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1 Introduction
The purpose of this note is to show how one can align two images knowing pairs
of corresponding landmarks in each image, which are typically located at the
contours of the images or at points of high curvature like corners of objects,
for instance. This note goes along with a MATLAB demo. The demo folder
contains:

• a MATLAB script called imageWarp.m

• two images from the Caltech 101 database

• two .mat files (PsrcAnchors.mat and PtarAnchors.mat) containing the
coordinates of the landmarks in the source and the target image respec-
tively.

You can run the first part of the demo which corresponds to the introduction
part (i.e. until the first two figures are displayed). The first figure shows the
two original images as well as the superimposition of the two. To drive the
registration (also called the warping) of the source image to the target image,
we select pairs of corresponding landmarks in each image, which are shown in
the second figure of the demo.

2 Affine registration using triplets of points
The first idea to align images is to use affine transforms, as they are the most
general form of linear transform. A generic affine transform is determined by a
2-by-2 matrix A and a 2-by-1 vector t. It maps the point X = (Xx, Xy)t (when
X denotes a vector, its coordinates are written as Xx and Xy with subscript x
and y) to the point AX + t.

The matrix A has 4 components and the vector t has 2 components. There-
fore, an affine transform has 6 degrees of freedom and hence it is entirely de-
termined by 3 pairs of landmarks. The purpose of this section is to show how
to estimate this affine transform (A, t) from the positions of three source points
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X1, X2, X3 (in the source image domain) and their corresponding target points
Y1, Y2, Y3 (in the target image domain).

2.1 Determination of the affine transform
The affine transform needs to satisfy the set of 3 constraints: AX1 + t = Y1

AX2 + t = Y2
AX3 + t = Y3

(2.1)

If one knows the linear part A, then the translation vector t can be deter-
mined easily by any of these equations as t = Y1−AX1 = Y2−AX2 = Y3−AX3.

The idea is now to focus on the linear part A and to get rid of the translation
by subtracting the second and third equation to the first one. This gives:

A(X1 −X2) = Y1 − Y2
A(X1 −X3) = Y1 − Y3

(2.2)

A is a 2-by-2 matrix and these last two equations show how the two vectors
X1 −X2 and X1 −X3 are mapped to the vectors Y1 − Y2 and Y1 − Y3. If the
vectors X1 − X2 and X1 − X3 are not parallel, they define a new basis of the
2D space. These equations show precisely that the matrix A, when the input is
written in this new basis, is written as:

Ã =
[
Y1 − Y2, Y1 − Y3

]
=

[
Y x
1 − Y x

2 Y x
1 − Y x

3

Y y
1 − Y

y
2 Y y

1 − Y
y
3

]
(2.3)

To write this matrix in the usual canonical basis (e1 = (1, 0)t, e2 = (0, 1)t),
one needs to use the change of basis which maps the canonical basis (e1, e2)
to the new basis (X1 −X2, X1 −X3). This change of basis matrix is given by
definition as:

P =
[
X1 −X2, X1 −X3

]
=

[
Xx

1 −Xx
2 Xx

1 −Xx
3

Xy
1 −X

y
2 Xy

1 −X
y
3

]
(2.4)

Now, we notice that the equations (2.2) can be written as:{
APe1 = Y1 − Y2
APe2 = Y1 − Y3

(2.5)

since X1 −X2 = Pe1 (i.e. the first column of P ) and X1−X3 = Pe2 (i.e. the
second column of P ). This shows that the matrix AP is exactly Ã: AP = Ã,
so that the linear part of the affine transform is given as:

A = ÃP−1 =

[
Y x
1 − Y x

2 Y x
1 − Y x

3

Y y
1 − Y

y
2 Y y

1 − Y
y
3

] [
Xx

1 −Xx
2 Xx

1 −Xx
3

Xy
1 −X

y
2 Xy

1 −X
y
3

]−1
(2.6)

which is expressed only in terms of the coordinates of the data points.
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The solution of our problem is therefore given by:{
A = ÃP−1

t = Y1 −AX1
(2.7)

Question: is P always invertible? P is of rank 2 if and only if the two
vectors X1 −X2 and X1 −X3 are not collinear, which means that the 3 points
X1, X2 and X3 are not aligned. If they are, the problem is under-determined:
one only knows how to transform the line (X1, X2, X3) (a subset of dimension
1). Then, there are two cases: if the image points (Y1, Y2, Y3) are not aligned,
then there is no solution. If they are aligned, then there is an infinite number of
solution. However, these situations almost never happen in practice, and we can
assume that P is invertible. Numeric-wise, this also shows that the inversion of
P is ill-posed in the triangle build on the vertices X1, X2, X3 is too flat.

