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The Kalman Filter

“The Kalman filter is a set of mathematical equations that
provides an efficient computational (recursive) means to
estimate the state of a process, in a way that minimizes the
mean of the squared error. The filter is very powerful in several
aspects: it supports estimations of past, present, and even future
states, and it can do so even when the precise nature of the
modeled system is unknown.” (G. Welch and G. Bishop, 2004)

Named after Rudolf Emil Kalman (1930, Budapest/Hungary).

Kalman defined and published in 1960 a recursive solution to
the discrete signal, linear filtering problem. Related basic ideas
were also studied at that time by the US radar theoretician Peter
Swerling (1929 – 2000). The Danish astronomer Thorvald
Nicolai Thiele (1838 – 1910) is also cited for historic origins of
involved ideas. See en.wikipedia.org/wiki/Kalman_filter.
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The Kalman filter is a very powerful tool when it comes to
controlling noisy systems.

Apollo 8 (December 1968), the first human spaceflight from the
Earth to an orbit around the moon, would certainly not have
been possible without the Kalman filter (see www.ion.org/
museum/item_view.cfm?cid=6&scid=5&iid=293).

The basic idea of a Kalman filter:
Noisy data in⇒ Hopefully less noisy data out

The applications of a Kalman filter are numerous:

• Tracking objects (e.g., balls, faces, heads, hands)

• Fitting Bezier patches to point data

• Economics

• Navigation

• Many computer vision applications:

– Stabilizing depth measurements

– Feature tracking

– Cluster tracking

– Fusing data from radar, laser scanner and
stereo-cameras for depth and velocity measurement

– Many more
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Structure of Presentation

We start with

(A) discussing briefly signals and noise, and

(B) recalling basics about random variables.

Then we start the actual subject with

(C) specifying linear dynamic systems, defined in continuous
space.

This is followed by

(D) the goal of a Kalman filter and the discrete filter model, and

(E) a standard Kalman filter

Note that there are many variants of such filters. - Finally (in
this MI37) we outline

(F) a general scheme of applying a Kalman filter.

Two applications are then described in detail in subjects MI63
and MI64.
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(A) Signals

A one-dimensional (1D) signal x(t) has (typically) a
time-varying amplitude. Axes are amplitude (vertical) and time
(horizontal):

In its simplest form it is scalar-valued [e.g., a real-valued
waveform such as x(t) = sin(2πt)].

Quantization: A discrete signal is sampled at discrete positions
in the signal’s domain, and values are also (normally)
discretized by allowing only values within a finite range. (For
example, a digital gray-level picture is a discrete signal where
spatial samples are taken at uniformly distributed grid point
positions, and values within a finite set {0, 1, . . . , Gmax}.)

A single picture I(i, j) is a two-dimensional (2D) discrete signal
with scalar (i.e., gray levels) or vector [e.g. (R,G,B)] values; time
t is replaced here by spatial coordinates i and j. A discrete
time-sequence of digital images is a three-dimensional (3D)
signal x(t)(i, j) = I(i, j, t) that can be scalar- or vector-valued.
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Noise

In a very general sense, “noise” is an unwanted contribution to
a measured signal, and there are studies on various kinds of
noise related to a defined context (acoustic noise, electronic
noise, environmental noise, and so forth).

We are especially interested in image noise or video noise. Noise is
here typically a high-frequency random perturbation of
measured pixel values, caused by electronic noise of
participating sensors (such as camera or scanner), or by
transmission or digitization processes. For example, the Bayer
pattern may introduce a noisy color mapping.

Example: White noise is defined by a constant (flat) spectrum
within a defined frequency band, that means, it is something
what is normally not assumed to occur in images.

Note: In image processing, “noise” is often also simply
considered to be a measure for the variance of pixel values. For
example, the signal-to-noise ratio (SNR) of a scalar image is
commonly defined to be the ratio of mean to standard deviation
of the image. Actually, this should be better called the contrast
ratio (and we do so), to avoid confusion with the general
perception that “noise” is “unwanted”.
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mean: 114.32
standard deviation: 79.20
contrast ratio: 1.443

mean: 100.43 (darker, more contrast)
standard deviation: 92.26
contrast ratio: 1.089 (more contrast⇒ smaller ratio)
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mean: 161.78 (brighter)
standard deviation: 60.41
contrast ratio: 2.678 (less contrast⇒ higher ratio)

mean: 111.34
(added noise) standard deviation: 82.20
contrast ratio: 1.354 (zero mean noise⇒ about the same ratio)
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The Need of Modeling Noise

The diagram below shows measurements (in the scale 0 to 400)
for four different algorithms (the input size n varied between 32
and 1024). Each algorithm produced exactly one scattered
value, for each n. The sliding mean of these values (taken by
using also the last 32 and the next 32 values) produces “arcs”,
which illustrate “expected values” for the four processes.

