

Reconstruction/Triangulation Old book Ch11.1 F&P New book Ch7.2 F&P

Guido Gerig
CS 6320, S 2015
(modified from original slides by J. Ponce and by Marc Pollefeys)

Credits: J. Ponce, M. Pollefeys, A. Zisserman & S. Lazebnik

Reconstruction

Triangulate on two images of the same point to recover depth.

- Feature matching across views
- Calibrated cameras

Only need to match features across epipolar lines

Reconstruction from Rectified Images

Disparity: d=u'-u.

Depth: z = -B/d.

Problem statement

<u>Given:</u> corresponding measured (i.e. noisy) points \mathbf{x} and \mathbf{x}' , and cameras (exact) P and P', compute the 3D point \mathbf{X}

Problem: in the presence of noise, back projected rays do not intersect

rays are skew in space

Problem statement

<u>Given:</u> corresponding measured (i.e. noisy) points \mathbf{x} and \mathbf{x}' , and cameras (exact) P and P', compute the 3D point \mathbf{X}

Problem: in the presence of noise, back projected rays do not intersect

Measured points do not lie on corresponding epipolar lines

1. Vector solution

Compute the mid-point of the shortest line between the two rays

2. Linear triangulation (algebraic solution)

Use the equations x = PX and x' = P'X to solve for X

For the first camera:

$$\mathtt{P} = egin{bmatrix} p_{11} \; p_{12} \; p_{13} \; p_{14} \ p_{21} \; p_{22} \; p_{23} \; p_{24} \ p_{31} \; p_{32} \; p_{33} \; p_{34} \ \end{pmatrix} = egin{bmatrix} \mathbf{p}^{1 op} \ \mathbf{p}^{2 op} \ \mathbf{p}^{3 op} \ \end{pmatrix}$$

where $\mathbf{p}^{i\top}$ are the rows of P

ullet eliminate unknown scale in $\lambda {f x}={\tt P}{f X}$ by forming a cross product ${f x} imes ({\tt P}{f X})={f 0}$

$$x(\mathbf{p}^{3\top}\mathbf{X}) - (\mathbf{p}^{1\top}\mathbf{X}) = 0$$
$$y(\mathbf{p}^{3\top}\mathbf{X}) - (\mathbf{p}^{2\top}\mathbf{X}) = 0$$
$$x(\mathbf{p}^{2\top}\mathbf{X}) - y(\mathbf{p}^{1\top}\mathbf{X}) = 0$$

rearrange as (first two equations only)

$$\begin{bmatrix} x\mathbf{p}^{3\top} - \mathbf{p}^{1\top} \\ y\mathbf{p}^{3\top} - \mathbf{p}^{2\top} \end{bmatrix} \mathbf{X} = \mathbf{0}$$

Similarly for the second camera:

$$\begin{bmatrix} x'\mathbf{p}'^{3\top} - \mathbf{p}'^{1\top} \\ y'\mathbf{p}'^{3\top} - \mathbf{p}'^{2\top} \end{bmatrix} \mathbf{X} = \mathbf{0}$$

Collecting together gives

$$AX = 0$$

where A is the 4×4 matrix

$$\mathbf{A} = \begin{bmatrix} x\mathbf{p}^{3\top} - \mathbf{p}^{1\top} \\ y\mathbf{p}^{3\top} - \mathbf{p}^{2\top} \\ y'\mathbf{p}'^{3\top} - \mathbf{p}'^{1\top} \\ y'\mathbf{p}'^{3\top} - \mathbf{p}'^{2\top} \end{bmatrix}$$

from which X can be solved up to scale.

