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Multi-View Geometry
Part II
(Ch7 New book.
Ch 10/11 old book)

Guido Gerig
CS 6320 Spring 2015
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Credits: M. Shah, UCF CAP5415, lecture 23

http://www.cs.ucf.edu/courses/cap6411/cap5415/, Trevor Darrell, Berkeley,
C280, Marc Pollefeys




I
ﬁ

i1

Multi-View Geometry

A1

F

T e—

Relates




I
ﬁ

(1)

Multi-View Geometry

A1

F

T e—

Relates ° °

* 3D World Points




I
ﬁ

(1)

Multi-View Geometry

A1

F

T e—

Relates ° °

* 3D World Points

e Camera Centers




1
j

Multi-View Geometry

U]
il

F

i e—

Relates
* 3D World Points

e Camera Centers

e Camera Orientations




I
ﬁ

it

Multi-View Geometry

iy

F

i e—

Relates

* 3D World Points

e Camera Centers Z
e Camera Orientations

e Camera Intrinsic Parameters




I
,ﬁ

it

Multi-View Geometry

iy

F

i e—

Relates

* 3D World Points

e Camera Centers

e Camera Orientations

e Camera Intrinsic Parameters

* Image Points
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c Principle: Triangulation
Gives reconstruction as intersection of two rays
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c Principle: Triangulation
Gives reconstruction as intersection of two rays

Requires
— calibration
— point correspondence




4l
,/f

il

Stereo Constraints

AfHH

iven p 1n left image, where can the corresponding point p’
right image be?
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P = Demo Epipolar Geometry
Java Applet credit to:
Quang-Tuan Luong
SRI Int.

Sylvain Bougnoux




Epipolar constraint

P

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Source: M. Pollefeys
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Epipolar constraint

e Potential matches for p have to lie on the corresponding
epipolar line I.

e Potential matches for p’ have to lie on the corresponding
epipolar line [.

http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

Source: M. Pollefeys
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Andrea Fusiello, CVonline

Strong constraints for searching for
corresponding points!




Example

Parallel Cameras:
Corresponding
points on
horizontal lines.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers (O and @ of the two
cameras, and the two images p and p’ of P all lie in the same plane.

All epipolar lines contain epipole, the image of other camera center.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras. and the two images p and p’ of P all lic in the same plane.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras. and the two images p and p’ of P all lic in the same plane.




Ui/l
,/f

11

From Geometry to Algebra

Al

(

=

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras. and the two images p and p’ of P all lic in the same plane.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras. and the two images p and p’ of P all lic in the same plane.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras. and the two images p and p’ of P all lic in the same plane.
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The epipolar constraint: these vectors are coplanar:
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p.p’are image
coordinates of
Pincl and c2...

c2 is related to cl by
rotation R and
translation t



p.p’ are image
coordinates of / —
Pincl and c2... p [t X (Rp )] 0

c2 is related to cl by
rotation R and
translation t
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{
p.p’are image
coordinates of / _
Pincl and c2... p [t X (Rp )] 0
¢2 is related to cl by Linear Constraint:

rotation R and Should be able to express as matrix
translation t . g .
multiplication.



Review: Matrix Form of Cross
Product

The vector cross product also acts on two vectors and returns a third
vector. Geometrically, this new vector is constructed such that its
projection onto either of the two input vectors is zero.
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axb=|ab —ab.

ab,—ab,
0 — | EN
- E’ % “ bx _ a-¢c=0
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Matrix Form

p-[tx(Rp)] =0

p [t 1Rp'=0
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The Essential Matrix
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Matrix that relates image of point in one camera to a
second camera, given translation and rotation.
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The Essential Matrix

Based on the Relative Geometry of the
Cameras

Assumes Cameras are calibrated (i.e.,
intrinsic parameters are known)

Relates image of point in one camera to
a second camera (points in camera
coordinate system).

Is defined up to scale
5 independent parameters
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8p' is the epipolar line corresponding to p” in the
left camera.

au+bv+c=0

p=(u,v,1)
[=(a,b,c)
[-p=0

Ep'p=0

p'Ep' =0

T
y & p is the epipolar line corresponding to p in the

cra.
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el€e’ ?

