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Reading

SH&B, Chapter 8 (primarily 8.1-8.3)

The material in Section 8.4 is covered in more detdilin C3|521.

21.1 Introduction

So far, we've looked at low-level processing (clean-up, edge or other feature detection, etc.), segmenting the image
into regions that hopefully correspond to objects, and representing those objects using various represémegtons.
understanding is the process of actually interpreting those regions/objects to figure out what's actually happening in
the image. This may include figuring out what the objects are, their spatial relationship to each other, etc. It may also
include ultimately making some decision for further action.

21.2 Control Strategies
21.2.1 Bottom-Up

The process as we've just described ibastom-up: it starts from the raw image data, works upward to object shape
representation, and from there to a higher-level analysis or decision.

21.2.2 Top-Down

Image understanding can also work from the top down. Such processing makes hypotheses about that is happening,
then uses the image data to validate/reject those hypotheses. Most of these approanbes-besed. That is, they

have an approximate model of what they think they're looking at, then try to fit that model to the data. In a sense,
primitive-fitting approaches such as the Hough transform used this idea. This idea can be extended further to so-called
deformable models, in which you can deform the model to better fit the data. The goodness of the match is the inverse

of how much you have to work to deform the model to fit the data.
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21.2.3 Hybrid Hierarchical Control

Obvioudly, these two paradigms aren’t mutually exclusive: one might use bottom-up processing to bring the informa
tion to something higher than the pixel level, then switch to top-down processing using thisintermediate representation
to validate or reject hypotheses.

21.2.4 ActiveVision

A third aternative, neither quite bottom-up or top-down, presents itself when the vision system is part of a larger
system capable of acting so as to be able to influence the position/view/etc. Such active vision approaches more
accurately model the way people interact with the world. The idea is to make a tentative hypothesis (using either
top-down or bottom-up processing) then ask yourself, “based on what | already know (and suspect), what do | need to
do to be able to acquire the information that will best help me analyze the image or otherwise accomplish my task?’

21.3 Active Contours (Snakes)

The earliest and best known active contour approach is snakes. deformable splines that are acted upon by image,
internal, and user-defined “forces’” and deform to minimize the “energy” they exert in resisting these forces.

Your text has a good description of snakes, and you should also read the origina paper (Kass, Witken, and Ter-
zopolousin CVPR 87).

Notice that the general form of a snake follows the idea introduced earlier when we discussed graph-based ap-
proaches:

1. Establish the problem as the minimization of some cost function.
2. Use established optimization techniques to find the optimal (minimum cost) solution.

In the case of a snake, the cost function isthe “energy” exerted by the snake in resisting the forces put upon it. The
original formulation of this“energy” was

Esnake = WintEint + WimageFimage + wcon£con (21.1)
where each term is as follows:
Ejnt Internal Energy Keeps the snake from bending too much
E; mage Image Energy Guides the snake along important image features

Econ Constraint Energy  Pushes or pulls the snake away from or towards user-defined positions

Thetotal energy for the snakeisthe integral of the energy at each point:
1
snake = /0 Egnake(s) ds (21.2)

21.3.1 Internal Energy

The internal energy term tries to keep the snake smooth. Such smoothness constraints are also a common theme in
computer vision, occurring in such approaches as

e Bayesian reconstruction
e Shape from shading
e Stereo correspondence

e and many others...



Theinterna energy term in general keeps the model relatively closeto its original a priori shape. In this case, we
explicitly assume that the contour we want is generally smooth but otherwise unconstrained. Other models might start
with an approximation of abrain, a heart, akidney, alung, a house, a chair, aperson, etc.orm this model—in all cases,
the internal energy term constrains the deformation.

One hasto be careful with the weighting given to internal energy terms, though: too much weight means the model
stays too “rigid” and the system “sees what it wants to se€”, too little weight means the model is too flexible and can
pretty much match up to anything.

In the original snakes implementation, they used two terms to define the internal energy: one to keep the snake
from stretching or contracting along its length (el asticity) and another to keep the snake from bending (curvature):
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Notice that both a(s) and 3(s) are functions of the arc length along the snake. This means that we can (perhaps
interactively), keep the snake morerigid in some segments and more flexible in others.

Eipi(s) = a(s)|| 22 (s)|| + B(s)

21.3.2 Image Energy

The image energy term is what drives the model towards matching the image. It is usualy inversely based on image
intensity (bright curve finding), gradient magnitude (edge finding), or similar image features. Make sure to note the
inverse relationship: strong features are low energy, and weak features (or no features) are high energy.

An interesting image energy term used in the original snakes paper also tracked line terminations. These are useful
in analyzing visua illusions such as the Kinisa and Ehringhaus illusions illustrated in your text. This line termination
term is the same level-set curvature measure that we learned about when we studied differential geometry (and which
you expanded in HW 5).

21.3.3 Constraint Energy

Some systems, including the original snakesimplementation, allowed for user interaction to guide the snakes, not only
ininitial placement but also in their energy terms. Such constraint energy can be used to interactively guide the snakes
towards or away from particular features.

The original snakes paper used “springs’ (attraction to specified points) and “volcanos’ (repulsion from specified
points).

21.3.4 Implementation

The simplest form of optimization is gradient-descent minimization. Theideais to find the minimum of a function f
by iteratively taking a step “downhill”.