Assume we replace input size n by time t; now, only values at
earlier time slots are available at t. We cannot estimate anymore
the expected value accurately, having no knowledge about the
future at hand. [The estimation error for the bottom-most curve
would be smaller than for the top-most curve (i.e., a signal with
changing amplitudes).]

For accurate estimation of values of a time-dependent process,
we have to model the process itself, including future noise. An
optimum (!) solution to this problem can be achieved by
applying an appropriate Kalman filter.

Page 8 September 2006



.

. Subject MI37: Kalman Filter - Intro

(B) Random Variables

A random variable is the numerical outcome of a random process,
such as measuring gray values by a camera within some field of
view.

Mathematically, a random variable X is a function

X : Ω→ R

where Ω is the space of all possible outcomes of the
corresponding random process.

Normally, it is described by its probability distribution function

Pr : ℘(Ω)→ [0, 1]

with Pr(Ω) = 1, and A ⊆ B ⊆ Ω implies Pr(A) ≤ Pr(B). Note
that ℘(Ω) denotes the power set (i.e., set of all subsets of Ω).

Two events A, B are independent iff Pr(A ∩B) = Pr(A)Pr(B).

It is also convenient to describe a random variable X either by
its cumulative (probability) distribution function

Pr(X ≤ a)

for a ∈ R.

“X ≤ a” is short for the event {ω : ω ∈ Ω ∧X(ω) ≤ a} ⊆ Ω.

The probability density function fX : R→ R satisfies

Pr(a ≤ X ≤ b) =
∫ b

a

fX(x) dx
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Discrete Random Variables

Toss a coin three times at random, and X is the total number of
heads

What is Ω in this case? Specify the probability distribution,
density, and cumulative distribution function.

Throw two dice together; let X be the total number of the
shown points

Stereo analysis: Calculated disparities at one pixel position in
digital stereo image pairs

Disparities at all pixel positions define a matrix (or vector) of
discrete random variables.

Continuous Random Variables

Measurements X (e.g., of speed, curvature, height, or yaw rate)
are often modeled as being continuous random variables

Optic flow calculation: Estimated motion parameters at one
pixel position in digital image sequences

Optic flow values at all pixel positions define a matrix (or
vector) of continuous random variables.
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Two Continuous Distributions

Gaussian Distribution (also called normal distribution).

A Gaussian random variable X is defined by a probability
density

fX(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 =
1

σ
√

2π
e−

1
2 D2

M (x)

for reals µ and σ > 0 and Mahalanobis distance DM (for a
general definition of this distance function - see below).

(figure reproduced from Wikipedia’s common domain)

Continuous Uniform Distribution.

This is defined by an interval [a, b] and the probability density

fX(x) =
sgn(x− a)− sgn(x− b)

2(b− a)

for sgn(x) = −1 for x < 0, = 0 for x = 0, and = 1 for x > 0.
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Parameters of Distributions

Expected Value µ (also called mean or expectation value).

For a random variable X , this is defined by

E[X] =
∫ ∞
−∞

xfX(x) dx

The mean of a random variable equals µ if Gaussian, and
(a+ b)/2 if continuous uniform.

Variance σ2.

This parameter defines how possible values are spread around
the mean µ. It is defined by the following:

var(X) = E[(X − µ)2]

The variance of a random variable equals σ2 if Gaussian, and
(b− a)2/12 if continuous uniform. We have that

E[(X − µ)2] = E[X2]− µ2

Standard Deviation σ.

Square root of the variance.
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Two Discrete Distributions

Image histograms.

An image histogram H(u) = card{(i, j) : I(i, j) = u} is a
discrete version of a probability density function, and the
cumulative image histogram

C(u) =
u∑

v=0

H(v)

is a discrete version of a cumulative probability distribution
function.

Discrete Uniform Distribution.

