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Geometric Transformations

* Greyscale transformations -> operate on
range/output

« Geometric transformations -> operate on
Image domain
— Coordinate transformations
— Moving image content from one place to another
e Two parts:
— Define transformation
— Resample greyscale image in new coordinates



Geom Trans: Distortion From
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Radial Distortion
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Can be corrected! (if parameters are know)




Geom Trans: Distortion From
Optics




Geom. Trans.: Brain
Template/Atlas




Geom. Trans.: Mosaicing




Domain Mappings
Formulation

f — New image from old one
!
L — T _ Tl (m? y) Coordinate transformation
/ _ (:B: y) —
(7} Ts (g;? y) Two parts — vector valued

. !
g(ﬂf? y) — f(ﬂ;' Y ) ~ g is the same image as f, but

g(z,y) = f(m"?y’) = f(x,y)  sampled onthese new

coordinates



Domain Mappings
Formulation

S~

E. H. W. Meijerin - o L
( J 9) g is the same (intensity) image as f, but

P L Sy . | .- B T
51’.:3{5"3}3;‘5:(} On these new coordinates



Domain Mappings
Formulation

7' =T(z) Bar used some tmes, depends
on context.
9(z) = f(z) = f(&) = f(T(2))

_ 17—y T may or may not have an
€T — T (ﬂ;‘ ) Inverse. If not, it means that
iInformation was lost.
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Domain Mappings
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NoO Inverse?
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Example
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Transformation Examples

e Linear z = AZ+ Z, A:(a 2)
C

' = ax + by + x
y' =cz+dy+ Yo
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AT .
Ef 2D Rotation

» Rotate counter-clockwise about the origin by an angle &

cos

s1in &

—sind@ | x

cos@ || v

NZ

_|_
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Tl ]
!/ Rotating About An Arbitrary Point

e

* What happens when you apply a rotation transformation to
an object that 1s not at the origin?
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<11} Rotating About An Arbitrary
lad Point

* What happens when you apply a rotation transformation to
an object that is not at the origin?

— It translates as well
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<Ail7] .
Eﬁ” Now: First Rotate, then Translate

v

» Rotation followed by translation 1s not the same as
translation followed by rotation:

* T(R(object)) # R(T(object))

/. 6_ Z
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Series of Transformations

2D Object: Translate, scale, rotate, translate again

y . _. _. y

oAb b 19

P = T2+(R-S-(T1+P))

* Problem: Rotation, scaling, shearing are
multiplicative transforms, but translation is additive.
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r//

. E} Excellent Materials for self study

V

http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide01.html

Problems with this Form

» Mugt conzider Translation and Rotation separately
« Computing the mverze transtonn mvolves multiple steps
« Order matters between the R and T parts

R(T'(x)) # T(R(x))

These problemi cami be remedied by considerimg our 2 dimensioniad incge plane as a 21
subspace withim 30,

Link: http://groups.csail.mit.edu/graphics/classes/6.837/FO1/Lecture07/Slide01.html »q



http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide01.html

Transformation Examples

e Linear z = AZ+ Z, A:(a 2)
C

' = ax + by + x
y' =cz+dy+ Yo

« Homogeneous coordinates

x a b xg
=\ y A= ¢ d 1y
1 0 0 1

21



Homogeneous Coordinates

T
L; I y f/
i

* Use three numbers to represent a point
* (x,y)=(wx,wy,w) for any constant w0
— Typically. (x,y) becomes (x,y,1)

— To go backwards, divideby w

* Translation can now be done with matrix multiplication!

'
X d a.xjr b A
'
V=9 a’j.j'r b1 y
1 0 0 1|1



i/

Vi Basic Transformations
4
e Translation: [1 0 b5_] Rotation: |cos6 —sinf
0 1 2, sinf  cosé
00 1 0 0
 Scaling: |[s, 0 0
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Special Cases of Linear

0 0 I
Translation “={{ o .