2.2 Image warping based on affine transform
Once the affine transform has been estimated based on the position of 3 pairs of
landmarks, it can be used to deform the underlying image. Although the trans-
form has been estimated from only 3 pairs of points, it defines a transformation
of the whole 2D domain: any point X in the source image domain is mapped
into the point AX + t in the target image domain.

Let I be the source image and J the target image. Let Ĩ be the transformed
source image, which is defined in the target image domain. Let Y be the position
of a generic pixel in the target image domain. The grey level of the transformed
image Ĩ at pixel Y is given by the grey level of the source image I at the pixel
X such that AX + t = Y . We have therefore:

Ĩ(Y ) = I(A−1(Y − t)) (2.8)

In the most general case, the position A−1(Y − t) does not correspond to
the coordinate of a pixel in the source image domain. In this case, I(A−1(Y −
t)) stands for the grey-value of the pixel which is the closest to the arbitrary
position A−1(Y −t). A smoother transformed image can be obtained by using an
interpolation between the gray-levels at the four neighboring pixels surrounding
the position A−1(Y − t) instead of using a closest neighbor strategy.

2.3 Demo
Now, you can run the demo corresponding to this section. Figures 3,4 and 5 are
displayed. Figure 3 shows the original images with the 3 selected landmarks.
Figure 4 shows how the estimated affine transform maps the points of a reg-
ular lattice. Figure 5 shows the image warping based on the estimated affine
transform.

Questions:

• Change the selected landmarks. How does the choice of the landmarks
impact the image warping?
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• Adapt the code to implement the interpolation scheme for building the
transformed image instead of the closest neighbor strategy. Where does
the reconstructed image changes?

• Compute the matching errors between the transported source landmarks
and their corresponding target landmarks. This error should be zero for
the landmarks used to estimate the affine transform. What happens for
the other landmarks? What is the total error? Can you find any triplets
which makes this error to vanish? How close to zero can you get?

3 Affine registration in a least square sense using
more than 3 landmarks

As you may have noticed from the previous experiments, the choice of landmarks
is crucial for the determination of the affine transform and hence for the image
alignment. And you may not have found any triplets of landmarks which allows
you to satisfactorily align the two images globally.

The idea is then to use the full set of landmarks to find a better affine
registration between both images. The problem is that the affine transform has
only 6 degrees of freedom, which means that in the most general case, there is
no solution (A, t) to the set of equations:

AX1 + t = Y1

AX2 + t = Y2

...
AXN + t = YN

(3.1)

for N > 3 pairs of landmarks. This means that for any matrix A and vector t,
the total error between all the transported source points AXi + t and the target
point Yi cannot be zero. For want of anything better, we want to find the affine
transform (A, t) which minimizes this total error. Denoting the transformed
source points as T (Xi) = AXi + t, the criterion to be minimized is:

f(A, t) =

N∑
i=1

‖T (Xi)− Yi‖2 =

N∑
i=1

‖AXi + t− Yi‖2 (3.2)

Our purpose is to find the minimum of this function over all possible 2-by-2
matrices A and all possible 2D-vectors t. For that, we will find the values of
A and t for which the gradient (i.e. the differential) of f vanishes. Remark
that the zero value of the gradient does not necessarily mean that f reaches a
minimum at this point: it can be any extremal points like a maximum or a
horse saddle point for instance. In our case, I let you prove as an exercise that
the criterion is convex, which guarantees that there is only one extremal point
and that this extremum is a minimum.
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Here the criterion f depends on 6 variables: the 4 coordinates of the matrix
A and the 2 coordinates of the vector t. To find the gradient of f, one could
compute the 6 partial derivatives with respect to each of these variables. This
is particularly long and annoying (you can do it as an exercise, and check that
we find the same result...). Here, we will follow a more intrinsic approach,
which is based directly on the definition of the gradient. The general sketch
is the following. Let X = (X1, . . . , Xn) a generic set of n variables (i.e. a
n-dimensional vector) and f(x) a generic function of these n variables. Then,
if we can write the variation of the function f(X + δX) for a small variation of
the variables δX (which is also a n-dimensional vector) as:

f(X + δX) = f(X) +BtδX + ε, (3.3)

where B is an n-dimensional vector and ε/ ‖δX‖ tends to zero as ‖δX‖ tends
to zero, then, by definition, B is the gradient of f at point X and is denoted:
B = ∇f(X).