Problem: does not minimize anything meaningful

Advantage: extends to more than two views

3. Minimizing a geometric/statistical error

The idea is to estimate a 3D point $\widehat{\mathbf{X}}$ which exactly satisfies the supplied camera geometry, so it projects as

$$\hat{\mathbf{x}} = P\hat{\mathbf{x}} \qquad \hat{\mathbf{x}}' = P'\hat{\mathbf{x}}$$

and the aim is to estimate \hat{x} from the image measurements x and x'.

$$\min_{\widehat{\mathbf{X}}} \quad \mathcal{C}(\mathbf{x}, \mathbf{x}') = d(\mathbf{x}, \hat{\mathbf{x}})^2 + d(\mathbf{x}', \hat{\mathbf{x}}')^2$$

where d(*,*) is the Euclidean distance between the points.

• It can be shown that if the measurement noise is Gaussian mean zero, $\sim N(0,\sigma^2)$, then minimizing geometric error is the Maximum Likelihood Estimate of X

• The minimization appears to be over three parameters (the position X), but the problem can be reduced to a minimization over one parameter

Different formulation of the problem

The minimization problem may be formulated differently:

Minimize

$$d(\mathbf{x}, \mathbf{l})^2 + d(\mathbf{x}', \mathbf{l}')^2$$

- l and l' range over all choices of corresponding epipolar lines.
- $\hat{\mathbf{x}}$ is the closest point on the line \mathbf{l} to \mathbf{x} .
- Same for $\hat{\mathbf{x}}'$.

Minimization method

- Parametrize the pencil of epipolar lines in the first image by t, such that the epipolar line is $\mathbf{l}(t)$
- Using F compute the corresponding epipolar line in the second image $\mathbf{l}'(t)$
- Express the distance function $d(\mathbf{x}, \mathbf{l})^2 + d(\mathbf{x}', \mathbf{l}')^2$ explicitly as a function of t
- Find the value of t that minimizes the distance function
- Solution is a 6th degree polynomial in t

More slides for self-study.

Triangulation (finally!)

Backprojection

$$\lambda x = PX$$

Backprojection $\lambda \mathbf{x} = \mathbf{P} \mathbf{X}$

$$\lambda x = PX$$

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} X$$

Backprojection

$$\lambda x = PX$$

$$P_3Xx = P_1X$$

$$P_3Xy = P_2X$$

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} X$$

$$\begin{bmatrix}
 P_3 X x & = & P_1 X \\
 P_3 X y & = & P_2 X
 \end{bmatrix}
 \begin{bmatrix}
 P_3 x - P_1 \\
 P_3 y - P_2
 \end{bmatrix}
 X = 0$$

$$\lambda x = PX$$

$$P_3Xx = P_1X$$

$$P_3Xy = P_2X$$

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} X$$

$$\begin{array}{cccc}
P_3Xx & = & P_1X \\
P_3Xy & = & P_2X
\end{array}$$

$$\begin{bmatrix}
P_3x - P_1 \\
P_3y - P_2
\end{bmatrix}$$

$$X = 0$$

Triangulation

$$\begin{bmatrix} P_3x - P_1 \\ P_3y - P_2 \\ P_3'x' - P_1' \\ P_3'y' - P_2' \end{bmatrix} X = 0$$

$$\lambda \mathbf{x} = \mathbf{P} \mathbf{X}$$

$$P_3Xx = P_1X$$

$$P_3Xy = P_2X$$

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} X$$

$$\begin{array}{cccc}
P_3Xx & = & P_1X \\
P_3Xy & = & P_2X
\end{array}$$

$$\begin{bmatrix}
P_3x - P_1 \\
P_3y - P_2
\end{bmatrix}$$

$$X = 0$$

Triangulation

$$\begin{vmatrix} P_3x - P_1 \\ P_3y - P_2 \\ P_3'x' - P_1' \\ P_2'y' - P_2' \end{vmatrix} X = 0$$

$$\begin{bmatrix} P_{3}x - P_{1} \\ P_{3}y - P_{2} \\ P'_{3}x' - P'_{1} \\ P'_{3}y' - P'_{2} \end{bmatrix} X = 0 \begin{bmatrix} \frac{1}{P_{3}\tilde{X}} \begin{pmatrix} P_{3}x - P_{1} \\ P_{3}y - P_{2} \\ \frac{1}{P'_{3}\tilde{X}} \begin{pmatrix} P'_{3}x - P'_{1} \\ P'_{3}x - P'_{1} \\ P'_{3}y - P'_{2} \end{pmatrix} X = 0$$