] f —sinf® 0
Rotation A—(g?xfe cosd 0)
0 0 1

Rigid = rotation + translation

p 0 O
Scaling A=(g ; (1’) P, q<1:expand

— Include forward and backward
rotation for arbitary axis

Reflection

24



Linear Transformations

Transformation
Name Affime Mairix, T Equutiens Example
Identity 1 0 0 I=1 A
0 1 0 y=u + o
0 01
Scaling e, D 0 X =0
o 0 y=cw
o o 1
Rotation oos i smB O t=vosfd —wsand
—sinf cos@ y=voosf + wsinb
] i 1
Translation 1 o 0 T=0+I,
0 1 0 y=w+i, |
L o6 1
Shear ['I'I..'rl..ﬂ:-"l" = 1 0 ﬂ- =0+ 50
5, 10 y=uw
_i] L] 1_
Shear (horizontal) "1 5 0] r=v
0 1 0 Fy=50+W
(00 1)

n I

[r¥1l]=[vwl]T=[vwl]|in Iz
Iy In

25

0



Cascading of Transformations

Excellent Introduction Materials (MIT):
http://groups.csail.mit.edu/graphics/classes/6.837/F01/LectureQ7/

Demo:
http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide09.html
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http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/
http://groups.csail.mit.edu/graphics/classes/6.837/F01/Lecture07/Slide09.html

Homogeneous Coordinates:
A general view
« Acknowledgement: Greg Welch, Gary

Bishop, Siggraph 2001 Course Notes
(Tracking).
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Series of Transformations

2D Object: Translate, scale, rotate, translate again

! y y y Y

. | 1<
A bod 1
—_

PP =T2+(R-S-(T1+P))

* Problem: Rotation, scaling, shearing are
multiplicative transforms, but translation is additive.
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Solution: Homogeneous

P =

X
Y

i

Coordinates

« |n2D: add a third coordinate, w
» Point [x,y]" expanded to [x,y,w]’

« Scaling: force w to 1 by [x,y,w]"/w — [x/w,y/w,1]7

where w =0 and typically w = 1

29



Resulting Transformations

s, 00 cosfB —sin@ 0 10d,
S=1p 5,0 R = |sin® cosH 0 =101 ff},
0 0 1 |0 0 1 00 1
: Y
new: PP=T2-R-S-T1-P

pefore: P’ = T2+ (R-S-(T1+P))



Linear Transformations

Also called “affine”
— 6 parameters

Rigid -> 3 parameters
Invertibility

— Invert matrix
What does it mean If A is not invertible?

T 1(z) =A%
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Affine: General Linear
Transformation

6 parameters for Trans (2), Scal
(2), Rot (1), Shear X and Shear
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Affine: General Linear
Transformation

x a b =xg 6 parameters for Trans (2), Scal
T = Y A= c d (2), Rot (1), Shear X and Shear
1

0 0 1 Y — 7 Parameters 7?7777

Rot 90deg Shear X Rot -90deg

Shear Y can be formulated as
2) Shear X applied to rotated
Image -> There is only one
Shear parameter

Shear Y
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Implementation

Two major procedures:

1. Definition or estimation of
transformation type and parameters

2. Application of transformation: Actual
transformation of image

34



Implementation — Two
Approaches

1. Pixel filling — backward mapping
 T() takes you from coords in g() to coords in f()
« Need random access to pixels in f()
« Sample grid for g(), interpolate f() as needed

f g

I

&

'
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Interpolation: Binlinear

e Successive application of linear
Interpolation along each axis

.Q . A, Q,

. ' . — I
, ‘P f(By) ~ —— f(Qu) A p—— f(@xn)
La r— I
f(R2) = — F(Qr2) A - _mlf':sz)
! : : ~ Yz — Y y—1u )

Source: Wilkipedia
36



Binlinear Interpolation

* Not linear in x, y

ey~ _iﬁﬁ — 5@ = 7))
e —iﬁj Ty &)~ )
'%u@_iﬁii_yﬂﬁh—Iﬂy—yﬂ
e _j;{jg;j @)=,

r!I:"l | bgﬂl | bﬁy | bd__my

by = f(0,0)

by = f(1,0) — £(0,0)
by = £(0,1) — £(0,0)
by = f(0,0) = £(1,0)

0
— f(0,1) + f(1,1).
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Binlinear Interpolation

e Convenient form
— Normalize to unit grid [0,1]x]0,1]

fla,y) = £(0,0) (1—z)(1—g) + f(1,0) 2(1—y) + f(0,1) (1 —z)y+ f(1,1)zy.

0.0) 0,1 [1—
flz,y) = [l -z 1 Egm }CEH?” y]_

38



Implementation — Two
Approaches

2. Splatting — backward mapping
e T() takes you from coords in f() to coords in g()
 You have f() on grid, but you need g() on grid

 Push grid samples onto g() grid and do
iInterpolation from unorganized data (kernel)

39



Scattered Data Interpolation With Kernels

Shepard’s method

 Define kernel

— Falls off with distance, radially symmetric

K(Z1,%2) = K(|Z1 — %2)

