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Single view computer vision 

• Projective actions of cameras 

• Camera callibration 

 

• Photometric stereo (geometrically single 

view, with multiple lightings) 

 



Multi view computer vision 

Two (or more) images, from 

 

• A stereo rig consisting of two cameras 

• the two images are acquired simultaneously 

or  

 

• A single moving camera (static scene) 

• the two images are acquired sequentially 

 

The two scenarios are geometrically equivalent 



Stereo head 

Camera on a mobile vehicle  



Imaging geometry 

 

• central projection 

 

• camera centre, image point and 

scene point are collinear 

 

• an image point back projects to a 

ray in 3-space 

 

• depth of the scene point is unknown 

camera 
centre image plane 

image 
point 

scene 
point 

? 



The objective  

Given two images of a scene acquired by known cameras compute the 

3D position of the scene (structure recovery) 

 

Basic principle: triangulate from corresponding  image points 

• Determine 3D  point at intersection of two back-projected rays 



Corresponding points are images of the same scene point 

Triangulation 

C C  / 

The back-projected points generate rays which intersect at the 

3D scene point 



An algorithm for stereo reconstruction 

1. For each point in the first image determine the 

corresponding point in the second image 

(this is a search problem) 

 

2. For each pair of matched points determine the 3D 

point by triangulation 

(this is an estimation problem) 



The correspondence problem 

Given a point x in one image find the corresponding point in the other 

image 

Example with translation: 

This appears to be a 2D search problem, but it is reduced to a 1D search 

by the epipolar constraint 



Notation 

x x  / 

X 

C C  / 

The two cameras are P and P
/
, and a 3D point X is imaged as  

for equations involving homogeneous quantities ‘=’ means ‘equal up to scale’ 

P P
/ 

Warning 



Epipolar geometry 

Given an image point in one view, where is the corresponding point 

in the other view? 

epipolar line 

? 

baseline 

• A point in one view  “generates” an epipolar line in the other view 

• The corresponding point lies on this line 

epipole C  / C 



Epipolar line 

Epipolar constraint 

• Reduces correspondence problem to 1D search along an 

epipolar line 



Epipolar geometry continued 

Epipolar geometry is a consequence of the coplanarity of the camera 

centres and scene point 

x x  / 

X 

C C  / 

The camera centres, corresponding points and scene point lie 

in a single plane, known as the epipolar plane 



Nomenclature 

• The epipolar line l
/
  is the image of the ray through x 

• The epipole e is the point of intersection of the line joining the camera centres 

with the image plane 

 this line is the baseline for a stereo rig, and 

 the translation vector for a moving camera 

• The epipole is the image of the centre of the other camera:  e = PC/ ,   e/ = P/C 

x 
x  / 

X 

C C  / 

e 

left epipolar line 

right epipolar line 

e 
 / 

l
/ 



The epipolar pencil 

e e  / 

baseline 

X 

As the position of the 3D point X varies, the epipolar planes “rotate” about 

the baseline. This family of planes is known as an epipolar pencil. All 

epipolar lines intersect at the epipole. 

(a pencil is a one parameter family) 



The epipolar pencil 

e e  / 

baseline 

X 

As the position of the 3D point X varies, the epipolar planes “rotate” about 

the baseline. This family of planes is known as an epipolar pencil. All 

epipolar lines intersect at the epipole. 

(a pencil is a one parameter family) 



Epipolar geometry example I: parallel cameras 

Epipolar geometry depends only on the relative pose (position and 

orientation) and internal parameters of the two cameras, i.e. the position of 

the camera centres and image planes. It does not depend on the scene 

structure (3D points external to the camera). 



Epipolar geometry example II: converging cameras 

Note, epipolar lines are in general not parallel 

e e  / 



Homogeneous notation for lines 



• The line l through the two points p and q is  l = p x q  

Example: compute the point of intersection of the two lines l and m       

in the figure below 

Proof 

y 

x 

1 

2 

• The intersection of two lines l and m is the point x = l x m 

l 

m 

which is the point (2,1) 



Matrix representation of the vector cross product 



Example: compute the cross product of l and m 



Algebraic representation of epipolar geometry 

 

We know that the epipolar geometry defines a mapping 

x                       l
/ 

point in first 

image 
epipolar line in 

second image 



P
 

Derivation of the algebraic expression 

Outline 

Step 1: for a point x in the first image 

back project a ray with camera P 

Step 2: choose two points on the ray and 

project into the second image with camera P
/
 

Step 3: compute the line through the two 

image points using the relation l
/
 = p x q  

P
/ 



• choose camera matrices 

internal 

calibration 
rotation translation 

from world to camera 

coordinate frame 

• first camera 

world coordinate frame aligned with first camera  

(i.e., first camera defines a reference space) 

• second camera 



Step 1: for a point x in the first image 

back project a ray with camera 
P

 

A point x back projects to a ray 

where Z is the point’s depth, since 

satisfies 



Step 2: choose two points on the ray and 

project into the second image with camera P
/
 

P
/ 

Consider two points on the ray 

 

• Z = 0 is the camera centre 

 

• Z =      is the point at infinity 

Project these two points into the second view 



Using the identity 

Compute the line through the points 

F 

F is the fundamental matrix  

Step 3: compute the line through the two 

image points using the relation l
/
 = p x q  



Example I: compute the fundamental matrix for a parallel camera stereo rig 

• reduces to y = y/  , i.e. raster correspondence (horizontal scan-lines) 

f 

f 

X 
Y 

Z 



f 

f 
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Y 
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Geometric interpretation ? 



