Geometric Camera Calibration Chapter 2 Guido Gerig CS 6320 Spring 2015 Slides modified from Marc Pollefeys, UNC Chapel Hill, Comp256, Other slides and illustrations from J. Ponce, addendum to course book, and Trevor Darrell, Berkeley, C280 Computer Vision Course. # Equation: World coordinates to image pixels pixel coordinates Conversion back from homogeneous coordinates leads to: # Calibration target ## The Opti-CAL Calibration Target Image Find the position, u_i and v_i, in pixels, of each calibration object feature point. http://www.kinetic.bc.ca/CompVision/opti-CAL.html # Camera calibration From before, we had these equations relating image positions, u,v, to points at 3-d positions P (in homogeneous coordinates): $$u = \frac{m_1 \cdot \vec{P}}{m_3 \cdot \vec{P}}$$ $$v = \frac{m_2 \cdot \vec{P}}{m_3 \cdot \vec{P}}$$ So for each feature point, i, we have: $$(m_1 - u_i m_3) \cdot \vec{P}_i = 0$$ $$(m_2 - v_i m_3) \cdot \vec{P}_i = 0$$ # Camera calibration Stack all these measurements of i=1...n points $$(m_1 - u_i m_3) \cdot \vec{P}_i = 0$$ $$(m_2 - v_i m_3) \cdot \vec{P}_i = 0$$ into a big matrix: $$\begin{pmatrix} P_1^T & 0^T & -u_1 P_1^T \\ 0^T & P_1^T & -v_1 P_1^T \\ \cdots & \cdots & \cdots \\ P_n^T & 0^T & -u_n P_n^T \\ 0^T & P_n^T & -v_n P_n^T \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \\ m_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$ In vector form $$\begin{pmatrix} P_{1}^{T} & 0^{T} & -u_{1}P_{1}^{T} \\ 0^{T} & P_{1}^{T} & -v_{1}P_{1}^{T} \\ \cdots & \cdots \\ P_{n}^{T} & 0^{T} & -u_{n}P_{n}^{T} \\ 0^{T} & P_{n}^{T} & -v_{n}P_{n}^{T} \end{pmatrix} \begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$ Camera calibration $$\begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix} = \begin{pmatrix} m_{1} \\ m_{2} \\ m_{3} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$ #### Showing all the elements: $$P_{nx}$$ P_{ny} $$\begin{pmatrix} P_{1x} & P_{1y} & P_{1z} & 1 & 0 & 0 & 0 & -u_1 P_{1x} & -u_1 P_{1y} & -u_1 P_{1z} & -u_1 \\ 0 & 0 & 0 & 0 & P_{1x} & P_{1y} & P_{1z} & 1 & -v_1 P_{1x} & -v_1 P_{1y} & -v_1 P_{1z} & -v_1 \\ P_{nx} & P_{ny} & P_{nz} & 1 & 0 & 0 & 0 & 0 & -u_n P_{nx} & -u_n P_{ny} & -u_n P_{nz} & -u_n \\ 0 & 0 & 0 & 0 & P_{nx} & P_{ny} & P_{nz} & 1 & -v_n P_{nx} & -v_n P_{ny} & -v_n P_{nz} & -v_n \end{pmatrix} \begin{pmatrix} m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{24} \\ m_{31} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$ $$\begin{pmatrix} m_{11} \\ m_{12} \\ m_{13} \\ m_{14} \\ m_{21} \\ m_{22} \\ m_{23} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix}$$ #### Camera calibration $$\begin{pmatrix} P_{1x} & P_{1y} & P_{1z} & 1 & 0 & 0 & 0 & -u_1 P_{1x} & -u_1 P_{1y} & -u_1 P_{1z} & -u_1 \\ 0 & 0 & 0 & 0 & P_{1x} & P_{1y} & P_{1z} & 1 & -v_1 P_{1x} & -v_1 P_{1y} & -v_1 P_{1z} & -v_1 \\ \vdots & & & & & & & & & & & \\ P_{nx} & P_{ny} & P_{nz} & 1 & 0 & 0 & 0 & -u_n P_{nx} & -u_n P_{ny} & -u_n P_{nz} & -u_n \\ 0 & 0 & 0 & 0 & P_{nx} & P_{ny} & P_{nz} & 1 & -v_n P_{nx} & -v_n P_{ny} & -v_n P_{nz} & -v_n \end{pmatrix} \begin{pmatrix} m_{12} \\ m_{23} \\ m_{23} \\ m_{24} \\ m_{31} \\ m_{32} \\ m_{33} \\ m_{34} \end{pmatrix}$$ $\mathbf{m} = 0$ m_{11} We want to solve for the unit vector m (the stacked one) that minimizes $\left|Qm\right|^2$ The eigenvector assoc. to the minimum eigenvalue of the matrix Q^TQ gives us that because it is the unit vector x that minimizes $x^T Q^TQ$ x. #### Calibration Problem Given n points P_1, \ldots, P_n with known positions and their images p_1, \ldots, p_n Find i and e such that $$\sum_{i=1}^{n} \left[\left(u_i - \frac{\boldsymbol{m}_1(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_i}{\boldsymbol{m}_3(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_i} \right)^2 + \left(v_i - \frac{\boldsymbol{m}_2(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_i}{\boldsymbol{m}_3(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_i} \right)^2 \right] \quad \text{is minimized}$$ $$\boldsymbol{m}_3(\boldsymbol{i}, \boldsymbol{e}) \cdot \boldsymbol{P}_i$$ #### Analytical Photogrammetry Given n points P_1, \ldots, P_n with known positions and their images p_1, \ldots, p_n Find i and e such that #### Non-Linear Least-Squares Methods - Newton - Gauss-Newton - Levenberg-Marquardt Iterative, quadratically convergent in favorable situations #### Homogeneous Linear Systems Square system: • unique solution: 0 • unless Det(A)=0 Rectangular system ?? • 0 is always a solution Minimize |Ax|² under the constraint $|x|^2=1$ # How do you solve overconstrained homogeneous linear equations ?? $$E = |\mathcal{U}\boldsymbol{x}|^2 = \boldsymbol{x}^T (\mathcal{U}^T \mathcal{U}) \boldsymbol{x}$$ - Orthonormal basis of eigenvectors: e_1, \ldots, e_q . - Associated eigenvalues: $0 \le \lambda_1 \le \ldots \le \lambda_q$. - Any vector can be written as $$\boldsymbol{x} = \mu_1 \boldsymbol{e}_1 + \ldots + \mu_q \boldsymbol{e}_q$$ for some μ_i (i = 1, ..., q) such that $\mu_1^2 + ... + \mu_q^2 = 1$. $$E(\boldsymbol{x}) - E(\boldsymbol{e}_1) = \boldsymbol{x}^T (\mathcal{U}^T \mathcal{U}) \boldsymbol{x} - \boldsymbol{e}_1^T (\mathcal{U}^T \mathcal{U}) \boldsymbol{e}_1$$ $$= \lambda_1^2 \mu_1^2 + \ldots + \lambda_q^2 \mu_q^2 - \lambda_1^2$$ $$\geq \lambda_1^2 (\mu_1^2 + \ldots + \mu_q^2 - 1) = 0$$ The solution is e_1 . <u>remember</u>: EIG(U^TU)=SVD(U), i.e. solution is V_n # Matlab Solution Example: 60 point pairs Figure 1: Checkerboard pattern on the wall corner and the world frame coordinate axes Least squares method is used to estimate the calibration matrix. There are 120 homogeneous linear equations in twelve variables, which are the coefficients of the calibration matrix \mathcal{M} . Lets denote this system of linear equations as $$Pm = 0, \quad m := [m_1 \quad m_2 \quad m_3]^T,$$ (1) where, $\mathbf{m}_1, \mathbf{m}_2, \mathbf{m}_3$ are first, second and third rows of the matrix \mathcal{M} respectively. \mathbf{m} is a 12×1 vector, and \mathcal{P} is a 120×12 matrix. The problem of least square estimation of \mathcal{P} is defined as $$\min \|P\mathbf{m}\|^2$$, subject to $\|\mathbf{m}\|^2 = 1$. (2) As it turns out, the solution of above problem is given by the eigenvector of matrix $\mathcal{P}^T\mathcal{P}$ having the least eigenvalue. The eigenvectors of matrix $\mathcal{P}^T\mathcal{P}$ can also