

Optical Flow I

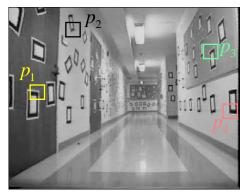
Guido Gerig CS 6320, Spring 2013

(credits: Marc Pollefeys UNC Chapel Hill, Comp 256 / K.H. Shafique, UCSF, CAP5415 / S. Narasimhan, CMU / Bahadir K. Gunturk, EE 7730 / Bradski&Thrun, Stanford CS223

Materials

- Gary Bradski & Sebastian Thrun, Stanford CS223 http://robots.stanford.edu/cs223b/index.html
- S. Narasimhan, CMU: http://www.cs.cmu.edu/afs/cs/academic/class/15385-s06/lectures/ppts/lec-16.ppt
- M. Pollefeys, ETH Zurich/UNC Chapel Hill: http://www.cs.unc.edu/Research/vision/comp256/vision10.ppt
- K.H. Shafique, UCSF: http://www.cs.ucf.edu/courses/cap6411/cap5415/
 - Lecture 18 (March 25, 2003), Slides: <u>PDF</u>/ <u>PPT</u>
- Jepson, Toronto: <u>http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf</u>
- Original paper Horn&Schunck 1981:
 http://www.csd.uwo.ca/faculty/beau/CS9645/PAPERS/Horn-Schunck.pdf
- MIT AI Memo Horn& Schunck 1980: <u>http://people.csail.mit.edu/bkph/AIM/AIM-572.pdf</u>
- Bahadir K. Gunturk, EE 7730 Image Analysis II
- Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. Anandan, M. Black, K. Toyama

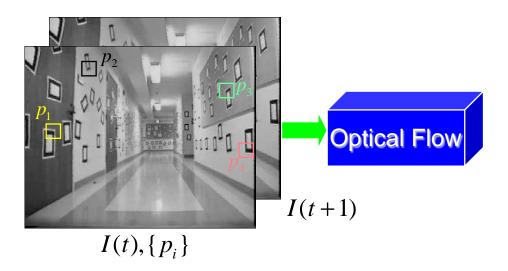
Tracking - Rigid Objects

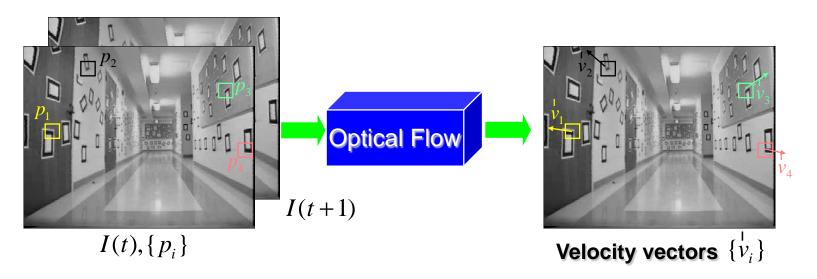


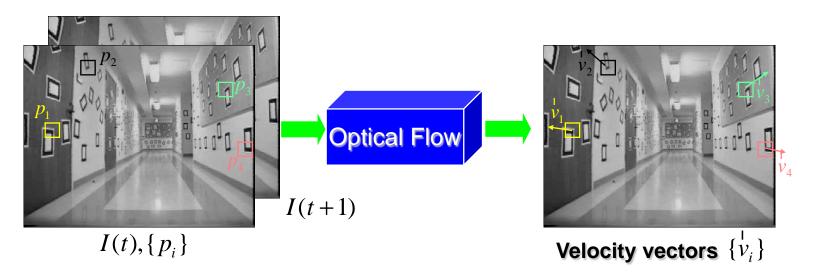
 $I(t), \{p_i\}$

I(t+1)

 $I(t), \{p_i\}$

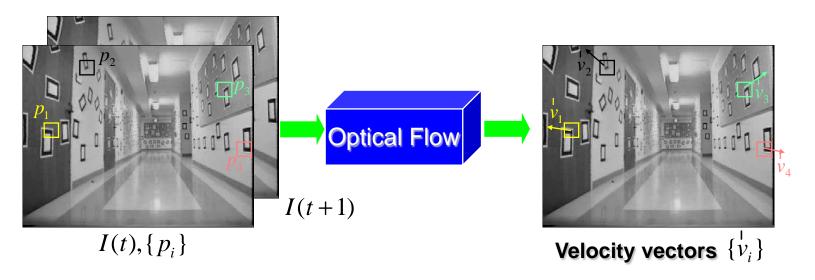






Optical flow is the relation of the motion field:

• the 2D projection of the physical movement of points relative to the observer to 2D displacement of pixel patches on the image plane.