Iterative leastsquares

Backprojection

$$\lambda x = PX$$

$$P_3Xx = P_1X$$

$$P_2Xy - P_2X$$

$$\begin{bmatrix} \lambda x \\ \lambda y \\ \lambda \end{bmatrix} = \begin{bmatrix} P_1 \\ P_2 \\ P_3 \end{bmatrix} X$$

$$\begin{bmatrix}
 P_3 X x & = & P_1 X \\
 P_3 X y & = & P_2 X
 \end{bmatrix}
 \begin{bmatrix}
 P_3 x - P_1 \\
 P_3 y - P_2
 \end{bmatrix}
 X = 0$$

Triangulation

$$\begin{vmatrix}
P_3x - P_1 \\
P_3y - P_2 \\
P_3'x' - P_1' \\
P_3'y' - P_2'
\end{vmatrix} x = 0$$

$$\begin{bmatrix} P_{3}x - P_{1} \\ P_{3}y - P_{2} \\ P'_{3}x' - P'_{1} \\ P'_{3}y' - P'_{2} \end{bmatrix} X = 0 \begin{bmatrix} \frac{1}{P_{3}\tilde{X}} \begin{pmatrix} P_{3}x - P_{1} \\ P_{3}y - P_{2} \\ \frac{1}{P'_{3}\tilde{X}} \begin{pmatrix} P'_{3}x - P'_{1} \\ P'_{3}x - P'_{1} \\ P'_{3}y - P'_{2} \end{pmatrix} X = 0$$

Iterative least-

Maximum Likelihood Triangulationares

$$\arg\min_{\mathtt{X}}\sum_{i}\left(\mathtt{x}_{i}-\lambda^{-1}\mathbf{P}_{i}\mathtt{X}\right)^{2}$$

Optimal 3D point in epipolar plane

• Given an epipolar plane, find best 3D point for

Optimal 3D point in epipolar plane

Given an epipolar plane, find best 3D point for

Select closest points (m₁´,m₂´) on epipolar lines Obtain 3D point through exact triangulation Guarantees minimal reprojection error (given this epipolar plane)

Non-iterative optimal solution

 Reconstruct matches in projective frame by minimizing the reprojection error

$$D(\mathbf{m}_{1}, \mathbf{P}_{1}\mathbf{M})^{2} + D(\mathbf{m}_{2}, \mathbf{P}_{2}\mathbf{M})^{2}$$
 3DOF

Non-iterative method
 Determine the epipolar plane for reconstruction (Hartley and Sturm, CVIU '97)

$$D(\mathbf{m}_1, \mathbf{l}_1(\alpha))^2 + D(\mathbf{m}_2, \mathbf{l}_2(\alpha))^2$$
 (polynomial of degree 6)

Reconstruct optimal point from selected epipolar plane

Note: only works for two views

1DOF

Represent point as intersection of row and column

$$\mathbf{x} = \mathbf{1}_x \times \mathbf{1}_y \text{ with } \mathbf{1}_x = \begin{bmatrix} -1 \\ 0 \\ x \end{bmatrix}, \mathbf{1}_y = \begin{bmatrix} 0 \\ -1 \\ y \end{bmatrix} \qquad \begin{array}{c} \mathbf{x} \\ \mathbf{x} \\ \mathbf{1}_y \end{array}$$

