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The Fourier Transform



Fourier Transform

 Forward, mapping to frequency domain:

F(s) = /_OO f(t)e 727t qt

e Backward, inverse mapping to time
domain:

F(t) = / 7 F(s)e—izmst g

— OO



Fourier Series

* Projection or change of basis
e Coordinatesin Fourier basis:

o= [ ft)e T rat

T
2

e Rewrite Io as:

)= cpel Tt

n=——oo

f(t) =ag + Z ., SIN (jQﬂ' t) Z b,, COS (jQ?T t)

n=1



Example: Step Function

Step function as sum of infinite sine waves
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Discrete Fourier Transform



Fourier Basis

Why Fourier basis?

Orthonormal in [-pl, pi]
Periodic
Continuous, differentiable basis



FT Properties

Linearity af @)+ Pg) & aF(w)+ fG(w)
Time Translation ft-10) e UIOR( )
Scale Change f (at) 4 ﬁ}?( w/a)
Frequency Translation ¢ “’“tf(r) &  Flw- wy)
Time Convolution f() xglt) &  Flw)G(w)

Frequency Convolution f (el > %F(w) * G(w)

9@ = [ fwee-ndy= [ fa- o)y



Common Transform Pairs

Dirac delta - constant

f(x) F(p)




Common Transform Pairs

Rectangle — sinc

sinc(x) = sin(Xx) / x

Fip)= a sinc(rpa)
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Common Transform Pairs

Two symmetric Diracs - cosine

yix) = A.cos (2.1.po.x)
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Common Transform Pairs

Comb — comb (inverse width)
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Common Transform Pairs

Gaussian — Gaussian (inverse variance)
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Gaussian Function Fourier Transform



Common Transform Pairs

Discrete unit
impulse

Rectangle

Sine

Cosine

Graussian

Summary

5(x.y) = 1

sin(ua) sin(wvb) _.
rect|a, b] < ab— _ e’
(mua)  (wvb)

mua+vh)

sin(2mugx + 2aogy) <

j%[ﬁ(u + Mug. v + Nvg) — 6(u — Mug. v — Nuy)]
cos(2mupx + 2mgy ) <=

%[ﬁ(u + Mu,. v+ Nwvy) + o(u — Mug, v — Nwﬂ}]

_n-2 2 — (2122 .
A2ole D) o 472 (4 i a constant)



Quiz

What is the FT of a triangle function?

A

/N

T4 T- X

Hint: how do you get triangle function from the
functions shown so far?



Triangle Function FT

Triangle = box convolved with box

Soits FTIs sinc * sinc

A

-T4 T4 X 12 3 p
T1 Ty T4

) = - —|x] + A 2

I:I:I—- T x| Sirl{Il:Tﬂ]}

F(p) = ATy T } = ATy sinc?® (zT1p)

fix)=0 |x|<Ty and [x|>Tj



Fourier Transform of Images



2D Fourier Transform

e Forward transform:

Flup) = [ [~ flz,y)e™ 0"z gy
e Backward transform:

flz,y) = f F(u,v)e” ) du dy

* Forward transform to freq. yields
complex values (magnitude and phase):

F(u,v) = F.(u,v) + jFi(u,v) = |F(u,v)|e? &)



2D Fourier Transform
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Fourier Spectrum

Image

Retiled with org.

Fourier spectrum
Origin in corners

Log of spectrum

In center




Fourier Spectrum—Rotation




Phase vs Spectrum

Reconstruction from Reconstruction from
phase map spectrum




Fourier Spectrum Demo

http://bigwww.epfl.ch/demo/basisfft/demo.htmi



Low-Pass Filter

 Reduce/eliminate high frequencies

« Applications
— Noise reduction
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ldeal LP Filter — Box, Rect

f(t) F(w) |F(_u)|
AW% AW ﬁ
A
1w 1w
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-W/2 0 W/2 0 0
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Cutoff freq Ringing — Gibbs phenomenon



Extending Filters to 2D (or
higher)

e Two options
— Separable o -
— Rotate n




ldeal LP Filter — Box, Rect

|F(u,v)|




|deal Low-Pass
Rectangle With Cutoff of 2/3

Image Filtered Filtered + HE



ldeal LP — 1/3




ldeal LP — 2/3




Butterworth Filter

Lowpass filters. D, is the cutoff frequency and n is the order of the Butterworth filter.