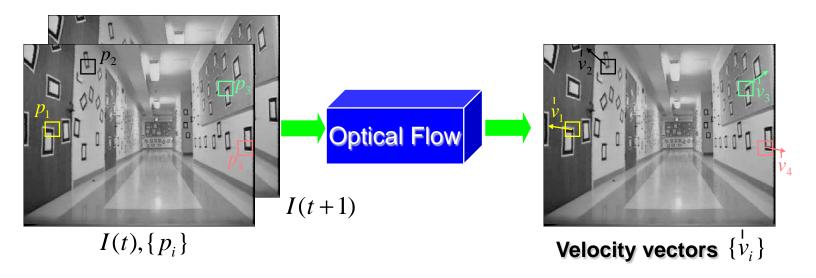
Optical flow is the relation of the motion field:

 the 2D projection of the physical movement of points relative to the observer to 2D displacement of pixel patches on the image plane.

Common assumption:

The appearance of the image patches do not change (brightness constancy)

$$I(p_i, t) = I(p_i + v_i, t+1)$$



Optical flow is the relation of the motion field:

• the 2D projection of the physical movement of points relative to the observer to 2D displacement of pixel patches on the image plane.

Common assumption:

The appearance of the image patches do not change (brightness constancy)

$$I(p_i, t) = I(p_i + v_i, t+1)$$

Note: more elaborate tracking models can be adopted if more frames are process all at once

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

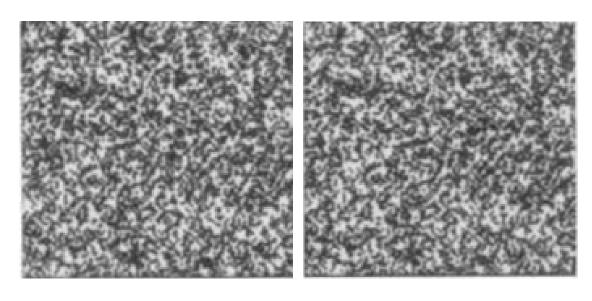
Optical Flow and Motion

- We are interested in finding the movement of scene objects from timevarying images (videos).
- Lots of uses
 - Motion detection
 - Track objects
 - Correct for camera jitter (stabilization)
 - Align images (mosaics)
 - 3D shape reconstruction
 - Special effects
 - Games: http://www.youtube.com/watch?v=JlLkkom6tWw
 - User Interfaces: http://www.youtube.com/watch?v=Q3gT52sHDI4
 - Video compression

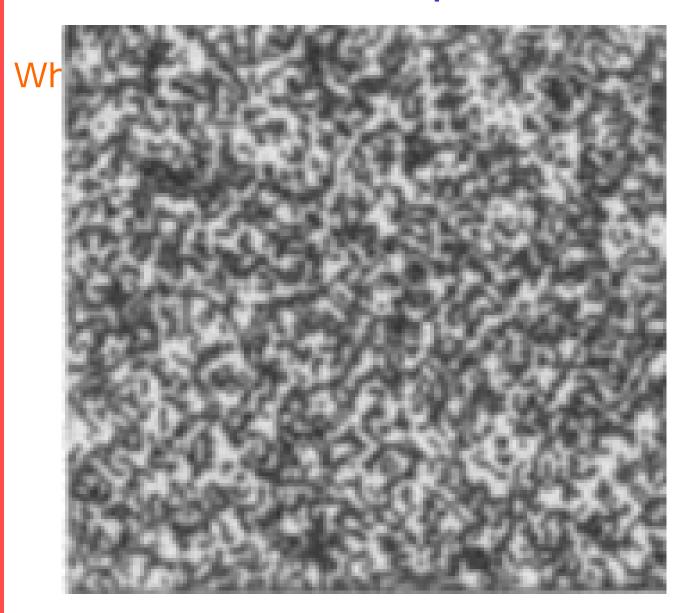
Optical Flow: Where do pixels move to?

Related to: Optical flow

Where do pixels move?