This is used for modeling that all values of a finite set S are
equally probable. For card(S) = n > 0, we have the density
function fX(x) = 1

n , for all x ∈ S. Let S = {a, a+ 1, . . . , b}with
n = b− a+ 1. It follows that µ = (a+ b)/2 and σ2 = (n2 − 1)/12.
The cumulative distribution function is the step function

Pr(X ≤ a) =
1
n

n∑
i=1

H(a− ki)

for k1, k2, . . . , kn being the possible values of X , and H is here
the Heaviside step function (see next page).
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Two Discontinuous Functions

Heaviside Step Function (also called unit step function). This
discontinuous function is defined as follows:

H(x) =


0, x < 0
1
2 , x = 0

1, x > 0

The value H(0) is often of no importance when H is used for
modeling a probability distribution. The Heaviside function is
used as an antiderivative of the Dirac delta function δ; that
means H ′ = δ.

Dirac Delta Function (also called unit impulse function). Named
after the British physicist Paul Dirac (1902 - 1984), the function
δ(x) is (informally) equals +∞ at x = 0, and equals 0 otherwise,
and also constrained by the following:∫ ∞

−∞
δ(x) dx = 1

Note that this is not yet a formal definition of this function (that
is also not needed for the purpose of this lecture).

Example: White noise

Mathematically, white noise of a random time process Xt is
defined by zero mean µt = 0 and an autocorrelation matrix (see
below) with elements at1t2 = E[Xt1Xt2 ] = σ2 · δ(t1 − t2), where
δ is the Dirac delta function (see below) and σ2 the variance.
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Random Vectors

The n > 1 components Xi of a random vector X = (X1, . . . , Xn)T

are random variables, where each Xi is described by its marginal
probability distribution function Pri : ℘(Ω)→ [0, 1]. Functions
Pr1, . . . , P rn define the joint distribution for the given random
vector. For example, a static camera capturing a sequence of
N ×N images, defines a random vector of N2 components (i.e.,
pixel values), where sensor noise contributes to the joint
distribution.

Covariance Matrix. Let X and Y be two random vectors, both
with n > 1 components (e.g., two N2 images captured by two
static binocular stereo cameras). The n× n covariance matrix

cov(X,Y) = E[(X− E[X])(Y − E[Y])T ]

generalizes the concept of variance of a random variable.

Variance Matrix. In particular, if X = Y, then we have the n× n
variance matrix

var(X) = cov(X,X) = E[(X− E[X])(X− E[X])T ]

For example, an image sequence captured by one N ×N
camera allows to analyze the N2 ×N2 variance matrix of this
random process. – (Note: the variance matrix is also often called
“covariance matrix”, meaning the covariance between
components of vector X rather than the covariance between two
random vectors X and Y.)
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Mahalanobis distance

For a random vector X = (X1, . . . , Xn)T with variance matrix
var(X) and mean µ = (µ1, . . . , µn)T , the Mahalanobis distance is
defined as

DM (X) =
√

(X− µ)T var−1(X)(X− µ)

P. C. Mahalanobis (1893 – 1972) introduced (at ISI, Kolkata) this
distance in 1936 into statistics.

On en.wikipedia.org/wiki/Mahalanobis_distance, there
is a good intuitive explanation for this measure. We quote:

“Consider the problem of estimating the probability that a test
point in N-dimensional Euclidean space belongs to a set, where
we are given sample points that definitely belong to that set.
Our first step would be to find the average or center of mass of
the sample points. Intuitively, the closer the point in question is
to this center of mass, the more likely it is to belong to the set.
However, we also need to know how large the set is. The
simplistic approach is to estimate the standard deviation of the
distances of the sample points from the center of mass. If the
distance between the test point and the center of mass is less
than one standard deviation, then we conclude that it is highly
probable that the test point belongs to the set. The further away
it is, the more likely that the test point should not be classified
as belonging to the set.

This intuitive approach can be made quantitative by ... ”
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In detail, the variance matrix var(X) of a random vector X is as

follows (where µi is the expected value of component Xi):

266666664

E[(X1 − µ1)(X1 − µ1)] E[(X1 − µ1)(X2 − µ2)] · · · E[(X1 − µ1)(Xn − µn)]

E[(X2 − µ2)(X1 − µ1)] E[(X2 − µ2)(X2 − µ2)] · · · E[(X2 − µ2)(Xn − µn)]

.

.

.

.

.

.
. . .

.

.

.