What is €e’ ?

ce’

* line Ep’ converges to epipole e
* ¢’ (center of camera C, expressed
in frame C,,
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Pencil of epipolar lines
X

!

The intersection points between the base line and the image
planes are called epipoles.

The epipole e’ in image 2 is the mapping of the camera center C.
The epipole e in image 1 is the mapping of the camera center C'.

Since all epipolar planes intersect both camera centers, all
epipolar lines will intersect the epipoles.
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Pencil of epipolar lines
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imagel image 2

Given a point in one image, how do we determine
the corresponding epipolar line to search along in
the second 1umage?

http://www.cse.psu.edu/~rcollins/CSE486/lecture19 _6pp.pdf




,A

e
h
"
ey
—
= ey

Epipoles
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e The epipolar line I’ = Ex to each point
X (except e) intersects the epipole e.
Thus e’ satisfies e T(Ex) = (€T E)x =0
for all x.

e This implies that eT & = 0T or €Te’ =
0. The epipole e’ is thus a null vector

to €T (in the left null-space of &).

e Similarly, €e = 0, i.e. e is a null-vector

to € (in the right null-space of &).

MVG Hartley & Zisserman
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Fig. 8.3, Converging cameras. (a) Epipolar geometry for converging cameras. (b) and
(¢} A pair of images with superimposed corresponding points and their epipolar lines (in
white). The motion between the views is a translation and rotation. In each tmage, the
direction of the other camera may be inferved from the intersection of the pencil of epipolar
lines. In this case. both epipoles lie outside of the visible image.

MVG Hartley & Zisserman
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parallel
lines

vanishing
point

image

centre

Fig. 8.7. Under a pure translational camera motion, 3D points appear to slide along parallel
rails. The images of these parallel lines intersect in a vanishing point corresponding to the
translation direction. The epipole e is the vanishing point.

MVG Hartley & Zisserman
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The Essential Matrix
&' =[t,|Re'=0

Similarly, & e=R"[t [ e=-R"[t e=0

The essential matrix € = [t]xR has 5 degrees of

freedom; 3 rotation angles in R, 3 elements in t, but
arbitrary scale.
Essential Matrix 1s singular with rank 2.
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Review: Intrinsic Camera

= -
= o= Parameters
= ~Y M (x©),y(©) 7))
Image plane RN / s

b ’<77<<\ :
\\’E{y Focal plane

u' -f. 0 u, 0 y(©) fuo=tk, =
=] 0 -/ v 0 7() fo=rk,=p
S| L0 0O 1 0 , ® =90°




4l
,ﬁ

il

Fundamental Matrix
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p'Ep'=0  pandp'are in camera coordinate system

If u and u’ are corresponding image coordinates then we
have:

u=K,p p=K'u > p —(K_lu)T =u' K"
= ' —1_ 1
:sz p =K2 u

uT|[<1_T5K2_1|u' =0
\

=u Fu' =0 F=K'EK;'
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u'Fu'=0 F=K'€K,

Fundamental Matrix 1s singular with rank 2.

The fundamental matrix F has 7 degrees of freedom: A 3
x 3 homogenous matrix has 8 degrees of freedom. The
constraint rank(F) = 2 or det(F) = 0 reduces the number
to 7.

In principal F has 7 parameters up to scale and can be
estimated from 7 point correspondences.

Direct Simpler Method requires 8 correspondences
(Olivier Faugeras, Computer Vision textbook).
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11: compute F for a forward translating camera

P=K[I|0] P =K[R]t]

' 1/f 0 O 0 —t. O 1/f 0 O
O 1/f Of||t. O O 0 1/f O
0o 0 1|/|0 O O0O|]|] O o0 1
0 —1 0|
1 0 O
0 0 O




x = (z,y,1) " is

line

—1 O €T
O O Y
0O O 1

first image

From 1’ = Fx the epipolar line for the point

The points (z,y,1)" and (0,0,1)T lie on this

e

second image

X e

X
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courtesy of Andrew Zisserman
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courtesy of Andrew Zisserman
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Estimating Fundamental Matrix
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ul Fu' =0 The 8-point algorithm (Faugeras)

Each point correspondence can be expressed as a linear
equation:

_ F, F, F; u'
u v 1|F, F, F,|Vv]|=0
_}731 F132 }733_ 1
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The 8-point Algorithm
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Scaling: Set F; to 1 -> Solve for 8 parameters.
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8 corresponding points, 8 equations.