Now, let’s apply this general sketch to our problem. At first, we will focus
on the translation vector t, assuming that the matrix A is fixed. In this case, f
is a function of two variables t = (tx, ty). The variations of f(t) with respect of
the variations δt (a 2D-vector) can be written as:

f(t+ δt) =

N∑
i=1

‖AXi + t+ δt− Yi‖2

=

N∑
i=1

‖(AXi + t− Yi) + (δt)‖2

=

N∑
i=1

(
‖(AXi + t− Yi)‖2 + 2(AXi + t− Yi)t(δt) + ‖δt‖2

)
=

N∑
i=1

‖(AXi + t− Yi)‖2︸ ︷︷ ︸
=f(t)

+2

N∑
i=1

(AXi + t− Yi)t(δt) +N ‖δt‖2

, (3.4)

where the third equality comes from the fact that ‖X + Y ‖2 = (X + Y )t(X +

Y ) = ‖X‖2 + 2XtY + ‖Y ‖2.
Since N ‖δt‖2 / ‖δt‖ = N ‖δt‖ tends to zero as ‖δt‖ tends to zero, then, by

definition the gradient of f with respect to the translation vector t is:

1

2
∇f(t) =

N∑
i=1

(AXi + t− Yi) =

N∑
i=1

(AXi − Yi) +Nt (3.5)

Therefore, the gradient vanishes when
∑N

i=1(AXi − Yi) + Nt = 0, which
means: t = 1

N

∑N
i=1(Yi − AXi). Denoting X̄ = 1

N

∑N
i=1Xi the center of mass

of the source points and Ȳ = 1
N

∑N
i=1 Yi the center of mass of the target point,
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then the translation vector t which enables to achieve the minimum of j is given
as:

t = Ȳ −AX̄ (3.6)

This gives the optimal translation vector, provided that we know the optimal
matrix A. This optimal translation vector has a simple interpretation: it is
the difference between the center of mass of the target points and that of the
transported source points.

Now, we need to determine the optimal matrix A which achieves the mini-
mum of f . First, we plug the expression of the optimal translation vector into
the criterion, so that this criterion depends only on the matrix A. This gives:

f(A) =

N∑
i=1

∥∥AXi + (AX̄ − Ȳ )− Yi
∥∥2

=

N∑
i=1

∥∥A(Xi − X̄)− (Yi − Ȳ )
∥∥2

=

N∑
i=1

∥∥∥AX̃i − Ỹi
∥∥∥2

(3.7)

where we denote X̃i = Xi − X̄ the centered source points and Ỹi = Yi − Ȳ the
centered target points.

To differentiate f with respect to A, we will follow the same sketch as for
the translation vector. The only thing to take care of is that the matrix A =[
a b
c d

]
is now considered as the 4-dimensional vector (a, b, c, d)t (the vector of

the 4 variables on which f depends). The inner-product between two matrices

A =

[
a b
c d

]
and A′ =

[
a′ b′

c′ d′

]
is then given as (a, b, c, d)t(a′, b′, c′, d′). I let

you verify that this is equal to Tr(AtA′): the trace of the product between the
transpose of A and A′ (AtA′ is a 2-by-2 matrix). This is called in the literature
the “Frobenius norm” on matrices.

Now, let’s write a variation of the criterion f(A) with respect to a variation
of the matrix A+ δA, where δA is another 2-by-2 matrix. This leads to:

f(A+ δA) =

N∑
i=1

∥∥∥AX̃i + (δA)X̃i − Ỹi
∥∥∥2

=

N∑
i=1

∥∥∥AX̃i − Ỹi
∥∥∥2︸ ︷︷ ︸

=f(A)

+2

N∑
i=1

(AX̃i − Ỹi)t(δA)X̃i +

N∑
i=1

∥∥∥(δA)X̃i

∥∥∥2

(3.8)
The third term tends to zero as ‖δA‖ tends to zero. Therefore, by definition

of the gradient, the inner-product between the gradient∇f(A) (a 2-by-2 matrix)
and δA (another 2-by-2 matrix) is equal to: Tr (∇f(A)t(δA)) = 2