E[(Xn − µn)(X1 − µ1)] E[(Xn − µn)(X2 − µ2)] · · · E[(Xn − µn)(Xn − µn)]

377777775

The main diagonal of var(X) contains all the variances σ2
i of

components Xi, for i = 1, 2, . . . , n. All other elements are
covariances between two different components Xi and Xj . In
general, we have that

var(X) = E[XXT ]− µµT

where µ = E[X] = (µ1, µ2, . . . , µn)T .

Autocorrelation Matrix. AX = E[XXT ] = [aij ] is the
(real-valued) autocorrelation matrix of the random vector X. Due
to the commutativity aij = E[XiXj ] = E[XjXi] = aji it follows
that this matrix is symmetric (or Hermitian), that means

AX = AT
X

It can also be shown that this matrix is positive definite, that
means, for any vector w ∈ Rn, we have that

wT AXw > 0

In particular, that means that det(AX) > 0 (i.e., matrix AX is
non-singular), and aii > 0 and aii + ajj > 2aij , for i 6= j and
i, j = 1, 2, . . . , n.
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(C) Linear Dynamic Systems

We assume a continuous linear dynamic system, defined by the
equation

ẋ = A · x

The n-dimensional vector x ∈ Rn specifies the state of the
process, and A is the (constant) n× n system matrix. The notion
ẋ is (as commonly used in many fields) short for the derivative
of x with respect to time t. Sign and relation of the roots of the
characteristic polynomial det(A− λI) = 0 (i.e., the eigenvalues of
A) determine the stability of the dynamic system. Observability
and controllability are further properties of dynamic systems.

Example 1: A video camera captures an object moving along a
straight line. Its centroid (location) is described by coordinate x
(on this line), and its move by speed v and a constant
acceleration a. We do not consider start or end of this motion.
The process state is characterized by vector x = (x, v, a)T , and
we have that ẋ = (v, a, 0)T because of

ẋ = v, v̇ = a, ȧ = 0

It follows that

ẋ =


v

a

0

 =


0 1 0

0 0 1

0 0 0

 ·


x

v

a


This defines the 3× 3 system matrix A. It follows that

det(A− λI) = −λ3, i.e. λ1,2,3 = 0 (”very stable”)
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(D) Goal of the Time-Discrete Filter

Given is a sequence of noisy observations y0,y1, . . . ,yt−1 for a
linear dynamic system. The goal is to estimate the (internal)
state xt = (x1,t, x2,t, . . . , xn,t) of the system such that the
estimation error is minimized (i.e., this is a recursive estimator).

Standard Discrete Filtering Model

We assume

• a state transition matrix Ft which is applied to the (known)
previous state xt−1,

• a control matrix Bt which is applied to a control vector ut, and

• a process noise vector wt whose joint distribution is a
multivariate Gaussian distribution with variance matrix Qt

and µi,t = E[wi,t] = 0, for i = 1, 2, . . . , n.

We also assume an

• observation vector yt of state xt,

• an observation matrix Ht, and

• an observation noise vector vt, whose joint distribution is also
a multivariate Gaussian distribution with variance matrix
Rt and µi,t = E[vi,t] = 0, for i = 1, 2, . . . , n.
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Kalman Filter Equations

Vectors x0,w1, . . . ,wt,v1, . . . ,vt are all assumed to be mutually
independent.

The defining equations of a Kalman filter are as follows:

xt = Ftxt−1 + Btut + wt with Ft = e∆tA = I +
∞∑

i=1

∆tiAi

i!

yt = Htxt + vt

Note that there is often an i0 > 0 such that Ai equals a matrix
having zero in all of its components, for all i ≥ i0, thus defining
a finite sum only for Ft.

This model is used for deriving the standard Kalman filter - see
below. This model represents the linear system

ẋ = A · x

with respect to time.

There exist modifications of this model, and related
modifications of the Kalman filter (not discussed in these lecture
notes).

Note that

ex = 1 +
∞∑

i=1

xi

i!
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Continuation of Example 1: We continue with considering
linear motion with constant acceleration. We have a system
vector xt = [xt, vt, at]T (note: at = a) and a state transition
matrix Ft defined by the following equation:

xt+1 =


1 ∆t 1

2∆t2

0 1 ∆t

0 0 1

 · xt =


xt + ∆t · vt + 1

2∆t2a

vt + ∆t · a
a


Note that “time t” is short for time t0 + t ·∆t, that means, ∆t is
the actual time difference between time slots t and t+ 1.