For example, let’'s consider afunction of only one variable. If we have a starting guess at the value of the solution,
we can look at the slope at that point and decide to increment our solution (negative slope) or decrement our solution
(positive slope). Notice the negation there: if the slopeis positive, downhill is backwards; and if the slope is negative,
downhill is forwards. We can thus implement gradient-descent minimization as

Tpp1 = Tp — 7%(@3)

where v controls the size of the step at each iteration.
For functions of two dimensions, the fastest direction downhill is the opposite of the fastest direction uphill (the
gradient). Thisisbasically just the same as doing gradient-descent minimization in each variable at the same time:

Ti41 = Lo — ’Y@(l't)

and
o df (y¢)
Yt+1 = Ye de Yt



Or, more generally for any function of a vector Z:
Tip1 = Ty — YV f(Tr)
Implementing such minimization in this form is actually quite smple:

grad = Cal cul at eGradi ent (f, x);

whil e (magnitude(grad) > convergence_threshold) {
X -= gama * grad;
grad = Cal cul ateG adi ent (f, x);

}

The difficult part isn't implementing the minimization, it's differentiating the function you're trying to minimize.
In the case of Eq. 21.2] we can approximate it using a number of discrete points on the snake v; = (z;, y;):

anake ~ 2 _ Penake(V:)
1
what’s nice about thisis that the derivative of a sum is the sum of the derivatives, so

Z Esnake(i)

> VEgakel®:)
1

We can thus think of the problem as iteratively adjusting each of the points v; using its own gradient-descent mini-
mization:
V; — Ui — VEsnake(@l)
Using Eq.21.1] we get
VEgqakel®) = V [wintEi nt(0i) + wimageEi mage(@i) + wconEcon(@;)}
= wintVEi nt(l_}i) + ’wimageVEi mage(l_)i) + ’wconVEcon(T)i)

Notice that w; mageVEi mage("_’i) + weconV Econ(7;) depends only on the image, not on the relationship of the snake
to any other part of itself, so we can precalculate this for every point in theimage. Simply calculate w; mageEi mage T
wconEcon everywhere, then measure its derivatives locally. Let’'s call this V Eeyt:

VEext = WimageV Eimage + wconV Econ
Substituting, our minimization now becomes
Vi <— Vy — Y [wintVEint(T}i) + VEext(’f}z)]

So, the only thing left to do isto solve for the gradient of the internal energy. Unfortunately, this is rather complicated
since it's a function of the spline itself, not the image. Fortunately, it simplifies considerably if «(s) and 3(s) are
constant—K ass, Witkin, and Terzopol ous published the following:

VEm(s) = ¥ |al g0 +5]

5]
=10/

[aVH%(S)W%-ﬁV’

0%v 0*v
= 052 Thga




These can be approximated using finite differences—the second derivative w.r.t. s can be calculated using three
adjacent points on the snake, and the fourth derivative w.r.t. s can be calculated using five adjacent points. It aso helps
to separate the x and y components.

Putting it all together:

0%v 0*v

o 1= {wing a5 300 + 55500 + VP

or more simply:
0%x 0tz

0
Ti—Ti—" {wint {O‘@(@i) + ﬂ@@i)} + %Eext(@i)}

%y My, 0 _
Yi — Yi — {”wim [a@(vi) + @(Ui)] + 8—yEext(Ui)}

Got all that? Before you start the iteration, precalculate Fext(v;) and calculate the derivatives of thisw.r.t. = and
y separately. When you're ready to start the iteration, calculate at each point % (v;) and g% (v;) using three adjacent
points and %(@i) and %(T%) using five adjacent points. Then calculate the incremental change in the z and y
components of each point v;. You then have to recal culate the derivatives of the internal energy on each iteration. For
the externa energy term, you can simply read from the precal culated images for the derivatives of Egxt(7;) using the
new positions of each v;.

21.4 Point-Density Models

Point density models can be thought of as deformable modelsin which the deformation “ energy” is based on statistical
properties of alarge number of training examples. This has the powerful advantage of allowing deformation where the
objects themselves normally differ while remaining more rigid where the objects themsel ves are normally consistent.

First identify a number of key landmark points for the object. These need not be on the contour but can be any
identifiable points.

Now, gather a collection of sample images with varying shapes that you want to recognize. (For example, if you're
building a system to recognize and analyze brains, get a collection of sample brains; if you're building a system to
recognize different kinds of fish, get yourself samples of each kind of fish; etc.) For each image in your training set,
find the landmarks and store their locations. Now, you need to register these images by transforming (trandating,
rotating) the landmark points so that they are al registered relative to a common mean shape.

We can now measure the covariance matrix for all of the landmarks across all of the training shapes. Thistellsus
not only the consistency of each landmark but the way each landmark tends to move as the others move.

The covariance matrix can be further analyzed by computing its eigenvalues and eigenvectors (called principal
component analysis). These eigenvectors are called the modes of variation of the shapes, and the eigenvaluestell you
therigidity or flexibility along these modes. Notice that a mode is not a single direction—it’s an overall changein al
of the landmarks relative to each other.

Point-density or landmark-based models, though they can be computationally expensive, are among the most
powerful models for shape description and deformation currently in use.
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