∑N
i=1(AX̃i −
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Ỹi)
tδAX̃i. We have now to extract the gradient from this expression. For that,

we notice that this last term is a scalar and, as such, it is equal to its trace.
This leads to:

(AX̃i − Ỹi)t(δA)X̃i = Tr
(

(AX̃i − Ỹi)t(δA)X̃i

)
= Tr

(
Xi

(
AX̃i − Ỹi

)t
δA

)
= Tr

((
(AX̃i − Ỹi)X̃t

i

)t
δA

) (3.9)

where the second equality comes from the fact that Tr(AB) = Tr(BA) for any
generic matrices A and B. We have therefore:

Tr
(
∇f(A)tδA

)
= Tr

(2

N∑
i=1

(AX̃i − Ỹi)X̃t
i

)t

δA

 . (3.10)

Since this equality holds for any δA, we get:

∇f(A) = 2

N∑
i=1

(AX̃i − Ỹi)X̃t
i (3.11)

The optimal matrix A is such that this gradient vanishes. This gives:
A
∑N

i=1 X̃iX̃
t
i =

∑N
i=1 ỸiX̃

t
i . Therefore, the optimal affine transform is given

by the matrix A and translation vector t:
A =

(
N∑
i=1

ỸiX̃
t
i

)(
N∑
i=1

X̃iX̃
t
i

)−1
t = Ȳ −AX̄

(3.12)

For X̃i and Ỹi 2D-vectors, ỸiX̃t
i and X̃iX̃

t
i are 2-by-2 matrices.

Question: is the matrix
∑N

i=1 X̃iX̃
t
i always invertible? First, we no-

tice that this matrix is symmetric (i.e. it equals its transpose). This means
that it has 2 eigenvalues and 2 eigenvectors. Let v and eigenvector (with unit
norm) associated to the eigenvalue λ, then by definition of the eigenvectors,
vt(
∑N

i=1 X̃iX̃
t
i )v = λ. The first term can be also written as:

∑N
i=1 v

tX̃iX̃
t
i v =∑N

i=1(vtX̃i)
2. This shows that the eigenvalues are all non-negative. The matrix

is invertible if and only if they are all non-zeros. If λ = 0, then for every i,
vtX̃i = 0 and the eigenvector is perpendicular to every Xi. In 2D, if the points
Xi are not all aligned on a straight line, then there is no such vectors except 0.
This shows that λ cannot vanish and that the matrix is invertible. In dimen-
sion d, the matrix is invertible if the points Xi “fill up” the space, in the sense
that the points cannot be included in a sub-space of smaller dimension than the
ambient space of dimension d.
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3.1 Demo
You can run the part of the demo, which corresponds to this section. It displays
the Figure 6, which shows the position of the source points after registration.
Notice that they do not match perfectly the target point. However, the affine
transform has been estimated such that it minimizes the total matching error
between the transported source points and the target points. Figure 7 shows
the image warping based on this estimated affine transform. What do you think
about this alignment compared to the previous ones? What happens if you select
fewer points? In which regions the mis-alignment is the more pregnant? Is there
any way to correct it?

4 Non-linear registration using radial basis func-
tion

The affine transform has two intrinsic limitations: it is global and has few
numbers of degrees of freedom. It is global: this means that the information
some pairs of landmarks in a small part of the image domain will impact the
transformation of every point in the image, even if they are far away from the
landmarks. It has only 6 degrees of freedom, which means that the possible
transformations are very constrained by nature. Such deformation cannot ac-
commodate for “non-linear deformations”. For instance, the transversal part of
the anchor in the source image of the demo, which has the shape of a chevron,
cannot be transformed into a straight line, as it looks like in the target image.

To workaround this issue, the idea is to use more local deformation, to deform
local patches of the image. Then, the global image warping is obtained by a
superposition of such deformations. Depending on the number of patches, one
can adapt the number of degrees of freedom of the deformation to our needs.

