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Courses and Seminars related to Research in 
Image Analysis

NEW in 2010: SoC Image Analysis Track (Director Tom Fletcher) (click)

Fall 2010:
• Image Processing CS 6640/ BIOEN 6640
Spring 2011:
• 3D Computer Vision CS 6320
• Advanced Image Processing CS 6640
• Mathematics of Imaging BIOEN 6500
Fall 2011:
• Image Processing Basics CS 4961
• Image Processing CS 6640
On demand:
• Special Topics Courses: Non-Euclidean Geometry, Non-Param. Stats, ..
Seminars:
• Seminar Imaging “ImageLunch” CS 7938: weekly 

Mondays 12 to 1.15, WEB 3670 

http://www.cs.utah.edu/graduate/imageanalysis/�
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CS/BIOEN 6640 F2010

For class: 
• 1) Go to the web-site 

page:  http://www.sci.utah.edu/~gerig/CS6640-F2010/CS6640-
F2010.html 

• 2) Look over the instructions and syllabus
• 3) Follow the link to "mailing lists" and join the cs6640 mailing lists 

as in the instructions. Remind them to use a mail address that they 
actually read (COMING SOON)

• 4) Look at the final and midterm exam dates and mark those on your 
calendar 

• 5) Purchase the book
• 6) Do the first 2 reading assignments.
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CS/BIOEN 6640 F2010

For class: 
• We will use the uxxxxxxxx email address for communication, 

please forward the u-email to your personal email if you use 
another account.

• The web-site provides downloads for additional materials and 
handouts. 

• The syllabus is not completely rigid and fixed, and some topics will 
develop as the class continues. 

• We will primarily use MATLAB (no extensions and additional 
libraries) for the projects. You can use CADE lab licenses or 
purchase a personal student license. C++ is an option (see web-
page).

• Etc.
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Goals

• to tell you what you can do with digital images
• to show you that doing research in computer 

vision and image analysis is fun and exciting
• to demonstrate that image processing is based 

on strong mathematical principles, applied to 
digital images via numerical schemes

• to show you that you can solve typical image 
processing tasks on your own
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Image Sensors



Scientific Computing and Imaging Institute, University of Utah

Digital Image
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Digital Image

Each cell has 
number, either a 
scalar (black and 
white) or a vector 
(color).

Discrete 
representation of 
continuous world 
(sampling with 
aperture).
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Digital Images



Scientific Computing and Imaging Institute, University of Utah

Digital Images
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Edges: Sudden change of intensity L
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Segmentation of structures

• User painting/drawing 
on 2D images 
(“photoshop”)

• Tedious, time 
consuming, limited 
precision

• Demonstrate Tool



Scientific Computing and Imaging Institute, University of Utah

Deformable Models: SNAKES

Geodesic Snake 
formulated as PDE
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Deformable Models: SNAKES

Geodesic Snake:
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Deformable Models: SNAKES

Geodesic Snake:

Plus: add a term that 
stops at boundaries
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Concept of level-set evolution

Implementation: 
Curve C 
embedded as 
zero-level of 
higher order 
function j
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Segmentation tool

• User painting slice by 
slice (“photoshop”)

• Tedious, time consuming, 
limited reproducibility

• Painting in 2D intuitive, 
but what about 3D?

ventricle
s

So far: Slice-by-slice contouring
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Demo itkSNAP tool
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3D Geodesic Snake
Challenges:
• efficient, stable 2D/3D implementation (implicit, fast marching,..)
• appropriate image match function to stop propagation
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Results Brain Tumor Segmentation

T2 EdemaTumorT1 3D
Prastawa et al., Media 2004

Type 1

Type 2

Type 3



Scientific Computing and Imaging Institute, University of Utah

Ventricle Segmentation by 3D Snakes: 
UNC SNAP Tool

Initia-
lization 
by 
bubbles

Final 
Segmen-
tation (10 
seconds)

2D axial 
MRI (3T 
MPrage)

3D 
surface 
rendering

3D 
surface 
rendering

2D axial 
MRI (3T 
MPrage)

Reliability: 0.99

Efficiency: 2 Min

Download: 
http://www.ia.unc.edu/dev



Scientific Computing and Imaging Institute, University of Utah

Use of deformable models in Vision I




Scientific Computing and Imaging Institute, University of Utah

Use of deformable models in Vision II
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Image Noise
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Blurring is diffusion

Linear isotropic diffusion, D is diffusion constant
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Blurring of images

• Reduction of noise and 
small details

• Blurring is diffusion
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Linear Diffusion

• Edge locations not preserved
• Region boundaries are preserved
• Gaussian blurring is local averaging operation and does not 

respect natural boundaries

Source: http://www.csee.wvu.edu/~tmcgraw/cs593spring2006/index.html
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We want noise reduction while 
keeping structure boundaries

Trick: Diffusion constant D becomes locally adaptive:
D → D(x,t), i.e. D varies locally
e.g.: switch D to 0 near important image boundaries

DemoMathematica Magic: This results in “inverse 
blurring”, or blurring with 
negative time, which is 
physically not possible.
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Nonlinear Diffusion

Multiscale image representation: Controlled blurring of  structures by 
preserving wanted boundaries.

