuse

x[0] o—>— +~X > /\X[O]
0
| ~ 1

x[2] o—>—

x[4] o—>—

x[6] o——

x[1] o——

x[3] o—>—




Example: N=8, Upper Part

 Continue to divide and reuse

X [0] o N ' QO > G [0]
4 point \/V;[}IZ
DFT . G[1]

x[4] o—>—

SE
x[2] o—>— »—0 (7 (2]

N_ point W}%{g
DFT

x[6] o—>—




Two-Point FFT

* The expression forlthe 2-point DFlT IS:

X[k] = Z x[n]%nk: Z x[n]e—j27mk/2
n=0 n=0

- Evaluating for £=0,1 we obtain

X[0] = x[0]+ x[1]
X[1]= x[0]+e 72 2511 = x[0] = x[1]

which in signal flowgraph notation looks like ...

x[0]

x[4]



Modern FFT

« FFTW
http://www.fftw.org/