$$\Pi = \mathbf{P}^{\mathsf{T}} \mathbf{1}$$

Represent point as intersection of row and column

$$\mathbf{x} = \mathbf{1}_x \times \mathbf{1}_y \text{ with } \mathbf{1}_x = \begin{bmatrix} -1 \\ 0 \\ x \end{bmatrix}, \mathbf{1}_y = \begin{bmatrix} 0 \\ -1 \\ y \end{bmatrix}$$

$$\mathbf{\Pi} = \mathbf{P}^{\mathsf{T}} \mathbf{1}$$

$$\left[egin{array}{c} \Pi_x^ op \ \Pi_y^ op \end{array}
ight] \mathtt{X} = \mathtt{O}$$

$$\begin{bmatrix} \Pi_x^\top \\ \Pi_y^\top \end{bmatrix} X = 0 \qquad \begin{bmatrix} \mathbb{1}_x^\top P \\ \mathbb{1}_y^\top P \end{bmatrix} X = 0$$

Represent point as intersection of row and column

$$\mathbf{x} = \mathbf{1}_x \times \mathbf{1}_y \text{ with } \mathbf{1}_x = \begin{bmatrix} -1 \\ 0 \\ x \end{bmatrix}, \mathbf{1}_y = \begin{bmatrix} 0 \\ -1 \\ y \end{bmatrix}$$

$$\Pi = \mathbf{P}^{\mathsf{T}} \mathbf{1}$$

$$\begin{bmatrix} \Pi_x^\top \\ \Pi_y^\top \end{bmatrix} X = 0 \qquad \begin{bmatrix} \mathbf{1}_x^\top \mathbf{P} \\ \mathbf{1}_y^\top \mathbf{P} \end{bmatrix} X = 0$$

Condition for solution?

Represent point as intersection of row and column

$$\mathbf{x} = \mathbf{1}_x \times \mathbf{1}_y \text{ with } \mathbf{1}_x = \begin{bmatrix} -1 \\ 0 \\ x \end{bmatrix}, \mathbf{1}_y = \begin{bmatrix} 0 \\ -1 \\ y \end{bmatrix} \qquad \begin{array}{c} \mathbf{1}_x \\ \mathbf{x} & \mathbf{1}_y \\ \end{array}$$

$$\mathbf{\Pi} = \mathbf{P}^{\mathsf{T}} \mathbf{1}$$

$$\begin{bmatrix} \Pi_x^\top \\ \Pi_y^\top \end{bmatrix} X = 0 \qquad \begin{bmatrix} \mathbf{1}_x^\top \mathbf{P} \\ \mathbf{1}_y^\top \mathbf{P} \end{bmatrix} X = 0$$

Condition for solution?

$$\det \begin{bmatrix} \mathbf{1}_{x}^{\top} \mathbf{P} \\ \mathbf{1}_{y}^{\top} \mathbf{P} \\ \mathbf{1}_{x'}^{\top} \mathbf{P}' \\ \mathbf{1}_{y'}^{\top} \mathbf{P}' \end{bmatrix} = \mathbf{0}$$

Reconstruction

Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

Reconstruction

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

FIGURE 11.1: Epipolar geometry: the point P, the optical centers O and O' of the two cameras, and the two images p and p' of P all lie in the same plane.