. ) | K(..‘i:l,ﬂ:g) - 2W1ﬁ215'%"e£

g9(x) = S ;wif(mi) K(Z,23) = 71— Za|P

wj=K(i‘—T_l(E@ L
Required T Grid coordinates in f ...._: -
gggrdinates Transformed : -

coord. from f
Univ of Utah, CS66402010

ing

40



Shepard’s Method
Implementation

 |If points are dense enough

— Truncate kernel

— For each point in f() Data and weights

o accumulated here
 Form a small box around it in g() — beyond
which truncate

e Put weights and data onto grid in g()
— Divide total data by total weights: B/A




ESTIMATION OF
TRANSFORMATIONS
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Determine Transformations

 All polynomials of (x,y)
* Any vector valued function with 2 inputs

e How to construct transformations?
— Define form or class of a transformation

— Choose parameters within that class
e Rigid - 3 parameters (T,R)
o Affine - 6 parameters

44



Correspondences

e Also called “landmarks” or “fiducials”

45



Question: How many
landmarks for affine T7

* Estimation of 6 parameters— 3 corresponding
point pairs with (x,y) coordinates

The coordinates ot three corresponding pomnts uniquely determine and Aftfine Transtorm

It we know where we would like at least three points to map to, we can golve for an Affine
transtorm that will zive this mapping.



Transformations/Control Points
Strategy

. Define a functional representation for
i T(8,z)
T with k parameters (| ,(ﬁ,:rﬁ — (81 B .. Br)

. Define (pick) N correspondences

. FIind B so that

c.=T(B,¢)i=1,...,N

. If overconstrained (K < 2N) then solve

N
arg min {Z (¢ — T(B, Ei)2:|

P i=1

47



Example Affine Transformation: 3
Corresponding Landmarks

Solution Method

We've used this technique several
tunes now. We set up 6 hnear
equations mn terms of our 6
unknown values. In this case, we
know the coordmates betore and
after the mapping, and we wish to
golve for the entriez in our Affine
transtorm matrre.

This gives the followmg solution:

X'x'=a

X

x ¥ 1 0 0 0fa,
0O 0 0 x y la,
x, ¥, 1 0 0 0} a,
0O 0 0 x y, lfay,
x, ¥ 1 0 0 0] a,,
1 O 0 0 x y |1 | s |

X



Example: Quadratic

Transformation

T, = B + B0z + 8%y + Bilzy + 2022 + 3922
= B0 + B0 + B0ty + Bitzy + 82022 + B0y

Denote c¢; = (C:c,*ivcy,i)

Correspondences must match
! _ 00 10 01 11 20, 02 .2
Cyi = /By + /By Cx.q + /By Cy.i + /By Cx,iCy,i + /Sy —I_ /Sy y,i

! _ 00 10 01 11 20 02 2
C:I:,?', - /811: T /8:1: Cx,i + /83: Cy,i + ﬁ:x: Cx,iCy,i + /Ba: C:c,i + T Cy,i

Note: these equations are linear in the unkowns

49



Write As Linear System

2 (52
( ]. (:371]_ CIhl Cm?]_{:y,]_ Cﬂ.‘,l (:1, .1 \ ﬁiﬂ
1 cz2 cy2 Czacy2 Cro Cy,2 ﬁgl

2 2
1 CaN Cy N Cx NCy N ca:,N cy1N 02
. 2 :
1 Ce1 Cy,1 Cx 1Cy,1 Cz1 ﬂg,l ﬁﬂﬂ
2 1
1 cpa2 Cy2 CgaCyz Cia Cyo plo

a 2 2 1
1 Cz, N Cy N Cz NCyN cith c!l'!N 181

Axr =b
A — matrix that depends on the (unprimed)

correspondences and the transformation

X — unknown parameters of the
transformation

b — the primed correspondences




Linear Algebra Background

Az =b
@111+ ... +aiNnZN = b
@211+ ... +asnzny = bo
apy11+...+tayunrny = by

Simple case: Ais sgaure (M=N) and invertable (det[A] not zero)

A lAe =Te =2 = A"1b

Numerics: Don't find A inverse. Use Gaussian elimination or
some kind of decomposition of A

51



Linear Systems — Other

Ccases

« M<N or M = N and the equations are
degenerate or singular

— System is underconstrained — lots of
solutions

e Approach
— Impose some extra criterion on the solution

— Find the one solution that optimizes that
criterion

— Regqularizing the problem

52



Linear Systems — Other

Cases
e M>N
— System is overconstrained
— No solution
e Approach

— Find solution that is best compromise
— Minimize squared error (least squares)

z = argmin |Ax — b|’
x

53



Solving Least Squares
Systems

 Psuedoinverse (normal equations)
AT Az = ATb
z=(ATA)"*ATb
— Issue: often not well conditioned (nearly
singular)
« Alternative: singular value
decomposition SVD

