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Reconstruction/Triangulation
Old book Chl11l.1 F&P
New book Ch7.2 F&P

Guido Gerig
CS 6320, S 2015

(modified from original slides by J.
Ponce and by Marc Pollefeys)

Credits: J. Ponce, M. Pollefeys, A. Zisserman & S. Lazebnik
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Triangulate on two images of the
same point to recover depih.
— Feature matching across views

— (Calibrated cameras

Only need to match
features across epipolar
lines



Reconstruction from Rectified Images
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Disparity: d=u’-u. - Depth: z = -B/d.




Problem statement

Given: corresponding measured (i.e. noisy) points X and X', and
cameras (exact) P and = compute the 3D point X

Problem: in the presence of noise, back projected rays do not intersect

N~

¥/ rays are skew in space

C o




Problem statement

Given: corresponding measured (i.e. noisy) points X and X', and
cameras (exact) P and = compute the 3D point X

Problem: in the presence of noise, back projected rays do not intersect

N~

rays are skew in space

imige 1 imige 2

Measured points do not lie on corresponding epipolar lines



1. Vector solution

.

C C/

Compute the mid-point of the shortest line between the
two rays



2. Linear triangulation (algebraic solution)

Use the equations x = PX and x’ = P'X to solve for X

For the first camera: o1 popispa| [P
P=|pupopspul|l =|p°"
| P31 P32 P33 P34 | _PST

where p'" are the rows of P
e eliminate unknown scale in Ax = PX by forming a cross
product x x (PX) =0
2(p”"X) — (p''X) =0
y(p’"X) — (p?TX) =0
2(p”TX) — y(p'TX) = 0

e rearrange as (first two equations only)

3T 1T
¥ TP X=0
P



Similarly for the second camera:

2! 13T _ LI1T
[ rPIBT _ p12T X=0

yp P
Collecting together gives

AX =0

where A is the 4 x 4 matrix

0 a:p?’T—plT i
A= g{p:?;;_ p?l—r"l'
rp — P
i ylpI3T . pIQT ]

from which X can be solved up to scale.

Problem: does not minimize anything meaningful

Advantage: extends to more than two views



3. Minimizing a geometric/statistical error

The idea is to estimate a 3D point X which exactly satisfies the supplied
camera geometry, so it projects as

x=PX %' =PX
and the aim is to estimate X from the image measurements x and x’.

X

min

3 C(x,x') = d(x, 5{)2 + d(x/, 5‘(’)2

where d(*, %) is the Euclidean distance between the points.



e It can be shown that if the measurement noise is
Gaussian mean zero, ~ N(0,¢%) | then minimizing
geometric error is the Maximum Likelihood Estimate of X

 The minimization appears to be over three parameters
(the position X), but the problem can be reduced to a
minimization over one parameter



Different formulation of the problem

The minimization problem may be formulated differently:
e Minimize
d(x,1)* +d(x',1')

eland I' range over all choices of corresponding epipolar lines.
e x is the closest point on the line 1 to x.

e Same for x'.




Minimization method

« Parametrize the pencil of epipolar lines in the first image by {,
such that the epipolar line is |(t)

» Using F compute the corresponding epipolar line in the second
image I ()

« Express the distance function d(x,1)* +d(x,')* explicitly as a
function of t

* Find the value of t that minimizes the distance function

e Solution is a 6™ degree polynomial in t




More slides for self-study.
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Triangulation (finally!)
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X1

Triangulation
- calibration

- correspondences
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e Backprojection

Ax = PX
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- Backprojection Az | [ Py ]
AY P>
Ax = PX A P3
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Triangulation

e Backprojection

Ax = PX
P3Xx — PqX
P3Xy = P»oX

o ]
AY

Pl_




= = Triangulation
= —
~—==g) . Backprojection Az | [ Py ]
Ay | = | P2
Ax = PX A P3
P3Xx = PiX | Pgz — Pq
P3Xy = PoX P3y — Po
= Triangulation
[ Pz — Pq |
P3y — P>
X=0
! ./ /
P},)a;', — P/l
| Py’ =P




——
=. == Triangulation
—
——==a - Backprojection AL Py
/\y — P2 X
)\X — PX ] )Y | ] P3 |
P3Xr = PiX _P333—P1 ¥ — 0
P3ly = PoX | P3y — P
= Triangulation
_P3CI3—P1_ -L Pzx — Pq ]
P3y — P> P3X \ P3y — P>
/! ; | X=0 / /
[ / /
| P3y =Py | PR\ Pay—P3 )