$$P = RP' + t$$

$$P' = R^{-1}(P - t) = R^{T}(P - t)$$

$$p' = f' \frac{P'}{Z'}$$

$$p' = f' \frac{P'}{Z'}$$

$$P' = R^{T} (P - t) = R' (P - t)$$

$$p' = f' \frac{P'}{Z'}$$

$$P' = R^{T} (P - t) = R'(P - t)$$

$$R' = \begin{bmatrix} R_1'^{T} \\ R_2'^{T} \\ R_3'^{T} \end{bmatrix}$$

$$p' = f' \frac{P'}{Z'}$$

$$P' = R^{T} (P - t) = R'(P - t)$$

$$P' = f' \frac{R'(P - t)}{R_3^{T} (P - t)}$$

$$R' = \begin{bmatrix} R_1^{T} \\ R_2^{T} \\ R_3^{T} \end{bmatrix}$$

$$p' = f' \frac{P'}{Z'}$$

$$P' = R^{T} (P - t) = R'(P - t)$$

$$p' = f' \frac{R'(P - t)}{{R'_{3}}^{T} (P - t)}$$

$$x' = f' \frac{{R'_{1}}^{T} (P - t)}{{R'_{3}}^{T} (P - t)}$$

$$R' = \begin{bmatrix} R_1'^T \\ R_2'^T \\ R_3'^T \end{bmatrix}$$

$$p' = f' \frac{P'}{Z'}$$

$$P' = R^{T}(P-t) = R'(P-t)$$

$$P' = f' \frac{R'(P-t)}{R_{3}^{T}(P-t)}$$

$$R' = \begin{bmatrix} R_{1}^{T} \\ R_{2}^{T} \\ R_{3}^{T} \end{bmatrix}$$

$$x' = f' \frac{R_{1}^{T}(P-t)}{R_{3}^{T}(P-t)}$$
Equation 1

$$p' = f' \frac{P'}{Z'}$$

$$P' = R^{T}(P-t) = R'(P-t)$$

$$P' = f' \frac{R'(P-t)}{R_{3}^{T}(P-t)}$$

$$R' = \begin{bmatrix} R_{1}^{T} \\ R_{2}^{T} \\ R_{3}^{T} \end{bmatrix}$$

$$x' = f' \frac{R_{1}^{T}(P-t)}{R_{3}^{T}(P-t)}$$
Equation 1

$$p = f \frac{P}{Z}$$

$$p' = f' \frac{P'}{Z'}$$

$$P' = R^{T}(P-t) = R'(P-t)$$

$$P' = f' \frac{R'(P-t)}{R'_{3}^{T}(P-t)}$$

$$R' = \begin{bmatrix} R'_{1}^{T} \\ R'_{2}^{T} \\ R'_{3}^{T} \end{bmatrix}$$

$$x' = f' \frac{R'_{1}^{T}(P-t)}{R'_{3}^{T}(P-t)}$$
Equation 1

$$p = f \frac{P}{Z} \implies P = \frac{pZ}{f}$$

$$p' = f' \frac{P'}{Z'}$$

$$P' = R^{T} (P - t) = R'(P - t)$$

$$P' = f' \frac{R'(P - t)}{R_3^{T} (P - t)}$$

$$R' = \begin{bmatrix} R_1^{T} \\ R_2^{T} \\ R_3^{T} \end{bmatrix}$$

$$x' = f' \frac{R_1'^T (P - t)}{R_3'^T (P - t)}$$
 Equation 1

$$p = f \frac{P}{Z} \Rightarrow P = \frac{pZ}{f}$$
 Equation 2

$$p' = f' \frac{P'}{Z'}$$

$$P' = R^{T} (P - t) = R'(P - t)$$

$$P' = f' \frac{R'(P - t)}{R_3'^{T} (P - t)}$$

$$R' = \begin{bmatrix} R_1'^{T} \\ R_2'^{T} \\ R_3'^{T} \end{bmatrix}$$

$$x' = f' \frac{R_1'^T (P - t)}{R_3'^T (P - t)}$$
 Equation 1

$$p = f \frac{P}{Z} \Rightarrow P = \frac{pZ}{f}$$
 Equation 2

$$Z = f \frac{\left(x'R_3' - fR_1'\right)^T t}{\left(x'R_3' - fR_1'\right)^T p}$$

(From equations 1 and 2)

- Assume that intrinsic parameters of both cameras are known
- Essential Matrix is known up to a scale factor (for example, estimated from the 8 point algorithm).