4.1 Radial basis functions
In this subsection, we will focus on the case of a single pair of landmarks. The
idea of image warping is to estimate a transformation of the image domain from
the position of the pairs of landmarks. In the case of a single pair, we have
two limit cases. On the one hand, the pair of landmarks can be matched using
a translation: every point in the image domain are transported in the same
way. This is a linear matching, which is intrinsically a global transformation.
On the other hand, one can move the source landmark to the target landmark
and left all the other points in the image domain unchanged. This perfectly
matches the landmarks points, but pixels of the image in-between do not match
at all. Since neither solution is satisfactory, one will use an intermediate way.
One wants to diffuse the information containing in the respective position of the
landmarks in a neighborhood of the landmarks. This requires the specify the
size of the neighborhoods around the landmarks. If this size tends to infinity,
we get back to the linear model. If this size tends to zero, only the landmarks
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points move and the discrete distribution of the landmarks cannot be used to
infer a deformation of the continuous image domain.

This idea of diffusion can be implemented using radial basis functions. These
functions can be seen as an interpolating function. They take two points as input
and return a scalar (a weight) which decreases with respect to the distance
between the two points. Formally, a radial basis function writes: K(X,Y ) =
f(‖X − Y ‖) (K stands for kernel) where f is a scalar function. Several choices
are possible for f . For instance:

f(‖X − Y ‖) = exp

(
−‖X − Y ‖

2

σ2

)
f(‖X − Y ‖) =

σ2

‖X − Y ‖2 + σ2

(4.1)

These functions are parameterized by a scale σ, which has the dimension of
a length. This parameter controls the size of the image patch, which will be
deformed by one of the function. We notice that these functions decrease to zero
at infinity and that the rate of decay is precisely determined by the parameter
σ. You can use Matlab to plot the profiles of these functions for varying scales
σ.

Now, let (X0, Y0) a pair of landmarks in the source and the target image
domain respectively. We write a general deformation T (X) as T (X) = X+v(X)
where v is the displacement field: for each point X in the image domain, v(X)
is a vector (i.e. an arrow) which indicates where to move the point. We define
this displacement field as:

v(X) = K(X,X0)α0 = f(‖X −X0‖)α0 (4.2)

where α0 is a 2D-vector to be determined. It is called a momentum. Its direction
gives the direction of the deformation. Its magnitude weights the displacements
of the source points.

One want to estimate the momentum, so that the deformation matches the
landmark points: T (X0) = Y0. This means X0 + v(X0) = Y0, or equivalently
K(X0, X0)α0 = Y0−X0. Since, in our example we have K(X0, X0) = f(0) = 1,
this gives:

α0 = Y0 −X0 (4.3)

and the deformation for any point X in the image domain is given as:

T (X) = X +K(X,X0)(Y0 −X0) (4.4)

This means that at pointX0, the displacement is given by the vector Y0−X0.
For the other points, the displacement is parallel to the direction Y0 −X0 but
with a magnitude which decreases as the position X get further from that of
the landmark X0. This can be seen as a “local translation”, which only impacts
the points in a neighborhood of X0.
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To use this deformation to warp an image, we need to compute the inverse
deformation. The problem is that a deformation written as T (X) = X + v(X)
may not be invertible. And if even it is invertible, the computation of the
inverse is not tractable. Indeed, try to find the inverse transform of: T (X) =
X + K(X,X0)α0. However, one can approximate this inverse by T ′(X) =
X − v(X), i.e. one move the point backward. This is only an approximation:
T (T ′(X)) = X−v(X)+v(X−v(X)) which differs from X. This approximation
is valid if v(X − v(X))− v(X) is small, which means essentially that the norm
of the displacement is small. As a consequence, in areas where the displacement
field is large, the image warping may not reflect the true deformation of the
underlying points. Artifacts may appear like holes or tearing, which essentially
reflect the non-invertibility of the deformation or the bad approximation of this
inverse when it exists. Therefore, keep in mind that this non-linear approach is
only valid for “small deformations”.

Demo

You can run the part of the demo entitled ‘Non linear registration: close-up’,
which corresponds to this subsection. This loads a new set of landmarks located
in this region. We focus here on a close-up of the image. Figure 8 shows the
initial configuration with the single source and target landmarks. Figure 9
shows the displacement field located in the region of the landmark and the
corresponding image warping.

Notice that the image warping is only local. Vary the parameter sigma and
look at the result. Are the images satisfactorily aligned in every neighborhood
around the landmarks? What happens in areas where the displacement is large?