Ideal Butterworth Gaussian
1 if D(u, v) = Dy ~ 1  Duw)D}
Hu,v) {0 itDwv) > Dy Y = T (D vy D” H(u.v) =e
Control of cutoff and slopt
Can control ringing
H(u, v) H(u, v)

=D (u, v)




Butterworth - 1/3




Butterworth vs Ideal LP




Butterworth — 2/3




F1

Gaussian LP Filtering

ILPF

BLPF

GLPF
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High Pass Filtering

e HP=1-LP
— All the same filters as HP apply
« Applications
— Visualization of high-freq data (accentuate)

 High boost filtering
—HB=(1-a)+a(l-LP)=1-a*LP



High-Pass Filters

H(u,») H(u, v)
—-v 10k
D(u, v)
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.



High-Pass Filters in Spatia
Domain

a b e

FIGURE 4.53 Spatial representation of typical {a) ideal. (b} Butterworth, and (¢} Gaussian frequency domain
highpass Hilters, and corresponding intensity profiles through their centers.



High-Pass Filtering with IHPF
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FIGURE 4.54 Results of highpass filtering the image in Fig. 441 (a) using an [HPE with Dy, — 30, 60, and 160,



BHPF

FIGURE 4.55 Recsults of lnghpass filtering the image m big 441 (ay using a BHPE ot order 2 with D), = 30,60,
and 1otk corresponding to the arcles i Figo 441D} These results are much smoother than those obtamed
with an [HPF,



GHPF

a b ¢

FIGURE 4.56 Rcsults ol highpass liltering the image in Fies d4 0G0 usig o GHPE with 1), = 30,600 and 161,
corresponding to the circles in Freo 4410 b) Compare with Figs, 454 and 455



HP, HB, HE
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High Boost with GLPF




High-Boost Filtering




Band-Pass Filters

o Shift LP filter in Fourier domain by
convolution with delta

d(s — sg) +d(s+ so)
LP

Typically 2-3 parameters BP
-Width
-Slope
-Band value




Band Pass - Two Dimensions

e Two strategies
— Rotate

— Translate in 2D

e Note:

— Convolution with delta-pair in FD Is
multiplication with cosine In spatial domain



ing

Band Bass Filter




SEM Image and Spectrum




Band-Pass Filter




Radial Band Pass/Reject

Ideal Butterworth Gaussian

1
) w W Huwv) =
0 ifDy——=D= + = : 2n D~ D22
H(u.v){ Do 2 Dy 2 1+|: DW :| H(u‘v)zl_e—[w%]

1 otherwise

D’ - Dj




Band Reject Filtering




Band Reject Filtering




Band Reject Filtering




Allasing



Discrete Sampling and
Allasing

e Digital signals and images are discrete
representations of the real world

— Which is continuous

 What happens to sighals/images when we
sample them?
— Can we quantify the effects?
— Can we understand the artifacts and can we limit
them?

— Can we reconstruct the original image from the
discrete data?



A Mathematical Model of Discrete
Samples

Delta functional

&(x = xp)

I | .
OX.D

Shah functional sar(®)

sar(t)= ) 6(t—kAT)

k=—o0

t
-+« =3AT -2AT —-AT O AT 2AT 3AT --.



A Mathematical Model of Discrete

Samples
1)
 Goal
— To be able to do a continuous Fourier /\/\/\

transform on a signal before and after \_/\/‘\

sampling 0 ’
Discrete signal un

R RENRERRNARARNEE

©=2AT—-ATO0 AT2AT -+

. . f@O)sar(t)
Samples from continuous function e

fi = f(EAT) ~ATTw -
k 0 Thgren

. . o =2AT —-AT 0 AT2AT -
Representation as a function of t

t

fi = F(KAT)
« Multiplication of f(t) with Shah . .
f) = fOsart) = Y fd(t — kAT) T e
k=—oc0 _ _2‘ 7{ ; 1| 2| [ X




Fourier Series of A Shah

Functional
w-Swn ][] ]
k=—o0
S = 3 S ) ‘ ‘ ‘




Fourier Transform of A Discrete
Sampling

ft) = f(t)s(t) F‘(u) = F(u) * S(u)

\
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Fourier Transform of A Discrete
Sampling

o~

Frequencies get Flu)= F(u)*x S(u
mixed. The ( ) ( ) S( )
original signal Is

not redoverable.

Energy from higher
freqgs gets folded back
down into lower fregs —

Aliasing



What if F(u) is Narrower Iin the Fourier

o Domain?
* No aliasing!