(i.r.lu’] T/ TR (PR VLA ITET. T TV A KFII\ /1
wouh wovh us woubh wvovh w ub vh 1 Fio ]
wawy uzvh uz wvawhy wavh vy why vh || Fia 1
wyny  wgry owuyo owgul vy ooy ouwl v Fop | |1
sty UsUE us wvpuk wavk vy wub ok Fo 1
Uglly Ugli Ug Velg Vglp s U  Uf Fss 1
wruh  urdh owr o owrwt ovevh owr wh b || B 1

\ sty UsUy us Usuy VsUy Us ug v ) \\F_—;g ) \1/

Invert and solve for .

(Use more points if available; tind least-squares
solution to minimize S (p! Fpl)? )
i=1
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100 I ——
150

100 200 300 400

-0.00310695 -0.0025646 2.96584
F= | -0.028094 -0.00771621 56.3813
13.1905 -29.2007 -9999.79

http://www.cse.psu.edu/~rcollins/CSE486/lecture19 _6pp.pdf
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B = Example ctd.
:::- g E u'Fu’ = 0 — Fu’=I", where I’ is epipolar line associated to u.
—_— -
“ -0.00310695 -0.0025646 2.96584 | 343.53
F= | -0.028094 -0.00771621 56.3813 |221.70
13.1905 -29.2007 -9999.79 PN 1.0 )

-265.1531

normalize so sum of squares *
of first two terms 1s 1 (optional)

refers to normal form of line:
rho = x cos(phi) +y sin(phi)
http://www.cse.psu.edu/~rcollins/CSE486/lecture19 _6pp.pdf
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= Example: Left to Right
=
e S 3
e -0.00310695 -0.0025646 2.96584 | 345.53
F= -0.028094 -0.00771621 56.3813 | 221.70
k13.]9{15 -29.2007 -9999.79 1.0 )

0.0295

0.9996
-265.1531

x=3435300 y=221.7005

http://www.cse.psu.edu/~rcollins/CSE486/lecture19 _6pp.pdf
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P = Example: Right to Left
— | —
= — ] r~ ™
ey (205.5526 80.5 1.0), -0.00310695 -0.0025646 2.96584
" -0.028094 -0.00771621 56.3813
13.1905 -29.2007 -9999.79
- /

L=(0.3211 -0.9470 -151.39)

x= 205.5526 y==80.5000

http://www.cse.psu.edu/~rcollins/CSE486/lecture19 _6pp.pdf
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Example: Epipoles?

where 1s the epipole?

F*e, =0
100

150 vector 1 the right

nullspace of matrix F

However, due to noise.
el —— P2 F may not be singular.
~eatm —— ®  So instead. next best
thing 1s eigenvector
associated with smallest
eigenvalue of F

http://www.cse.psu.edu/~rcollins/CSE486/lecture19 _6pp.pdf
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Example: Epipoles?
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> [ad] =e1gs(F* * F)

u= d=1.0e8*
-0.0013 0.2586 |-0.9660 -1.0000 0 0
0.0029 -0.9660 |-0.2584 0 -0.0000 0
1.0000 0.0032 |-0.0005 0 0 -0.0000

eigenvector associated with smallest eigenvalue

=Ewr—=u(:3)
uu= ( -0.9660 -0.2586 -0.0005)

>>uu/uu(3) :to get pixel coords = 3
(1861.02 49821 1.0) . e

http://www.cse.psu.edu/~rcollins/CSE486/lecture19 6pp.pdf




Summary: Properties of the Fundamental matrix

F is a rank 2 homogeneous matrix with 7 degrees
of freedom.

Point correspondence:

if x and x’ are corresponding image points, then
x'TFx = 0.

Epipolar lines:

¢ I' = Fx is the epipolar line corresponding to x.

o 1=F"x is the epipolar line corresponding to x'.

Epipoles:
¢ Fe = 0.
o Fle =

Computation from camera matrices P, P':
P=K[I|O0], P =K[R|t], F=K~T[t]xRK™!