Source: http://www.csee.wvu.edu/~tmcgraw/cs593spring2006/index.html
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Shape from silhouettes

Automatic 3D Model Construction for Turn-Table 
Sequences, A.W. Fitzgibbon, G. Cross, and A. 
Zisserman, SMILE 1998

Slides from
Lazebnik,
Matusik
Yerex
and others
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Motivation: Movies

Sinha Sudipta, UNC PhD 2008
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What is shape from silhouette?

• With multiple views of the 
same object, we can intersect 
the generalized cones
generated by each image, to 
build a volume which is 
guaranteed to contain the 
object.

• The limiting smallest volume 
obtainable in this way is known 
as the visual hull of the object.
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Visual hull as voxel grid

• Identify 3D region using voxel carving
– does a given voxel project inside all silhouettes?

• pros: simplicity
• cons: bad precision/computation time tradeoff

?

?
?
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Example Student Project
• Compute visual hull with silhouette images from multiple calibrated cameras
• Compute Silhouette Image 
• Volumetric visual hull computation
• Display the result
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Metric Cameras and Visual-Hull 
Reconstruction from 4 views

Final calibration quality comparable to explicit calibration procedure



Scientific Computing and Imaging Institute, University of Utah



Scientific Computing and Imaging Institute, University of Utah

Using probabilistic shape models

• Segmentation could be improved if we know the 
shape to be extracted.

• Idea: Using shape models:
– Typical shape template -> Deformation
– Statistical shape models -> Describe “shape space”, 

ensure that deformation stays within space of 
meaningful shapes
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Natural Shape Variability

Outlines of the 71 corpora callosa (fine) and the computed 
average corpus callosum (bold).Corpus callosum in an anatomical 

atlas (top) and a MRI image (bottom).
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Notion of Shape Space

Outlines of the 71 corpora callosa (fine) and the 
computed average corpus callosum (bold).

The computed major modes of shape 
variation (top to bottom:  modes 1,2 and 3). 

Alignment
Parametrization (arc-length)
Principal component analysis
Þ Average and major deformation 
modes
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First Eigenmode of Deformation (CC)
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Segmentation by deformable models

Fig. 1:  Visualization of 3 MRI mid-hemispheric slices and the final positions (in red) of the automatic corpus 
callosum segmentation algorithm using deformable shape models.
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Automatic deformable model based 2D segmentation

Example of model-based 
segmentation that uses a 
statistical shape model 
and a model of the 
boundary transition 
information.
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Image Processing

• Input: Digital images
• Output: set of measurements, models, morphometric 

measurements, objects in abstract representation
• Key procedures:

– Preprocessing, filtering, correction for artefacts
– Geometric transformations (image registration)
– Feature detection (edges, lines, homogeneous patches, texture)
– Grouping of features to objects
– Model-based versus data-driven segmentation

• Needs:
– Math, Algorithms
– Numerical implementations

• Excellent material: http://homepages.inf.ed.ac.uk/rbf/CVonline/

http://homepages.inf.ed.ac.uk/rbf/CVonline/�
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Why Image Analysis?
• Image Analysis and Computer Vision offer exciting 

research projects.
• Ideal area for CS (algorithms, math, coding, 

visualization, data structures …), ECE (robotics, pattern 
recognition, signal processing), BioEng (medical image 
analysis, and ME (robotics)

• Faculty at SCI from SoC, ECE, BioEng:
– Ross Whitaker, Sarang Joshi, Guido Gerig, Tolga Tasdizen, 

Tom Fletcher, Marcel Prastawa, Rob MacCleod
• Weekly “ImageLunch” Seminar CS 7938: Mondays 

12:15-1:25, WEB 3760 Evans and Sutherland Room
• Main courses: Image Processing (CS 6640, Fall), 

Computer Vision (CS 6320/6968, Spring), advanced 
courses
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Next Lecture Thu Aug 25

• Read Preface and Chap 1 of the G&W book (pdf’s on 
web-page).

• Get familiar with class web-page.
• Purchase class book.
• others
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