 $\mathcal{EE}^T = k^2 [t_{\times}] R R^T [t_{\times}]^T$

$$\mathcal{E}\mathcal{E} = k^{2} [t_{\times}] R R^{T} [t_{\times}]^{T} = k^{2} [t_{\times}] [t_{\times}]^{T}$$

$$\mathcal{E}\mathcal{E} = k^{2} [t_{\times}] RR^{T} [t_{\times}]^{T} = k^{2} [t_{\times}] [t_{\times}]^{T} = \begin{bmatrix} k^{2} (T_{Y}^{2} + T_{Z}^{2}) & -k^{2} T_{X} T_{Y} & -k^{2} T_{X} T_{Z} \\ -k^{2} T_{X} T_{Y} & k^{2} (T_{X}^{2} + T_{Z}^{2}) & -k^{2} T_{Y} T_{Z} \\ -k^{2} T_{X} T_{Z} & -k^{2} T_{Y} T_{Z} & k^{2} (T_{X}^{2} + T_{Y}^{2}) \end{bmatrix}$$

$$\mathcal{E}\mathcal{E} = k^{2} [t_{\times}] RR^{T} [t_{\times}]^{T} = k^{2} [t_{\times}] [t_{\times}]^{T} = \begin{bmatrix} k^{2} (T_{Y}^{2} + T_{Z}^{2}) & -k^{2} T_{X} T_{Y} & -k^{2} T_{X} T_{Z} \\ -k^{2} T_{X} T_{Y} & k^{2} (T_{X}^{2} + T_{Z}^{2}) & -k^{2} T_{Y} T_{Z} \\ -k^{2} T_{X} T_{Z} & -k^{2} T_{Y} T_{Z} & k^{2} (T_{X}^{2} + T_{Y}^{2}) \end{bmatrix}$$

Trace[
$$\mathcal{EE}^{T}$$
] = $2k^{2}(T_{X}^{2} + T_{Y}^{2} + T_{Z}^{2}) = 2k^{2}||t||^{2}$

$$\mathcal{E}\mathcal{E} = k^{2} [t_{\times}] R R^{T} [t_{\times}]^{T} = k^{2} [t_{\times}] [t_{\times}]^{T} = \begin{bmatrix} k^{2} (T_{Y}^{2} + T_{Z}^{2}) & -k^{2} T_{X} T_{Y} & -k^{2} T_{X} T_{Z} \\ -k^{2} T_{X} T_{Y} & k^{2} (T_{X}^{2} + T_{Z}^{2}) & -k^{2} T_{Y} T_{Z} \\ -k^{2} T_{X} T_{Z} & -k^{2} T_{Y} T_{Z} & k^{2} (T_{X}^{2} + T_{Y}^{2}) \end{bmatrix}$$

Trace[
$$\mathcal{EE}^{T}$$
] = $2k^{2}(T_{X}^{2} + T_{Y}^{2} + T_{Z}^{2}) = 2k^{2}||t||^{2}$

$$\frac{\mathcal{E}}{\|k\|\|t\|} = \operatorname{sgn}(k) \frac{[t_{\times}]}{\|t\|} R = \operatorname{sgn}(k) \left[\left(\frac{t}{\|t\|} \right)_{\times} \right] R$$

$$\mathcal{E}\mathcal{E} = k^{2} [t_{\times}] RR^{T} [t_{\times}]^{T} = k^{2} [t_{\times}] [t_{\times}]^{T} = \begin{bmatrix} k^{2} (T_{Y}^{2} + T_{Z}^{2}) & -k^{2} T_{X} T_{Y} & -k^{2} T_{X} T_{Z} \\ -k^{2} T_{X} T_{Y} & k^{2} (T_{X}^{2} + T_{Z}^{2}) & -k^{2} T_{Y} T_{Z} \\ -k^{2} T_{X} T_{Z} & -k^{2} T_{Y} T_{Z} & k^{2} (T_{X}^{2} + T_{Y}^{2}) \end{bmatrix}$$