Related to: Optical flow



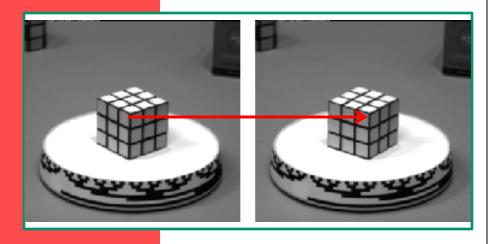
Tracking – Non-rigid Objects

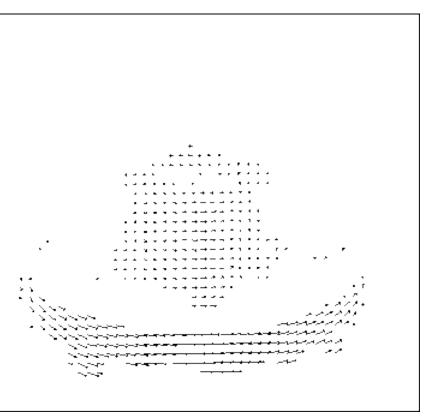
(Comaniciu et al, Siemens)

Tracking – Non-rigid Objects

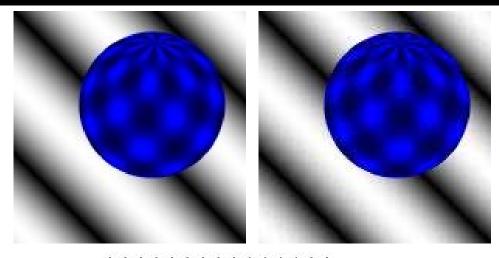
Optical Flow: Correspondence

Basic question: Which Pixel went where?





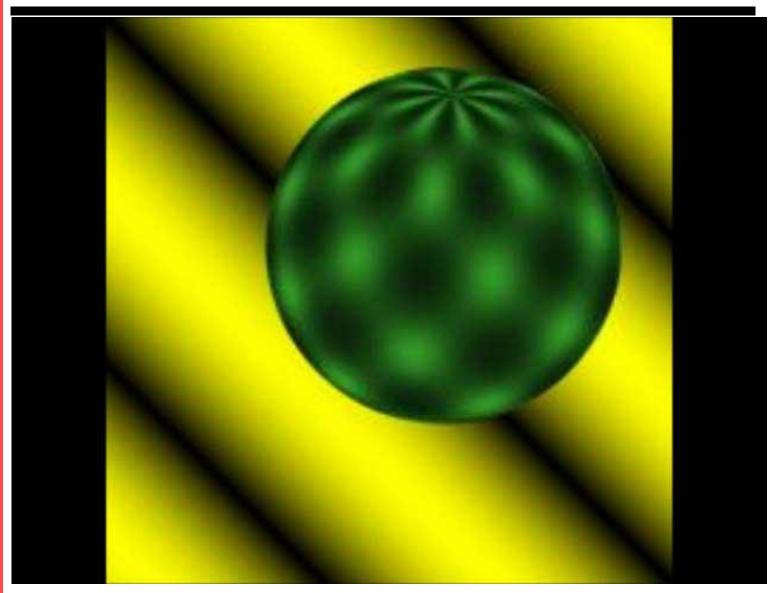
Optical Flow is NOT 3D motion field



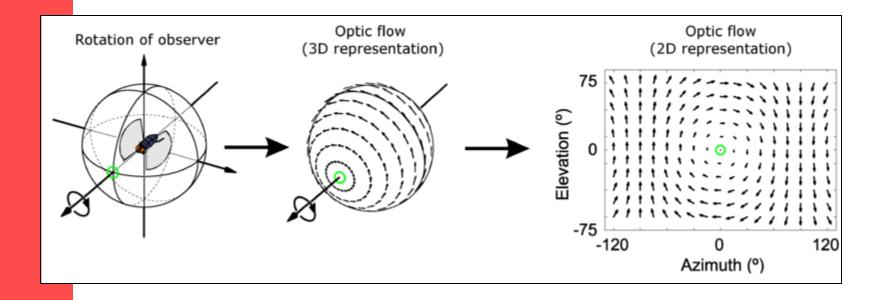
Optical flow: Pixel motion field as observed in image.

http://of-eval.sourceforge.net/

Structure from Motion?



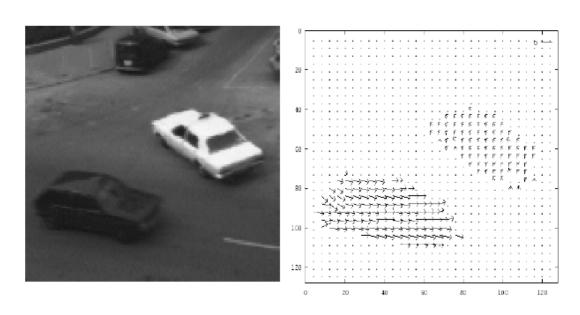
Optical Flow is NOT 3D motion field



Definition of optical flow

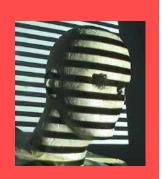
OPTICAL FLOW = apparent motion of brightness patterns

Ideally, the optical flow is the projection of the three-dimensional velocity vectors on the image