54



Singular Value Decomposition

A =UWVT =

(

\

(wi

\ 0

wo

0 )

Wy )

()

I=U"U=U0U"=V'V=vV"

At =vwU”T Wt = (

Invert matrix A with SVD

1

1
w

0
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SVD for Singular Systems

 If a system Is singular, some of the w’'s
will be zero
r=VW*UTb
ot { 1/w; |w;| >e€

J 0 otherwise

* Properties:

— Underconstrained: solution with shortest
overall length

— Overconstrained: least squares solution

56



e

SPECIFYING "WARPS" VIA
SPARSE SET OF LANDMARKS

57



Specifying Warps — Another Strategy

Let the # DOFs In the warp equal the # of
control points (x1/2)
— Interpolate with some grid-based interpolation

[ /7
u
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Landmarks Not On Grid

Landmark positions driven by application

Interpolate transformation at unorganized
correspondences
— Scattered data interpolation

How do we do scattered data interpolation?
— |ldea: use kernels!

Radial basis functions

— Radially symmetric functions of distance to
landmark

59
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(a) (b)

Figure 1. Warping a 2D mesh with RBFs: a)
original mesh; b) mesh after warping.
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Fig. 5 Radial basis interpolation of a regular grid, based on the random
motion of 7 landmarks.

Warping a Neuro-Anatomy Atlas on 3D MRI Data with Radial Basis Functions
H.E. Bennink, J.M. Korbeeck, B.J. Janssen, B.M. ter Haar Romeny
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RBFs — Formulation

 Represent T as weighted sum of basis functions

T@) =) kiti(z)  ¢i(Z) = ¢ (|2 — Zil])

=1

\ J . Y
Y Basis functions centered
Sum of radial basis functions at positions of data

* Need interpolation for vector-valued function, T:
T°(z) = Y., kidi(@)
i k()

T¥(z)



Choices for ¢

e Gaussian: g(t) = exp(-0.5(t?/0?)

e Multiguadratics: g(t) = 1/Sqgrt(t?+c?),
where c Is least distance to surrounding
points

64



* Find the k’s so that T(x) fits at data points

Solve For k’'s With Landmarks as
Constraints

by ©

km
/ké:\

|

$1(Z1)
$1(Z2)

?1 (;’EN )

gf?g(fﬁ]) -
balE3) ..

tﬁz(-’fﬁf) e

én(Z1)
N (Z2)

ON(ZN)

65
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Issue: RBFs Do Not Easily Model
Linear Trends

f(x)
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RBFs — Formulation w/Linear

 Represent T as weighted sum of basis functions and
linear part
N
T@) =Y kidi(@) +py+miz+p0  ¢i(Z) = ¢ (||Z — 7))
?,:1 ~ J \\ J
h Y Linear part of transformation Basis functions centered
Sum of radial basis functions at positions of data

* Need interpolation for vector-valued function, T:

T()

T¥(z)

N _
> icq1 kP 0i(Z) + piy+piz + Pk

N _
S kY oi(Z) + iy iz + pY

67
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RBFs — Linear System

k:l:
/k;w\

kX
p3
py
Py
ki
k3

ky
3

pY

\ 7

( T I
(751 Y2
1 1
P11 P12
Ga1  Pa2
Kﬁﬂf’m ¢N2 .-

TN 0

YN 0

1 0

. OIN U1
. QaN Y2
ONN YN

0 0)
0 0

0 0
I 1
Ia 1
Ty 1 )
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RBFs — Solution Strategy

 Find the k’'s and p’s so that T() fits at data points

— The k’s can have no linear trend (force it into the p’s)

e Constraints -> linear system

TY(z;) = y;
N
» k=0
1=1
N
1=1

Corresponde
nces must
match

Keep linear
part separate
from
deformation

69



RBF Warp — Example

70



What Kernel Should We Use

e GGaussian

— Variance is free parameter — controls
smoothness of warp

From: Arad et al. 1994 71



RBFs — Aligning Faces

Mona Lisa — Target Venus — Source Venus — Warped

72



Symmetry?

Image-based Talking Heads using Radial Basis
Functions James D. Edge and Steve Maddock

(d) (e) (0

Figure 2. Image metamorphasis with RBFs:
a) source image /,,; b) destination image /,;
c) forward warping 7, with «, ,,; d) backward
warping [, with «, .,; e) result of morphing
between J/, and /,; f) cross-dissolved image.
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Symmetry?

What can we say about symmetry: A-
>B and B->A ?