Trace[
$$\mathcal{EE}^{T}$$
] = $2k^{2}(T_{X}^{2} + T_{Y}^{2} + T_{Z}^{2}) = 2k^{2}||t||^{2}$

$$\frac{\mathcal{E}}{\|k\|\|t\|} = \operatorname{sgn}(k) \frac{[t_{\times}]}{\|t\|} R = \operatorname{sgn}(k) \left[\left(\frac{t}{\|t\|} \right)_{\times} \right] R = \operatorname{sgn}(k) [\hat{t}_{\times}] R$$

$$\mathcal{E}\mathcal{E} = k^{2} [t_{\times}] RR^{T} [t_{\times}]^{T} = k^{2} [t_{\times}] [t_{\times}]^{T} = \begin{bmatrix} k^{2} (T_{Y}^{2} + T_{Z}^{2}) & -k^{2} T_{X} T_{Y} & -k^{2} T_{X} T_{Z} \\ -k^{2} T_{X} T_{Y} & k^{2} (T_{X}^{2} + T_{Z}^{2}) & -k^{2} T_{Y} T_{Z} \\ -k^{2} T_{X} T_{Z} & -k^{2} T_{Y} T_{Z} & k^{2} (T_{X}^{2} + T_{Y}^{2}) \end{bmatrix}$$

Trace[
$$\mathcal{EE}^{T}$$
] = $2k^{2}(T_{X}^{2} + T_{Y}^{2} + T_{Z}^{2}) = 2k^{2}||t||^{2}$

$$\frac{\mathcal{E}}{\|k\|\|t\|} = \operatorname{sgn}(k) \frac{[t_{\times}]}{\|t\|} R = \operatorname{sgn}(k) \left[\left(\frac{t}{\|t\|} \right)_{\times} \right] R = \operatorname{sgn}(k) [\hat{t}_{\times}] R = \hat{E}$$

$$\mathcal{EE} = k^{2} [t_{\times}] RR^{T} [t_{\times}]^{T} = k^{2} [t_{\times}] [t_{\times}]^{T} = \begin{bmatrix} k^{2} (T_{Y}^{2} + T_{Z}^{2}) & -k^{2} T_{X} T_{Y} & -k^{2} T_{X} T_{Z} \\ -k^{2} T_{X} T_{Y} & k^{2} (T_{X}^{2} + T_{Z}^{2}) & -k^{2} T_{Y} T_{Z} \\ -k^{2} T_{X} T_{Z} & -k^{2} T_{Y} T_{Z} & k^{2} (T_{X}^{2} + T_{Y}^{2}) \end{bmatrix}$$

Trace[
$$\mathcal{EE}^{T}$$
] = $2k^{2}(T_{X}^{2} + T_{Y}^{2} + T_{Z}^{2}) = 2k^{2}||t||^{2}$

$$\frac{\mathcal{E}}{\|k\|\|t\|} = \operatorname{sgn}(k) \frac{[t_{\times}]}{\|t\|} R = \operatorname{sgn}(k) \left[\left(\frac{t}{\|t\|} \right)_{\times} \right] R = \operatorname{sgn}(k) [\hat{t}_{\times}] R = \hat{E}$$

$$\hat{E}\hat{E}^T = \left[\hat{t}_{\times}\right] \left[\hat{t}_{\times}\right]^T$$

 $t_{\times} R$

$$\mathcal{E}\mathcal{E} = k^{2} [t_{\times}] RR^{T} [t_{\times}]^{T} = k^{2} [t_{\times}] [t_{\times}]^{T} = \begin{bmatrix} k^{2} (T_{Y}^{2} + T_{Z}^{2}) & -k^{2} T_{X} T_{Y} & -k^{2} T_{X} T_{Z} \\ -k^{2} T_{X} T_{Y} & k^{2} (T_{X}^{2} + T_{Z}^{2}) & -k^{2} T_{Y} T_{Z} \\ -k^{2} T_{X} T_{Z} & -k^{2} T_{Y} T_{Z} & k^{2} (T_{X}^{2} + T_{Y}^{2}) \end{bmatrix}$$