be computed by performing the singular value decomposition (SVD) of \mathcal{P} . The 12 right singular vectors of \mathcal{P} are also the eigenvectors of $\mathcal{P}^T\mathcal{P}$. ``` %Perform SVD of P [U S V] = svd(P); [min_val, min_index] = min(diag(S(1:12,1:12))); %m is given by right singular vector of min. singular value m = V(1:12, min_index); ``` #### Degenerate Point Configurations Are there other solutions besides M?? $$\mathbf{0} = \mathcal{P}\boldsymbol{l} = \begin{pmatrix} \boldsymbol{P}_1^T & \boldsymbol{0}^T & -u_1\boldsymbol{P}_1^T \\ \boldsymbol{0}^T & \boldsymbol{P}_1^T & -v_1\boldsymbol{P}_1^T \\ \dots & \dots & \dots \\ \boldsymbol{P}_n^T & \boldsymbol{0}^T & -u_n\boldsymbol{P}_n^T \\ \boldsymbol{0}^T & \boldsymbol{P}_n^T & -v_n\boldsymbol{P}_n^T \end{pmatrix} \begin{pmatrix} \boldsymbol{\lambda} \\ \boldsymbol{\mu} \\ \boldsymbol{\nu} \end{pmatrix} = \begin{pmatrix} \boldsymbol{P}_1^T\boldsymbol{\lambda} - u_1\boldsymbol{P}_1^T\boldsymbol{\nu} \\ \boldsymbol{P}_1^T\boldsymbol{\mu} - v_1\boldsymbol{P}_1^T\boldsymbol{\nu} \\ \dots & \dots \\ \boldsymbol{P}_n^T\boldsymbol{\lambda} - u_n\boldsymbol{P}_n^T\boldsymbol{\nu} \\ \boldsymbol{P}_n^T\boldsymbol{\mu} - v_n\boldsymbol{P}_n^T\boldsymbol{\nu} \end{pmatrix}$$ $$\begin{cases} \mathbf{P}_i^T \boldsymbol{\lambda} - \frac{\mathbf{m}_1^T \mathbf{P}_i}{\mathbf{m}_3^T \mathbf{P}_i} \mathbf{P}_i^T \boldsymbol{\nu} = 0 \\ \mathbf{P}_i^T \boldsymbol{\mu} - \frac{\mathbf{m}_2^T \mathbf{P}_i}{\mathbf{m}_3^T \mathbf{P}_i} \mathbf{P}_i^T \boldsymbol{\nu} = 0 \end{cases} \qquad \qquad \qquad \begin{cases} \mathbf{P}_i^T (\boldsymbol{\lambda} \mathbf{m}_3^T - \mathbf{m}_1 \boldsymbol{\nu}^T) \mathbf{P}_i = 0 \\ \mathbf{P}_i^T (\boldsymbol{\mu} \mathbf{m}_3^T - \mathbf{m}_2 \boldsymbol{\nu}^T) \mathbf{P}_i = 0 \end{cases}$$ - Coplanar points: $(\lambda, \mu, \nu) = (\Pi, 0, 0)$ or $(0, \Pi, 0)$ or $(0, 0, \Pi)$ - Points lying on the intersection curve of two quadric surfaces = straight line + twisted cubic Does not happen for 6 or more random points! #### Camera calibration Once you have the M matrix, can recover the intrinsic and extrinsic parameters. Estimation of the Intrinsic and Extrinsic Parameters, see pdf slides <u>S.M. Abdallah</u>. $$\mathcal{M} = \begin{pmatrix} \alpha \mathbf{r}_1^T - \alpha \cot \theta \mathbf{r}_2^T + u_0 \mathbf{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \mathbf{r}_2^T + v_0 \mathbf{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \mathbf{r}_3^T & t_z \end{pmatrix}$$ Once M is known, you still got to recover the intrinsic and extrinsic parameters !!! This is a decomposition problem, not an estimation problem. $$\boxed{\rho} \mathcal{M} = \begin{pmatrix} \alpha \boldsymbol{r}_1^T - \alpha \cot \theta \boldsymbol{r}_2^T + u_0 \boldsymbol{r}_3^T & \alpha t_x - \alpha \cot \theta t_y + u_0 t_z \\ \frac{\beta}{\sin \theta} \boldsymbol{r}_2^T + v_0 \boldsymbol{r}_3^T & \frac{\beta}{\sin \theta} t_y + v_0 t_z \\ \boldsymbol{r}_3^T & t_z \end{pmatrix}$$ - Intrinsic parameters # Slide Samer M Abdallah, Beirut ### Estimation of the intrinsic and extrinsic parameters Write $$M = (A, b)$$, therefore $$\rho(A - b) = \mathcal{K}(\mathcal{R} - t) \iff \rho\begin{pmatrix} a_1^T \\ a_2^T \\ a_3^T \end{pmatrix} = \begin{pmatrix} \alpha r_1^T - \alpha \cot \theta r_2^T + u_0 r_3^T \\ \frac{\beta}{\sin \theta} r_2^T + v_0 r_3^T \\ r_3^T \end{pmatrix}$$ Using the fact that the rows of a rotation matrix have unit length and are perpendicular to each other yields $$\begin{cases} \rho = \varepsilon/|a_3|, \\ r_3 = \rho a_3, \\ u_0 = \rho^2(a_1 \cdot a_3), \\ v_0 = \rho^2(a_2 \cdot a_3), \end{cases}$$ where $\varepsilon = \mp 1$. Since θ is always in the neighborhood of $\pi/2$ with a positive sine, we have $$\begin{cases} \rho^2(\boldsymbol{a}_1 \times \boldsymbol{a}_3) = -\alpha \boldsymbol{r}_2 - \alpha \cot \theta \boldsymbol{r}_1, \\ \rho^2(\boldsymbol{a}_2 \times \boldsymbol{a}_3) = \frac{\beta}{\sin \theta} \boldsymbol{r}_1, \end{cases} \text{ and } \begin{cases} \rho^2|\boldsymbol{a}_1 \times \boldsymbol{a}_3| = \frac{|\alpha|}{\sin \theta}, \\ \rho^2|\boldsymbol{a}_2 \times \boldsymbol{a}_3| = \frac{|\beta|}{\sin \theta}. \end{cases}$$ Thus, $$\begin{cases} \cos \theta = -\frac{(\boldsymbol{a}_1 \times \boldsymbol{a}_3) \cdot (\boldsymbol{a}_2 \times \boldsymbol{a}_3)}{|\boldsymbol{a}_1 \times \boldsymbol{a}_3| |\boldsymbol{a}_2 \times \boldsymbol{a}_3|}, \\ \alpha = \rho^2 |\boldsymbol{a}_1 \times \boldsymbol{a}_3| \sin \theta, \\ \beta = \rho^2 |\boldsymbol{a}_2 \times \boldsymbol{a}_3| \sin \theta, \end{cases} \quad \text{and} \quad \begin{cases} r_1 = \frac{\rho^2 \sin \theta}{\beta} (\boldsymbol{a}_2 \times \boldsymbol{a}_3) = \frac{1}{|\boldsymbol{a}_2 \times \boldsymbol{a}_3|} (\boldsymbol{a}_2 \times \boldsymbol{a}_3), \\ r_2 = r_3 \times r_1. \end{cases}$$ Note that there are two possible choices for the matrix R depending on the value of ε . # Slide Samer M Abdallah, Beirut ## Estimation of the intrinsic and extrinsic parameters The translation parameters can now be recovered by writing $\mathcal{K}t = \rho b$, and hence $t = \rho \mathcal{K}^{-1}b$. In practical situations, the sign of t_z is often known in advance (this corresponds to knowing whether the origin of the world coordinate system is in front or behind the camera), which allows the choice of a unique solution for the calibration parameters. # Other Slides following Forsyth&Ponce Just for additional information on previous slides #### Linear Systems Square system: - unique solution - Gaussian elimination \mathcal{X} Rectangular system ?? - underconstrained: infinity of solutions - overconstrained: no solution Minimize $|Ax-b|^2$ #### How do you solve overconstrained linear equations ?? • Define $$E = |\mathbf{e}|^2 = \mathbf{e} \cdot \mathbf{e}$$ with $$oldsymbol{e} = Aoldsymbol{x} - oldsymbol{b} = \left[egin{array}{c} oldsymbol{c}_1 & oldsymbol{c}_2 & \dots & oldsymbol{c}_n \\ x_n & \end{array} \right] \left[egin{array}{c} x_1 \\ \vdots \\ x_n \end{array} \right] - oldsymbol{b}$$ $$= x_1 \boldsymbol{c}_1 + x_2 \boldsymbol{c}_2 + \cdots + x_n \boldsymbol{c}_n - \boldsymbol{b}$$ • At a minimum, $$\frac{\partial E}{\partial x_i} = \frac{\partial \mathbf{e}}{\partial x_i} \cdot \mathbf{e} + \mathbf{e} \cdot \frac{\partial \mathbf{e}}{\partial