Iterative least-
squares
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Triangulation

e Backprojection

Ax = PX
P3Xx — PqX
P3Xy = PoX
= Triangulation
[ Pz — Pq |
P3y — P>
X=0
! ./ /
P},)a;', — P/l
| P3y’ —Po

Y _Pl_
/\y — P2 X
_)\_ _P3_
 P3z — P
3Tl lx=0
Py — P>
-L Pzx — Pq
P3X P3zy — Po
1 [ Pz =P
| Psf\ P3y — P

_ - _Iterative least-
= Maximum Likelihood Tmng”'%ﬁﬁ@res

arg mxin ; (xi — )\_1PZ-X)2
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Optimal 3D point in epipolar
plane
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e Given an epipolar plane, find best 3D point for
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Optimal 3D point in epipolar
plane
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Given an epipolar plane, find best 3D point for

Select closest points (m;”,m,”) on epipolar lines
Obtain 3D point through exact triangulation

Guarantees minimal reprojection error (given this epipolar
plane)
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Non-iterative optimal solution
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e Reconstruct matches in projective frame
by minimizing the reprojection error

D(m,,PM) +D(m,,P,M) 3DOF

e Non-iterative method
Determine the epipolar plane for
reconstruction (Hartley and Sturm, CVIU~97)

D(m1’ |1((x ))2 + D(m . |2 ((x ))2 (polynomial of degree 6)

ReIg annsetruct optimal point from selected epipolar

Note: only works for two views

%M \lz(ot)} 1DOF

m,
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Backprojection

: I]
il

i e—

e Represent point as intersection of row and column

&£
_01} x dy

Y

—1
x = 1, x 1, with 13;:{ 0 },11,:
xTr

I=P'1
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Backprojection
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e Represent point as intersection of row and column

€T

—1 0
. X 1y
x = 1y X 1y with 1 = 0 1y = | —1
T Yy
I=P'1
I, £ — 0 1P
T - T
I, 1,P
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e Represent point as intersection of row and column
T
—1 0

1

x=1,x1,withl,=| 0 |,1,=| -1 e
x Y

n=r'1

I,

X =0
r
Hy

 Condition for solution?
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Backprojection
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e Represent point as intersection of row and column
T
—1 0

1

x=1,x1,withl,=| 0 |,1,=| -1 e
x Y

n=r'1

I,

X =0
r
Hy

 Condition for solution?

] 1;;?13 i

1) p
1$V,P’
Y

Useful presentation for deriving and understanding multiple view geometry
(notice 3D planes are linear in 2D point coordinates)
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Geometric Reconstruction
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Geometric Reconstruction
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Geometric Reconstruction
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Geometric Reconstruction

R’ R
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Geometric Reconstruction

R’ R
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Geometric Reconstruction

R’ R

X
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two images p and p’ of P all lic in the same plane.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two images p and p’ of P all lic in the same plane.
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FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two images p and p’ of P all lic in the same plane.
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Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two images p and p’ of P all lic in the same plane.
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Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two images p and p’ of P all lic in the same plane.
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Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two images p and p’ of P all lic in the same plane.
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Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O of the two
cameras, and the two images p and p’ of P all lic in the same plane.

P=RP’+t
P'=R*(P-t)=R"(P-t)
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Reconstruction

R'=

rT
Rl

rT
R2

rT
R3
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=R'(P-t) R' =




= = Reconstruction
——— R
=R'(P-t) R =| Ry’
R(P-1) R
Ry (P-t)
X'=f' Rl’T( _t) Equation 1




= = Reconstruction
——— R
=R'(P-t) R =| Ry’
R(P-1) R
Ry (P-t)
X'=f' Rl’T( _t) Equation 1




= = Reconstruction
——— R
=R'(P-t) R =| Ry’
R(P-1) R
Ry (P-t)
X'=f' Rl’T( _t) Equation 1




= = Reconstruction
——— R
=R'(P-t) R =| Ry’
R(P-1) R
Ry (P-t)
X'=f' Rl’T( _t) Equation 1




= = Reconstruction
= "7 7 R
P'=R"(P-t)=R'(P-t) R'=| R
/ B RrT
o RP=Y R
R3 (P_t)
X'=f' R (P_t) Equation 1
R;' (P-t)
p:f; :P:pTZ Equation 2

(XR;— fR!)'t
(xR;— fR]) p

(From equations 1 and 2)




Reconstruction up to a Scale
Factor
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e Assume that intrinsic parameters of both cameras
are known

e Essential Matrix is known up to a scale factor (for
example,

estimated from the 8 point algorithm).
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Reconstruction up to a Scale
Factor
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Reconstruction up to a Scale
Factor
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A1