Trace[
$$\mathcal{EE}^{T}$$
] = $2k^{2}(T_{X}^{2} + T_{Y}^{2} + T_{Z}^{2}) = 2k^{2}||t||^{2}$

$$\frac{\mathcal{E}}{\|k\|\|t\|} = \operatorname{sgn}(k) \frac{[t_{\times}]}{\|t\|} R = \operatorname{sgn}(k) \left[\left(\frac{t}{\|t\|} \right)_{\times} \right] R = \operatorname{sgn}(k) [\hat{t}_{\times}] R = \hat{E}$$

$$\hat{E}\hat{E}^{T} = \begin{bmatrix} \hat{t}_{\times} \end{bmatrix} \hat{t}_{\times} \end{bmatrix}^{T} = \begin{bmatrix} 1 - \hat{T}_{X}^{2} & -\hat{T}_{X}\hat{T}_{Y} & -\hat{T}_{X}\hat{T}_{Z} \\ -\hat{T}_{X}\hat{T}_{Y} & 1 - \hat{T}_{Y}^{2} & -\hat{T}_{Y}\hat{T}_{Z} \\ -\hat{T}_{X}\hat{T}_{Z} & -\hat{T}_{Y}\hat{T}_{Z} & 1 - \hat{T}_{Z}^{2} \end{bmatrix}$$

$$\hat{E} = egin{bmatrix} \hat{E}_1^T \ \hat{E}_2^T \ \hat{E}_3^T \end{bmatrix} \qquad \qquad R = egin{bmatrix} R_1^T \ R_2^T \ R_3^T \end{bmatrix}$$

$$R = \begin{bmatrix} R_1^T \\ R_2^T \\ R_3^T \end{bmatrix}$$

Let
$$w_i = \hat{E}_i \times \hat{t}, i \in \{1, 2, 3\}$$

It can be proved that

$$R_1 = w_1 + w_2 \times w_3$$

$$R_2 = w_2 + w_3 \times w_1$$

$$R_3 = w_3 + w_1 \times w_2$$

We have two choices of \mathbf{t} , (\mathbf{t}^+ and \mathbf{t}^-) because of sign ambiguity and two choices of \mathbf{E} , (\mathbf{E}^+ and \mathbf{E}^-).

This gives us four pairs of translation vectors and rotation matrices.

Given \hat{E} and \hat{t}

- 1. Construct the vectors **w**, and compute R
- 2. Reconstruct the Z and Z' for each point
- 3. If the signs of Z and Z' of the reconstructed points are
 - a) both negative for some point, change the sign of \hat{t} and go to step 2.
 - b) different for some point, change the sign of each entry of \hat{E} and go to step 1.
 - c) both positive for all points, exit.

$$Z = f \frac{(x'R'_3 - f'R'_1)^T t}{(x'R'_3 - f'R'_1)^T p}$$

$$Z' - f' \frac{(xR_3 - fR_1)^T (t)^T p}{(xR_3 - fR_1)^T (t)^T p}$$

$$Z' = -f' \frac{\left(xR_3 - fR_1\right)^T \left(t\right)}{\left(xR_3 - fR_1\right)^T p'}$$

[Trucco pp. 161]

- Three cases:
 - a) intrinsic and extrinsic parameters known: Solve reconstruction by triangulation: ray intersection
 - b) only intrinsic parameters known: estimate essential matrix E up to scaling
 - c) intrinsic and extrinsic parameters not known: estimate fundamental matrix F, reconstruction up to global, projective transformation

Run Example

Demo for stereo reconstruction:

http://mitpress.mit.edu/e-journals/Videre/001/articles/Zhang/CalibEnv/CalibEnv.html