Example II: compute F for a forward translating camera 

f 

f 

X 
Y 

Z 



f 

f 
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first image second image 







e 
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Summary: Properties of the Fundamental matrix 



The Essential Matrix (F&P chapter 6) 

• Algebraic setup: 



The Essential Matrix: Equation 



The Essential Matrix: Final Form 

• Relates image of one point in one camera to the other, 

given rotation and translation 



Essential  (E) vs Fundamental (F) Matrix 

• F has intrinsic and extrinsic parameters, E only has 

extrinsic 

• Must know both camera properties for computing E 

• Need calibrations 

• No calibration for F 

 

• E maps point in one image to the other 

 

• F maps point to corresponding epipolar lines 

 



An algorithm for stereo reconstruction 

1. For each point in the first image determine the 

corresponding point in the second image 

(this is a search problem) 

 

2. For each pair of matched points determine the 3D 

point by triangulation 

(this is an estimation problem) 



Epipolar line 

Epipolar constraint 

• Reduces correspondence problem to 1D search along an 

epipolar line 



Algebraic representation of epipolar geometry 

 

We know that the epipolar geometry defines a mapping 

x                       l
/ 

point in first 

image 
epipolar line in 

second image 

• the map only depends on the cameras P, P
/
 (not on structure) 

• it will be shown that the map is linear and can be written as 

    



Stereo 

correspondence 

algorithms 



Problem statement 

Given: two images and their associated cameras compute 

corresponding image points. 

 

Algorithms may be classified into two types: 

1. Dense: compute a correspondence at every pixel 

2. Sparse: compute correspondences only for features 

 

The methods may be top down or bottom up 

 



Top down matching  

1. Group model (house, windows, etc) independently in 

each image 

2. Match points (vertices) between images 



Bottom up matching 

• epipolar geometry reduces the correspondence search from 2D 

to a 1D search on corresponding epipolar lines 

• 1D correspondence problem 

b/ 

a/ 

b 
c a 

C B A 

c/ 





Stereograms 

• Invented by Sir Charles Wheatstone, 1838 

 



Red/green stereograms 



Random dot stereograms 





Autostereograms 

 

Autostereograms: www.magiceye.com 



Correspondence algorithms  

Algorithms may be top down or bottom up – random dot stereograms 

are an existence proof that bottom up algorithms are possible 

 

From here on only consider bottom up algorithms 

 

Algorithms may be classified into two types: 

1. Dense: compute a correspondence at every pixel 

2. Sparse: compute correspondences only for features 

 

 



 Example image pair – parallel cameras 



First image 



Second image 



Dense correspondence algorithm 

Search problem (geometric constraint): for each point in the left image, the 

corresponding point in the right image lies on the epipolar line (1D ambiguity) 

Disambiguating assumption (photometric constraint): the intensity 

neighbourhood of corresponding points are similar across images 

Measure similarity of neighbourhood intensity by cross-correlation  

Parallel camera example – epipolar lines are corresponding rasters  

epipolar 

line 



Intensity profiles 

• Clear correspondence between intensities, but also noise and ambiguity 



region A 

Normalized Cross Correlation 

region B 

vector a vector b 

write regions as vectors 

a 

b 



Cross-correlation of neighbourhood regions 

epipolar 

line 

translate so that mean is zero  



left image band 

right image band 

cross 

correlation 

1 

0 

0.5 

x 



left image band 

right image band 

cross 

correlation 

1 

0 

x 

0.5 

target region 



Why is cross-correlation such a poor measure in the second case? 

1. The neighbourhood region does not have a “distinctive” spatial intensity 

distribution 

2. Foreshortening effects 

fronto-parallel surface 

imaged length the same 

slanting surface 

imaged lengths differ 



Limitations of similarity constraint 

Textureless surfaces Occlusions, repetition 

Non-Lambertian surfaces, specularities 



Results with window search 

Window-based matching Ground truth 

Data 



Sketch of a dense correspondence algorithm 

For each pixel in the left image 

• compute the neighbourhood cross correlation along the 
corresponding epipolar line in the right image 

• the corresponding pixel is the one with the highest cross 
correlation 

Parameters 

• size (scale) of neighbourhood 

• search disparity  

Other constraints 

• uniqueness 

• ordering 

• smoothness of disparity field 

Applicability 

• textured scene, largely fronto-parallel 


