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Geometric Camera Calibration
Chapter 2

Guido Gerig
CS 6320 Spring 2015

Slides modified from Marc Pollefeys, UNC Chapel Hill, Comp256,
Other slides and illustrations from J. Ponce, addendum to course book,
and Trevor Darrell, Berkeley, C280 Computer Vision Course.




Equation: World coordinates to
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n back from homogeneous
coordinates leads to:
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Calibration target
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The Opt1-CAL Calibration Target Image
Find the position, u; and v;, In pixels,
of each calibration object feature point.
etic.bc.ca/CompVision/opti-CAL.html
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Camera calibration
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=. From before, we had these equations ~m-P
—— relating image positions, U= m, P
u,v, to points at 3-d positions P (in P

homogeneous coordinates): V=

TEEESEENS
EEEEEEEER
EEEEEEEER

So for each feature point, I, we have:

- (m,—um,)-P =0
EEEEEEEER .
110 (m —V.M ) D — (0
sHEEGEENS 2 R |

W. Freeman



l
,/f

it

Camera calibration
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Stack all these measurements of i=1...n points
(M —u;my)-R =0
(mz _Vims) ' |3| =0

i e—

Into a big matrix:

(BT 0" —uP" 0

0" P’ —vPT (M) |o
coe m2 —

T T T 0
I:)n 0 _unPn \m3)

W. Freeman
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In vector form;

i
L]

L)

(]
-

i e—

P 1000
0 By, R, R

y

P 1.0 0 0
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Showing all the elements:
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Camera calibration
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Plx I:)1y I:)12 10000 _ulplx _ulply _ulplz —U

0 00O I:)1x Pl I:)12 1 _lelx _lely _lelz —V;

y

P By B, 120000 -uhk, -ubk, -up

nx ny nz n' nx nfne —U

coo0oo0o~Rr PR, R 1 -vPh, -vP, -vR, -v My,

ny nz n" nx n" nz n

m33

Q m=0

We want to solve for the unit vecfor m (the
stacked one) that minimizes QM

The eigenvector assoc. to the minimum eigenvalue of
the matrix QTQ gives us that because it is the unit
vector x that minimizes x™ QTQ x.

W. Freeman



g Calibration Problem
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Given n points Py, ..., P, with known positions and their images
Pi;--.;Pn

Find 2 and e such that




;“‘f‘f_ Analytical Photogrammetry
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:-"":{ —_— Given n points Py,..., P, with known positions and their images
~ - E P1;---:Pn

T e—

Find 2 and e such that

P\ S
P ‘ 1S minimiz

Non-Linear Least-Squares Methods

e Newton
e Gauss-Newton
* Levenberg-Marquardt

Iterative, quadratically convergent in favorable situations
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Homogeneous Linear Systems
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Square system:
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A X | =10 * unique solution: 0

e unless Det(A)=0

Rectangular system ??

* 0 Is always a solution

Minimize |AX| ’
under the constraint |x| =1

~ )




How do you solve overconstrained
homogeneous linear equations ??
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E= Uz’ =" U U
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e Orthonormal basis of eigenvectors: ey, ..., e,.
e Associated eigenvalues: 0 < A < ... < A,.

eAny vector can be written as
T = (e +...+ 1€,

for some p; (i = 1,...,q) such that p? +. .. —|—,u,§ = 1.

E(x)— E(e)) = (Z»{TH):B — el (U'U)e

- Al,u,l +. Aqﬁ — M The solution is e,
> Mpi+...+pi-1)=0

remember: EIG(UTU) SVD(U) l.e. solutionis V,
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Matlab Solution

Example:
60 point pairs

Flpere 1! Clwekerinan] paitem on the wsll corner amd e world fame cooeslinae sxm

Least squares method is nsed to estimate the calibration matriz. There are 120 homogeneous linear
equations in twelve variables, which are the coefficients of the calibration matrix M. Lets denote this
system of linear equations as

P =10, m:=[m; my myl, (1)

where, 1y, mg, mg are first, second and thivd rows of the matrix A respectively, mois a 12 =< 1 veetor,
and P is a 120 = 12 matrix. The problem of least square estimation of 7 is defined as

min||Pm|?, subject to |lm)* = 1. (2)

As it turns out, the solution of above problem is given by the eigenvector of matrix P77 having
the least eigenvalue, The eigenvectors of matrix PTP can also be computed by performing the singular
value decomposition (SV13) of P. The 12 right singular vectors of 7 are also the eigenvectors of TP,

#Perform SVD of P
[U S V] = svd(P);
[min_val, min_index] = min(diag(S(1:12,1:12)));

%m is given by right singular vector of min. singular value
m= V(1:12, min_index);



——a—m Degenerate Point Configurations
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=" — Are there other solutions besides M ?7?
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T —— (P 0" —u,PT) (PTA —u, P{v)

— e o PI —uPT [ (A Py — v, Ply
0=Pl=| ... ... [p}

PE o’ —unPg v PE)\ — HRPEV
\0" P, —u,P,) \P.p—v.Pv)

4 : m; P; ‘ P/(Ami —m")P; =0
), mgPt- b P?(pm;{ — mguT)Pi =0

 Coplanar points: (A,u,v )=(I1,0,0) or (0,IT,0) or (0,0,IT)

e Points lying on the intersection curve of two quadric
surfaces = straight line + twisted cubic

Does not happen for 6 or more random points!
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Once you have the M matrix, can recover the
Intrinsic and extrinsic parameters.