For observation yt = (xt, 0, 0)T (note: we only observe the
recent location), we obtain the observation matrix Ht defined by
the following equation:

yt =


1 0 0

0 0 0

0 0 0

 · xt

Noise vectors wt and vt were not part of Example 1, and would
be zero vectors under the given ideal assumptions. Control
vector and control matrix are also not used in this example, and
are zero vector and zero matrix, respectively. (In general, control
defines some type of influence at time t which is not inherent to
the process itself.)

The example needs to be modified by introducing the existence
of noise (in process or measurement) for making a proper use of
the Kalman filter.
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(E) Standard Predict-Update Equations

With x̂t|t we denote the estimate of state xt at time t.

Let Pt|t be the variance matrix of the error xt − x̂t|t.

The goal is to minimize Pt|t (in some defined way).

Predict Phase of the Filter. In this first phase of a standard
Kalman filter, we calculate the predicted state and the predicted
variance matrix as follows (using state transition matrix Ft,
control matrix Bt, and process noise variance matrix Qt, as
given in the model):

x̂t|t−1 = Ftx̂t−1|t−1 + Btut

Pt|t−1 = FtPt−1|t−1FT
t + Qt

Update Phase of the Filter. In the second phase of a standard
Kalman filter, we calculate the measurement residual vector z̃t

and the residual variance matrix St as follows (using
observation matrix Ht and observation noise variance Rt, as
given in the model):

z̃t = yt −Htx̂t|t−1

St = HtPt|t−1HT
t + Rt

The updated state estimation vector (i.e., the solution for time t)
is calculated (in the innovation step) by a filter

x̂t|t = x̂t|t−1 + Ktz̃t (1)
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Optimal Kalman Gain

The standard Kalman Filter is defined by the use of the following
matrix Kt known as the optimal Kalman gain:

Kt = Pt|t−1HT
t S−1

t

Optimality.

The use of the optimal Kalman gain in Equation (1) minimizes
the mean square error E[(xt − x̂t|t)2], which is equivalent to
minimizing the trace (= sum of elements on the main diagonal)
of Pt|t.

For a proof of the optimality of the Kalman gain, see, for
example, entry Kalman Filter in Wikipedia (Engl.). This
mathematical theorem is due to R. E. Kalman.

The updated estimate variance matrix

Pt|t = (I−KtHt)Pt|t−1

is required for the predict phase at time t+ 1. This variance
matrix needs to be initialized at the begin of the process.
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Example 2. We modify Example 1. The object (e.g., a car) is still
assumed to move (in front of our camera) along a straight line,
but now with random acceleration at (we assume Gaussian
distribution with zero mean and variance σ2

a) between time
t− 1 and time t.

The measurements of the positions of the object are also
assumed to be noisy (Gaussian noise with zero mean and
variance σ2

y).

The state vector of this process is given by xt = (xt, ẋt)T , where
ẋt denotes the speed vt.

Again, we do not assume any process control (i.e., ut is the zero
vector). We have that

xt =

 1 ∆t

0 1

  xt−1

vt−1

 + at

 ∆t2

2

∆t

 = Ftxt−1 + wt

with the variance matrix Qt = var(wt)
[
let Gt = (∆t2

2 ,∆t)T
]
:

Qt = E[wtwT
t ] = GtE[a2

t ]GT
t = σ2

aGtGT
t = σ2

a

 ∆t4

4
∆t3

2

∆t3

2 ∆t2


That means, Ft, Qt and Gt are independent of t, and we just
call them F, Q and G for this reason. (In general, matrix Qt is
specified in form of a diagonal matrix.)
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We only measure the position of the object at time t, that means:

yt =

 1 0

0 0

xt +

 vt

0

 = Hxt + vt

(note: vt is observation noise) with variance matrix

R = E[vtvT
t ] =

 σ2
y 0

0 0


The initial position equals x̂0|0 = (0, 0)T ; if this position is
accurately known, then we have the zero variance matrix