x_i} = 2 \frac{\partial \mathbf{e}}{\partial x_i} \cdot \mathbf{e}$$ $$= 2 \frac{\partial}{\partial x_i} (x_1 \mathbf{c}_1 + \dots + x_n \mathbf{c}_n - \mathbf{b}) \cdot \mathbf{e} = 2 \mathbf{c}_i \cdot \mathbf{e}$$ $$= 2 \mathbf{c}_i^T (A \mathbf{x} - \mathbf{b}) = 0$$ \bullet or $$0 = \begin{bmatrix} \boldsymbol{c}_i^T \\ \vdots \\ \boldsymbol{c}_n^T \end{bmatrix} (A\boldsymbol{x} - \boldsymbol{b}) = A^T (A\boldsymbol{x} - \boldsymbol{b}) \Rightarrow A^T A \boldsymbol{x} = A^T \boldsymbol{b},$$ where $\mathbf{x} = A^{\dagger} \mathbf{b}$ and $A^{\dagger} = (A^{T} A)^{-1} A^{T}$ is the *pseudoinverse* of A! #### Homogeneous Linear Systems $$\mathcal{X}$$ \equiv Square system: • unique solution: 0 • unless Det(A)=0 Rectangular system ?? • 0 is always a solution Minimize |Ax|² under the constraint $|x|^2=1$ # How do you solve overconstrained homogeneous linear equations ?? $$E = |\mathcal{U}\boldsymbol{x}|^2 = \boldsymbol{x}^T (\mathcal{U}^T \mathcal{U}) \boldsymbol{x}$$ - Orthonormal basis of eigenvectors: e_1, \ldots, e_q . - Associated eigenvalues: $0 \le \lambda_1 \le \ldots \le \lambda_q$. - Any vector can be written as $$\boldsymbol{x} = \mu_1 \boldsymbol{e}_1 + \ldots + \mu_q \boldsymbol{e}_q$$ for some μ_i (i = 1, ..., q) such that $\mu_1^2 + ... + \mu_q^2 = 1$. $$E(\boldsymbol{x}) - E(\boldsymbol{e}_1) = \boldsymbol{x}^T (\mathcal{U}^T \mathcal{U}) \boldsymbol{x} - \boldsymbol{e}_1^T (\mathcal{U}^T \mathcal{U}) \boldsymbol{e}_1$$ $$= \lambda_1^2 \mu_1^2 + \ldots + \lambda_q^2 \mu_q^2 - \lambda_1^2$$ $$\geq \lambda_1^2 (\mu_1^2 + \ldots + \mu_q^2 - 1) = 0$$ The solution is e_1 . <u>remember</u>: EIG(U^TU)=SVD(U), i.e. solution is V_n #### **Linear Camera Calibration** Given n points P_1, \ldots, P_n with known positions and their images p_1,\ldots,p_n $$\begin{pmatrix} u_i \\ v_i \end{pmatrix} = \begin{pmatrix} \frac{\boldsymbol{m}_1 \cdot \boldsymbol{I}_i}{\boldsymbol{m}_3 \cdot \boldsymbol{P}_i} \\ \frac{\boldsymbol{m}_2 \cdot \boldsymbol{P}_i}{\boldsymbol{m}_2 \cdot \boldsymbol{P}_i} \end{pmatrix} \Longleftrightarrow \begin{pmatrix} \boldsymbol{m}_1 - u_i \boldsymbol{m}_3 \\ \boldsymbol{m}_2 - v_i \boldsymbol{m}_3 \end{pmatrix} \boldsymbol{P}_i = 0$$ $$\mathcal{P}\boldsymbol{m} = 0$$ with $\mathcal{P} \stackrel{\text{def}}{=}$ $$\mathcal{P}\boldsymbol{m} = 0 \text{ with } \mathcal{P} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{P}_1^T & \boldsymbol{0}^T & -u_1 \boldsymbol{P}_1^T \\ \boldsymbol{0}^T & \boldsymbol{P}_1^T & -v_1 \boldsymbol{P}_1^T \\ \dots & \dots & \dots \\ \boldsymbol{P}_n^T & \boldsymbol{0}^T & -u_n \boldsymbol{P}_n^T \\ \boldsymbol{0}^T & \boldsymbol{P}^T & -v_n \boldsymbol{P}^T \end{pmatrix} \text{ and } \boldsymbol{m} \stackrel{\text{def}}{=} \begin{pmatrix} \boldsymbol{m}_1 \\ \boldsymbol{m}_2 \\ \boldsymbol{m}_3 \end{pmatrix} = 0$$ # **Useful Links** Demo calibration (some links broken): http://mitpress.mit.edu/ejournals/Videre/001/articles/Zhang/Calib Env/CalibEnv.html Bouget camera calibration SW: http://www.vision.caltech.edu/bouguetj/ calib_doc/ CVonline: Monocular Camera calibration: http://homepages.inf.ed.ac.uk/cgi/rbf/C VONLINE/entries.pl?TAG250