74



Figure 4. Synthesized viseme transitions.
Central column contains transitional frames
between the source and destination visemes.

Application

* Modeling of lip
motion In
speech with

few landmarks.

e Synthesis via
motion of
landmarks.
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RBFs — Special Case: Thin Plate
Splines

* A special class of kernels
¢i(z) = ||lz — il | 1g (||lz — i)

 Minimizes the distortion function (bending
energy)

A 2f\?  [0%f\*
J1(G) 2 () + () | e
— No scale parameter. Gives smoothest results
— Bookstein, 1989
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Application: Image Morphing

e Combine shape and intensity with time

parameter t

— Just blending with amounts t produces “fade”
I(t)=(1—-¢t)I; +tl

— Use control points with interpolation in t
c(t) = (1 —-t)ey + 1

— Use ¢4, c(t) landmarks to define T,, and c,,c(t)

landmarks to define T,

77



Image Morphing

e Create from blend of two warped

iImages 1:(z) = (1 = 1)1, (T1(2)) + tl2 (T2(Z))

1

-~

l,

—\./

1,

.
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Image Morphing




Application: Image
Templates/Atlases

 Build image templates that capture statistics
of class of Iimages
— Accounts for shape and intensity
— Mean and variability

 Purpose

— Establish common coordinate system (for
comparisons)

— Understand how a particular case compares to the
general population

80



Templates — Formulation

e N landmarks over M different
Su bJeCtS/SampleS Correspondences

Images ¢ ... Cn
I (z) G : :
ct! N
1 M
Mean of correspondences Ci = M ZEZ
(template) j=1

Transformations from mean to subjects Templated image

& =T9(&) i(z) = ZIJ T9(z

81
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Car Landmarks and Warp

AL
1 ! —~=1 [ H |
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Car Landmarks and Warp

T e —— ] S -] :

| %{r‘i

-
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Car Mean

J;ﬁirihwh _
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Brain Template




APPLICATIONS
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Warping Application: Lens
Distortion

 Radial transformation — lenses are
generally circularly symmetric

— Optical center is known
— Model of transformation:

' =7 (1+kir+ .
k;g 'T'4 + k;3 T'ﬁ 4+ .. ) S

91



Correspondences

e Take picture of known grid — crossings

T
 Measure set of landmark pairs —
Estimate transformation, correct images,



Image Mosaicing

Piecing together images to create a larger
mosaic

Doing it the old fashioned way

— Paper pictures and tape

— Things don’t line up

— Translation is not enough

Need some kind of warp

Constraints

— Warping/matching two regions of two different
Images only works when...

93



Applications
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Special Cases

e Nothing new In the scene is uncovered in one
view vs another

— No ray from the camera gets behind another

1) Pure rotations—arbitrary scene 2) Arbitrary views of planar surfaces

97




3D Perspective and Projection

e Camera model




Perspective Projection
Properties

Lines to lines (linear) \ "

Conic sections to conic sections () \

Convex shapes to convex shapes@ Q

Foreshortening \ %
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Image Homologies

mages taken under cases 1,2 are
perspectively equivalent to within a
Inear transformation

— Projective relationships — equivalence is

()= = () ()
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Transforming Images To Make
Mosaics

Linear transformation with matrix P

P11 P12 P13 z¥ = puz+pi2y+pis
if* = Px P= P21 Paz Pog y* =  p21T + P22y + P23
pa1 paz 1 2 = pa1z+psy+1
Perspective equivalence Multiply by denominator and reorganize terms
r = P11$+Pmy+_fi.== pa1xz’ + paayx’ — prix —pr2y —p1z = —2
porrpsay P31y’ + Psayy’ — 2T — a2y — P2z = —Y
y.r —  Pziztpasytpez
par1z+pazy+l

Linear system, solve for P

. -y, -1 0 0 0 =z wmay ) [ —x \
_ _ 1 0 0 0 / ! [ P \ o
To Yo 2Ty 1Yo o
. M2
r r pld )
—ry —yn —1 0 0 0 zyzy ynz) par | | -z
0 0 0 -z —y -1 xyl vyl pas | | -0
0 0 0 —zo —y —1 xo0) 121 P23 — 3
P31 )
0 0 0 —zy —yv —1 znvyy ynyy ) \ Pa2 \ —vy /
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Image Mosaicing

102



4 Correspondences
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5 Correspondences

104



6 Correspondences

105



Mosaicing Issues

Need a canvas (adjust
coordinates/origin)

Blending at edges of images (avoid
sharp transitions)

Adjusting brightnesses
Cascading transformations

106
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