P0|0 =

 0 0

0 0


Otherwise we have that

P0|0 =

 c 0

0 c


with a suitably large real c > 0.
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Now we are ready to deal with t = 1. At first, we predict x̂1|0

and calculate its variance matrix P1|0, following the predict
equations

x̂t|t−1 = Ftx̂t−1|t−1 + Btut = Fx̂t−1|t−1

Pt|t−1 = FtPt−1|t−1FT
t + Qt = FPt−1|t−1FT + Q

Then we calculate the auxiliary data z̃1 and S1, following the
update equations

z̃t = yt −Htx̂t|t−1 = yt −Hx̂t|t−1

St = HtPt|t−1HT
t + Rt = HPt|t−1HT + R

This allows us to calculate the optimal Kalman gain K1 and to
update x̂1|1, following the equations

Kt = Pt|t−1HT
t S−1

t = Pt|t−1HT S−1
t

x̂t|t = x̂t|t−1 + Ktz̃t

Finally, we calculate P1|1 to prepare for t = 2, following the
equation

Pt|t = (I−KtHt)Pt|t−1 = (I−KtH)Pt|t−1

Note that those calculations are basic matrix or vector algebra
operations, but formally already rather complex, excluding (for
common standards) manual calculations. On the other hand,
implementation is quite straightforward.
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Tuning the Kalman Filter. The specification of the variance
matrices Qt and Rt, or of the constant c ≥ 0 in P0|0, influences
the number of time slots (say, the “convergence”) of the Kalman
filter such that the predicted states converge to the true states.
Basically, assuming a higher uncertainty (i.e., larger c ≥ 0, or
larger values in Qt and Rt), increases values in Pt|t−1 or St;
due to the use of the inverse S−1

t in the definition of the optimal
Kalman gain, this decreases values in Kt and the contribution
of the measurement residual vector in the (update) Equation (1).

For example, in the extreme case that we are totally sure about
the correctness of the initial state z0|0 (i.e., c = 0), and that we do
not have to assume any noise in the system and in the
measurement processes (as in Example 1), then matrices Pt|t−1

and St degenerate to zero matrices; the inverse S−1
t does not

exist (note: consider this case in your program!), and Kt

remains undefined. The predicted state is equal to the updated
state; this is the fastest possible convergence of the filter.

Alternative Model for Predict Phase. Having the continuous
model matrix A for the given linear dynamic process ẋ = A · x,
it is more straightforward to use the equations

˙̂xt|t−1 = Ax̂t−1|t−1 + Btut

Pt|t−1 = APt−1|t−1AT + Qt

rather than those using discrete matrices Ft. (Of course, this
also defines modified matrices Bt, now defined by the impact of
control on the derivatives of state vectors. ) This modification in
the predict phase does not have any formal consequence on the
update phase.

Page 27 September 2006



.

. Subject MI37: Kalman Filter - Intro

(F) Applications of the Kalman Filter

The Kalman filter had already many “spectacular” applications;
for example, it was crucial for the Apollo flights to the moon. In
the context of this lecture, we are in particular interested in
applications in image analysis, computer vision, or driver
assistance.

Here, the time-discrete process is typically a sequence of images
(i.e., of fast cameras) or frames (i.e., of video cameras), and the
process to be modeled can be something like tracing objects in
those images, calculation optical flow, determining the
ego-motion of the capturing camera (or, of the car where the
camera has been installed), determining the lanes in the field of
view of (e.g., binocular) cameras installed in a car, and so forth.
We consider two applications in detail in MI63 and MI64.
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Coursework

37.1. [possible lab project] Implement the Kalman filter
described in Example 2 (There are links to software downloads
on www.cs.unc.edu/˜welch/kalman/.)

Assume a random sequence of increments ∆xt = xt+1 − xt

between subsequent positions, e.g. by using a system function
RANDOM modeling uniform distribution.

Modify (increase or decrease) the input parameters c ≥ 0 and
the noise parameters in the variance matrices Q and R.

Discuss the observed impact on the filter’s convergence (i.e., the
relation between predicted and updated states of the process).

Note that you have to apply the assumed measurement noise
model on the generation of the available data yt at time t.

37.2. See www.cs.unc.edu/$\sim$welch/kalman/ for
various materials related to Kalman filtering (possibly also
follow links specified on this web site, which is dedicated to
Kalman filters).

37.3. Show for Example 1, that Ft = I + ∆tA + ∆t2

2 A2.

37.4. Discuss the figure given on the previous page.

37.5. What is the Mahalanobis dissimilarity measure dM (X,Y) and
what is the normalized Euclidean distance de,M (X,Y), between
two random vectors?
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