Note that the implementation of the demo is not based on Eq. (4.4). It uses
the more general formulation derived in the next section for several landmarks
instead, so that you will be able to use these close-up images to test the non-
linear image warping algorithm presented in the following.

4.2 Superposition of local non-linear deformations for im-
age warping

To obtain a non-linear deformation of the entire image domain, the idea is
to build a weighted sum of individual local warps, each one located at one
landmark’s position. Given (X1, . . . , XN ) N landmarks on the source image
and (Y1, . . . , YN ) their N corresponding landmarks in the target image. The
deformation is written as T (X) = X + v(X), where now the displacement field
v is written as:

v(X) =

N∑
i=1

K(X,Xi)αi. (4.5)

The momenta αi (i.e. 2D-vectors) give the direction and the magnitude of each
individual radial basis function. These momenta have to be estimated given the
landmark constraints. We notice that we have exactly 2N variables to estimate,
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for exactly 2N constraints. This formulation enables to adjust the number of
degrees of freedom of the deformation to the number of constraints.

The set of N 2D-constraints are given as:

T (X1) = X1 +

N∑
i=1

K(X1, Xi)αi = Y1

T (X2) = X2 +

N∑
i=1

K(X2, Xi)αi = Y2

...

T (XN ) = XN +

N∑
i=1

K(XN , Xi)αi = Y1

(4.6)

This set of constraints can be split in two: one set for each coordinate. For
the x-coordinate, the constraints are given as: Xx

j +
∑N

i=1K(Xj , Xi)α
x
i = Y x

2

and for the y-coordinate as Xy
j +

∑N
i=1K(Xj , Xi)α

y
i = Y y

2 . This gives two sets
of N scalar constraints, which can be written now in a matrix form.

Let Xx (resp. Xy, Yx, Yy, αx and αy) be the N dimensional vector:
Xx = (Xx

1 , . . . , X
x
N )t (resp. Xy = (Xy

1 , . . . , X
y
N )t, Yx = (Y x

1 , . . . , Y
x
N )t, Yy =

(Y y
1 , . . . , Y

y
N )t, αx = (αx

1 , . . . , α
x
N )t, αy = (αy

1 , . . . , α
y
N )t).

LetK be theN -byN symmetric matrix whose (i, j)-th element isK(Xi, Xj) =
f(‖Xi −Xj‖):

K =


1 K(X1, X2) K(X1, X3) · · · K(X1, XN−1) K(X1, XN )

K(X2, X1) 1 K(X2, X3) · · · K(X2, XN1
) K(X2, XN )

... · · · · · ·
. . . · · ·

...
K(XN , X1) K(XN , X2) K(XN , X3) · · · K(XN , XN−1) 1


Then the two sets of constraints can be written now as:{

Kαx = Yx −Xx

Kαy = Yy −Xy , (4.7)

so that the x and y coordinate of the momenta α are given by the two vectors:{
αx = K−1(Yx −Xx)

αy = K−1(Yy −Xy)
(4.8)

The ith coordinate of these vectors allows us to build the ith momenta
αi = (αx

i ,α
y
i )t.

Question: is the matrix K always invertible? This question is more
difficult to answer in this case than in the previous cases, since it depends on
the radial basis function used. For the two functions given here, the answer
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is yes. In this case, K is said a positive definite kernel, which guarantees the
invertibility of the matrix K if the landmarks points are distinct. In short, this
property depends on the Fourier Transform of the function f .

However, from a numerical point of view, the matrix K may have a bad con-
ditioning, meaning that the computation of its inverse, although being possible
in theory, is impossible in practice due to numerical instability. This happens if
the distance between landmarks (i.e. ‖Xi −Xj‖) is much smaller that the scale
σ. To workaround this numerical issue, we build the matrix K + γI instead of
K, where γ is a scalar parameter supposed to be small and I stands for the
N -by-N identity matrix. As a consequence, the computed solution does not
guarantee anymore a perfect matching between source and target landmarks.
The total matching errors actually increases with γ. See the exercise below for
more insight into this parameter.

Demo

You can now run the part of the demo, which corresponds to this section. Figure
10 shows the initial configuration. Figure 11 shows the displacement field over
the whole image domain estimated from the location of the landmarks and the
corresponding warped image. How does this registration compare to the affine
one? Look at the transversal part of the anchor for instance.

You can also experiment this image warping method on the close-up images
of the previous section.