JR

t JRRT[t,]
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Reconstruction up to a Scale
Factor
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—a=— Reconstruction up to a Scale

= =

= o= | Factor

— T2 +T2) —KT, T, —kPT,T, |
:tx ]RRT [tx]T= k2 [tx ][tx]T = B k2TXTY kz(-I-X2 +TZZ) o k2TYTZ

KT, T, —k7T,T,  KA(T2+TY)
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Reconstruction up to a Scale

Factor
KP(TZ+TZ)  —K°T,T,

~KT, T,  —KT,T,

€ = 2k2(T2 477 +T2)= 2K

—K*T,T,

:tx ]RRT [tx ]T= k2 [tx ][tx]T = o k2TXTY k2 (TX2 +TZZ) - k2TYTZ

k(T2 +T7)
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JR

tRRT[t J=K*[t Jt.] =

Factor

KP(TZ+TZ)  —K°T,T,
KX(TZ+TZ)  —KT,T,

—k*T, T,

—k*T, T, —k*T,T,

€ = 2k2(T2 477 +T2)= 2K

R

Reconstruction up to a Scale

—k*T, T,

k(T2 +T7)
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JR

tRRT[t J=K*[t Jt.] =

Factor

KP(TZ+TZ)  —K°T,T,
KX(TZ+TZ)  —KT,T,

—k*T, T,

—k*T, T, —k*T,T,

€ = 2k2(T2 477 +T2)= 2K

R=sgn(k)[f. R

Reconstruction up to a Scale

—k*T, T,

k(T2 +T7)
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JR

tRRT[t J=K*[t Jt.] =

Factor

KP(TZ+TZ)  —K°T,T,
KX(TZ+TZ)  —KT,T,

—k*T, T,

—k*T, T, —k*T,T,

€ = 2k2(T2 477 +T2)= 2K

R=sgn(k)f.]R = E

Reconstruction up to a Scale

—k*T, T,

k(T2 +T7)
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tRRT[t J=K*[t Jt.] =

Factor

KP(TZ+TZ)  —K°T,T,

Reconstruction up to a Scale

—k*T, T,

KT, T, KATZ+TZ)  —K°T,T,

—k*T, T, —k*T,T,

R=sgn(k)f.]R = E

k(T2 +T7)



—a=— Reconstruction up to a Scale
===
=4 - Factor
— T2 +T2) —KT, T, —kPT,T, |
:tx ]RRT [tx]T: k2 [tx ][tx]T = B k2TXTY kz(-l-)(2 +T22) N k2TYTZ
KT, KT, KA(TE4TR)!

)
()R — sgn(k) (L] R=sgn(k)E.R = E

| N
1-T72 -T,T, -T,T,]
][f]T: _-I’-\X-I,_\Y 1_fY2 _-I’_\Y-I’-\Z
_-I,:x Az _fvfz 1- Azz




—a=— Reconstruction up to a Scale
= =
=" = Factor
A . _élT_ _RlT_
E=|E] R=|R]
E; Ry

Let w. = éi xt, ie {1,2,3}
It can be proved that
R, =W, +W, xWw,
R, =W, + W, xw,
Ry =W, +wW, x W,
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Reconstruction up to a Scale
Factor
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We have two choices of t, (t* and t’) because of sign
ambiguity
and two choices of E, (E* and E").

This gives us four pairs of translation vectors and
rotation matrices.
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Reconstruction up to a Scale
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Given Eand t
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1. Construct the vectors w, and compute R
2. Reconstruct the Z and Z’ for each point

3. If the signs of Zand Z’ of the reconstructed points are
a) both negative for some point, change the sign oft
and go to step 2.
b) different for some point, change the sign of each entry
of Eand go to step 1.
c) both positive for all points, exit.

Z:f(xm—fmft

(xR~ fR) p
7 g R =R (1)
(xR~ fR) p'
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3D Reconstruction
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[Trucco pp. 161]

e Three cases:

— a) Intrinsic and extrinsic parameters
known: Solve reconstruction by
triangulation: ray intersection

— b) only Intrinsic parameters known:
estimate essential matrix E up to scaling

— C) Intrinsic and extrinsic parameters not
known: estimate fundamental matrix F,
reconstruction up to global, projective
transformation
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Run Example
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o for stereo reconstruction:

itpress.mit.edu/e-journals/Videre/001/articles/Zhang/CalibEnv/CalibEnv.html