Estimation of the Intrinsic and EXxtrinsic
Parameters, see pdf slides S.M. Abdallah.

arl —acotOr] +ugrl  at, — o cotOt, + ut.

B p
M = ——r] 4 ! — 1, + Ul
sing 2 3 sin@ -
.

F3 I;

W. Freeman
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Once M is known, you still got to recover the intrinsic and
extrinsic parameters !!!
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This Is a decomposition problem, not an estimation
problem.

(ar] — acotOr] + uyrs  at, — acotOt, + ugt, )

Pl M = b rl + vyrd b

sin 6 sin #
\ 3 t )

e Intrinsic parameters

 EXxtrinsic parameters




Slide Samer M Abdallah, Beirut

Estimation of the intrinsic and extrinsic parameters

1

™ wr, — g cot Hr'_" f= gt
= ! _‘
Write M = (4, b). therefore plA By =K(R 1) = p(a’.) = oy 4 o]
i SN b
i K
F3

Using the fact that the rows of a rotation matrix have umt length and are perpendicular to each other yvields

= e/las|,

rs = pas,

ug = p-lay -as),
vo = p°as - as),

where &= =l.

Since # is always in the neighborhood of 7 /2 with a positive sine, we have

" et |
Pody ¥ ds) = —ury; — o coliry, p*‘la; ¥ = — 1
; sinf
. B and
prlas x a3) = ——ry, 3 181
sin# Pl ¥ ay] = ——.
i i
Thus,
(@) % @) - (@ x as) ¥ sin @ I
Cosll = — . —_ r:;__. Fr ¥ i) = ——— _[f#> % 04
la) x az]la; = az| and ’ B 185 %0 la :-:ﬂ:_-L . 2
: Lok 2
@ = pla) x a:]sin@, rs=r % r.

= ;:zlﬂg % @] sinfl,

Note that there are two possible choices for the matrix R depending on the value of &.
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Slide Samer M Abdallah, Beirut
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Estimation of the intrinsic and extrinsic parameters

The translation parameters can now be recovered by writing Kt = pb, and hence t = pi'b.
[n practical situations, the sign of 7. is often known in advance (this corresponds to knowing
whether the origin of the world coordinate system is in front or behind the camera), which allows
the choice of a unique solution for the calibration parameters.
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Other Slides following
Forsyth&Ponce
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Just for additional information on previous slides
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Linear Systems
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Square system:

e unique solution
A X =1Db |

i e—

e Gaussian elimination

Rectangular system ??

e underconstrained:
Infinity of solutions
A X | = b 4

e overconstrained:
no solution

BE) Minimize |Ax-b|’
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How do you solve overconstrained linear equations ??

e Define E = |e|? = e - e with

e = Az —-b=|c¢l|c|...|c,

= r1€1 +T9C + -+ T, — b

e At a minimum,

oE  Oe N E?E_ZE?E
dz; B dz; ere (‘?.’L‘i_ Oz; ©
—Za(fﬂﬂ + -4z, —b)-e=2¢ -e
= r, 1€C1 nCn = 4G
®Or
¢l
0=1]: |(Az —b) = AT(Azx — b) = ATAx = ATb,
T
C‘il'l

wherg & = A'b and AT = (AT A)"1AT is the pseudoinverse of A'!
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Homogeneous Linear Systems
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Square system:
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A X | =10 * unique solution: 0

e unless Det(A)=0

Rectangular system ??

* 0 Is always a solution

Minimize |AX| ’
under the constraint |x| =1
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How do you solve overconstrained
homogeneous linear equations ??
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E= Uz’ =" U U
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e Orthonormal basis of eigenvectors: ey, ..., e,.
e Associated eigenvalues: 0 < A < ... < A,.

eAny vector can be written as
T = (e +...+ 1€,

for some p; (i = 1,...,q) such that p? +. .. —|—,u,§ = 1.

E(x)— E(e)) = (Z»{TH):B — el (U'U)e

- Al,u,l +. Aqﬁ — M The solution is e,
> Mpi+...+pi-1)=0

remember: EIG(UTU) SVD(U) l.e. solutionis V,
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Linear Camera Calibration
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Given n points P, ..., P, with known positions and their images

Py Pn

|

f/m1~Pi\
(Hi): ms3 - P; (m1—ﬂ=m3)P _0
[2F; mg-Pi T — U1y !
l'\mﬂ'P:)
(P} 0T —u, Pl
DT ler —EIP{{ T
Pm=0withP®| . .. .. and m my | =0
PE DT —HHPE Ty
LunT Pi UnPn)
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Useful Links
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Demo calibration (some links broken):

e http://mitpress.mit.edu/e-
Journals/Videre/001/articles/Zhang/Calib
Env/CalibEnv.html

Bouget camera calibration SW:

e http://www.vision.caltech.edu/bouguetj/
calib_doc/

CVonline: Monocular Camera calibration:

e http://homepages.inf.ed.ac.uk/cgi/rbf/C
VONLINE/entries.pl?TAG250