 How could we recover the original
signal? ‘

a0
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What Comes Out of This
Model

o Sampling criterion for complete
recovery

* An understanding of the effects of
sampling
— Aliasing and how to avoid it

* Reconstruction of signals from discrete
samples



Shannon Sampling Theorem

e Assuming a signal that is band limited:

f(t)=——F(u) [F(u)] =0V |ul>B
* Glven set of samples from that signal
fo = f(EAT) AT < -

— 2B
e Samples can be used to generate the
original signal

— Samples and continuous signal are
equivalent



Sampling Theorem

e Quantifies the amount of information in
a signal
— Discrete signal contains limited frequencies
— Band-limited signals contain no more
Information then their discrete equivalents
* Reconstruction by cutting away the
repeated signals in the Fourier domain

— Convolution with sinc function In
space/time



Reconstruction

e Convolution with sinc function

f(t) = f(t)«IF~! [rect (ATu)]

- (Z Fro(t — kAT)) xsinc (ﬁ) =) fi sinc
k




Sinc Interpolation Issues

e Must functions are not band limited

* Forcing functions to be band-limited can
cause artifacts (ringing)

£(t)
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Ringing - Gibbs phenomenon
Other Issues:
Sinc is infinite - must be truncated



frequencies when undersampled

IRTRAANN]

Allasing

* High frequencies appear as low

[\ ® & #




Allasing

8 pixels
16 pixels

0.4798
pixels

0.9174
pixels




Overcoming Aliasing

 Filter data prior to sampling

— Ideally - band limit the data (conv with sinc
function)

— In practice - limit effects with fuzzy/soft low
pass

Wi




Antialiasing in Graphics

e Screen resolution produces aliasing on
underlying geometry

Multiple high-res
samples get averaged
to create one screen

sample

B ©

alilased antialiased




Antialiasing




Interpolation as Convolution

* Any discrete set of samples can be
considered as a functional

f&) = ) fré(t — kAT)

« Any linear interpolant can be considered
as a convolution

— Nearest neighbor - rect(t)

— Linear - tri(t) {Hl _1<t<0 /\
trift) =¢ 1—t 0<t<t
0 otherwise




Convolution-Based
Inte tion

e Canbe studied in terms o¥9)l99|r%omam

e |ssues
— Pass energy (=1) in band
— Low energy out of band
— Reduce hard cut off (Gibbs, ringing)




Fast Fourier Transform

With slides from Richard
Stern, CMU



DFT

Ordinary DFT is O(N?)
DFT Is slow for large images

Exploit periodicity and symmetricity
Fast FT is O(N log N)
FFT can be faster than convolution



Fast Fourier Transform

Divide and conguer algorithm
Gauss ~1805
Cooley & Tukey 1965

For N = 2K



The Cooley-Tukey Algorithm

. ConS|der the DFT algorithm for an integer power of 2, N=2"
-1 N-1

X[k]— Z X[n]WNnk Z X[n]e j2mk/N. W e—j27Z'/N
n=0 n=0
e Create separate sums for even and odd values of n:

X[KI=  SxInWN™+ Exinwy ™

n even n odd
o Letting n=2r forneven and:2r+1 for n odd, we
obtain  (N/2)-1 (N/2)-1

X[kI= > x[2rlWn2K+ > x[2r+1]wyr+Dk
r=0 r=0



The Cooley-Tukey Algorithm

o Splitting indices in time, we have obtained

(N/2)-1 (N/2)-1
X[k] = Z X[2I‘]WN2rk + Z X[Zr _|_1]WN(2r+1)k
r=0 r=0

N/2
SO ... (N/2)-1 (N2 k
XK= > x[2rIWS5, + W 2. X[2r+1W,
n=0 n=0

| | | |
N/2-point DFT of x[2r]  N/2-point DFT of x[2r+1]




Example: N=8

e Divide and reuse

x[0] o—>—

x[2] o—>—

x[4] o—»—

x[6] o—>—

x[1] o——

4

N

%’ - point LHV /\\:5,
x[5] o——] DFT =5 X[6]
x[7] o—— >0 XT7]




Example: N=8, Upper Part

e Continueto divide and reuse

x[0] o—>— N ' — > G|[0]
g —pomt \/W;?wz
DFT G[1]

x[4] o——

SE
x[2] o—>— —0 (2]

. 2
N_ point Wy

x[6]o—— DFT 0 G[3]




Two-Point FFT

 The expression forlthe 2-point DFlT IS:

X[k]= 3 x[n]WJK = > x[nJe~127Mk/2
n=0 n=0
e Evaluatingfor k =0,1 we obtain
X[0] = x[0] + x[1]

X[1] = x[0] + e~ 27/ 2511 = x[0] - x[1]

which in signal flowgraph notation looks like ...

x[0]

x[4]
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