Questions:

• Change the scale of the kernel σ. How does this impact the results?

• Set the scale σ to a large value and decrease the value of γ until Matlab
catches an error due to numerical instability (the inversion of an bad
conditioned matrix leads to complex values in Matlab, which later raises
an error.) What is the trade-off between numerical stability and precision
of the matching?

• What do think about the distribution of the landmarks? How many land-
marks should one need to have a good warping? Should the distribution
of the landmarks be uniform in the image domain? What happens if you
down-sample the set of landmarks (pick one other landmark for instance)?

• Make an artificial experiment: take two landmarks closer to each other
than σ and choose two momenta which are parallel but with opposite
direction. Compute the corresponding displacement field. How does this
displacement field vary with the scale σ? What does this experiment tell
you about the spatial integration of “incompatible” constraints?

• What happens to the image warping if the magnitude of the deformation
(i.e. the displacement of the points) is large? Is the idea of scaling the
magnitude of the displacement field a satisfactory answer to this problem?
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• A deformation is called diffeomorphic if it is smooth, one to one with a
smooth inverse. In particular, a diffeomorphic deformation cannot create
holes or tearing for instance. To which extent the computed deformation
is diffeomorphic?

• In these experiments, the source image has been set to the image after
the affine alignment. What happens if you start from the original image
instead? Do non-linear deformations account well for linear transforma-
tions? Can one cascade one linear transformation and a non-linear de-
formation? In which order? Do they commute? Can we estimate both
deformations at the same time?

4.3 Exercise
A registration which perfectly matches the source to the target points is not
always desirable, especially since the position of the landmarks may be known
only up to a given precision. We would rather use the landmarks as an indication
of the direction of deformation instead of a hard constraint.

As we did for the affine registration, we can introduce a least-square criterion,
which compute the total error matching between source and target points. This
least square criterion is: ‖(X + Kα)−Y‖2, where here the norm stands for the
norm on 2N dimensions and where we concatenate the x and y coordinate of
the vectors. This norm is equal to

∑N
i=1 ‖Xi + v(Xi)− Yi‖2.

The minimization of the least-square criterion:

min
α
‖X + Kα−Y‖2 (4.9)

will lead to the solution α = K−1(Y − X), as we precisely showed that this
value satisfies all the matching constraints, thus making the criterion to vanish.

The idea is to introduce a regularized least-square criterion which balances
the error matching against the “regularity” of the deformation. The regularity
may be quantified by the scalar αtKα. If this value is small (the norm of α
tends to zero), then there is almost no displacement. The larger the momenta,
the larger the amount of deformation. This quantity can be seen as a measure
of the variance of the momenta distributed at the landmark points. Therefore,
the regularized least square criterion can be written as:

min
α

{
‖X + Kα−Y‖2 + γαtKα

}
, (4.10)

where γ is a scalar parameter which quantifies the trade-off between the match-
ing errors and the regularity of the deformation.

Question: Differentiate this criterion with respect to the vector α (you
may use the intrinsic method of differentiation illustrated in the affine case) and
show that the criterion is minimized for α = (K + γI)−1 (Y −X). Interpret
the role of γ from both a geometrical and a numerical point of view (i.e. with
respect to the matching errors and with respect to the numerical stability of the
computation of the solution). Discuss the two limit cases: γ → 0 and γ →∞.

13



5 Conclusion
As you must have noticed from the experiments, this non-linear registration
scheme enables to correct several misalignments which remained after the affine
registration. However, some undesirable artifacts like creation of holes appears
when the “amount of deformation” is too large, for instance when two parts of
the image, which are close to each other, deform in different ways. Decreasing
the magnitude of the displacement field corrects those artifacts, but at the cost
of a poor matching. One idea is to move the points in the direction given by
the the displacement field, but by only a small fraction in magnitude. Once
points have been move slightly, one re-estimates the displacement field at the
new locations of the source points (which now account for the matching error
between the updated source points and the target points) and again slightly
move the points in this new direction. This builds a deformation iteratively.
In this case, the source points do not move along a straight line, but along
curves instead. The displacement field gives the tangents of these curves and
can therefore be interpreted as the velocity field of a deforming material. In
this case, the deformations are (almost) always invertible and one can compute
their inverse explicitly. Such registrations fall into the category of ‘diffeomorphic
registrations’. But that’s another story...
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