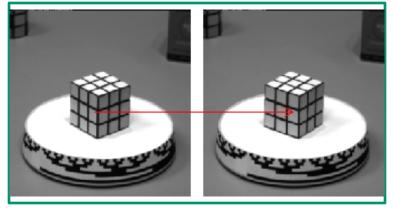


Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow



Start with an Equation: Brightness Constancy



Time: t + dt

Point moves (small), but its brightness remains constant:

$$I_{t1}(x, y) = I_{t2}(x + u, y + v)$$

$$I = constant \rightarrow \frac{dI}{dt} = 0$$

$$(x,y)$$
displacement = (u,v)

$$(x \stackrel{\bullet}{+} u, y + v)$$

 I_1

 I_2

Mathematical formulation

$$I(x(t),y(t),t)$$
 = brightness at (x,y) at time t

Brightness constancy assumption (shift of location but brightness stays same):

$$I(x + \frac{dx}{dt} \mathbf{d}t, y + \frac{dy}{dt} \mathbf{d}t, t + \mathbf{d}t) = I(x, y, t)$$

Optical flow constraint equation (chain rule):

$$\frac{dI}{dt} = \frac{\P I}{\P x} \frac{dx}{dt} + \frac{\P I}{\P y} \frac{dy}{dt} + \frac{\P I}{\P t} = 0$$

The aperture problem

$$u = \frac{dx}{dt}, \qquad v = \frac{dy}{dt}$$

$$I_x = \frac{\P I}{\P y}, \qquad I_y = \frac{\P I}{\P y}, \qquad I_t = \frac{\P I}{\P t}$$

$$I_x u + I_y v + I_t = 0$$

Horn and Schunck optical flow equation

The aperture problem

$$u = \frac{dx}{dt}, \qquad v = \frac{dy}{dt}$$

$$I_x = \frac{\P I}{\P y}, \qquad I_y = \frac{\P I}{\P y}, \qquad I_t = \frac{\P I}{\P t}$$

$$I_x u + I_y v + I_t = 0$$

1 equation in 2 unknowns

Horn and Schunck optical flow equation

$$f(t) \circ I(x(t),t) = I(x(t+dt),t+dt)$$

$$f(t) \circ I(x(t),t) = I(x(t+dt),t+dt)$$

$$\frac{\P f(x)}{\P t} = 0 \quad \text{Because no change in brightness with time}$$

$$f(t) \circ I(x(t),t) = I(x(t+dt),t+dt)$$

$$\frac{\P f(x)}{\P t} = 0 \quad \text{Because no change in brightness with time}$$

$$\frac{\P I}{\P x} \left| \underbrace{\mathbf{e}}_{t} \mathbf{e} \mathbf{f} \mathbf{f} \mathbf{e} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f} \mathbf{f} \right|_{x(t)} = 0$$

$$f(t) \circ I(x(t),t) = I(x(t+dt),t+dt)$$

$$\frac{\P f(x)}{\P t} = 0 \quad \text{Because no change in brightness with time}$$

$$\frac{\P I}{\P x} \left| \underbrace{\overset{\circ}{e}}_{t} \overset{\circ}{=} + \underbrace{\overset{\circ}{\Pi} I}_{x(t)} \right|_{x(t)} = 0$$

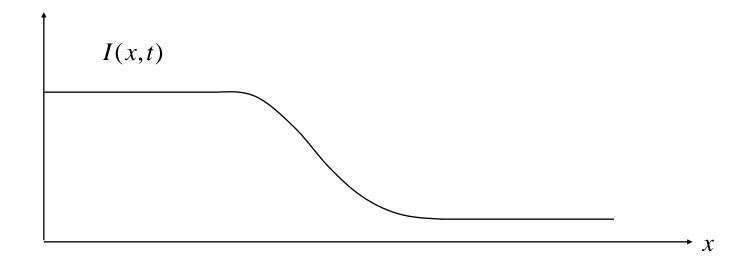
$$f(t) \circ I(x(t),t) = I(x(t+dt),t+dt)$$

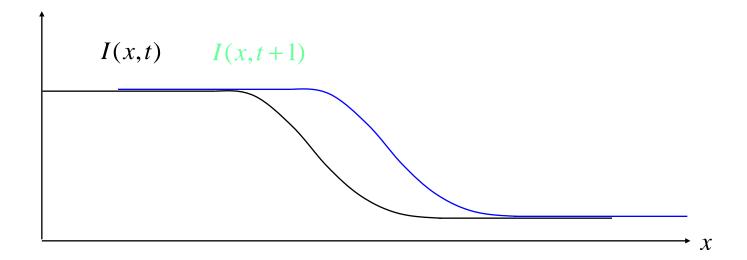
$$\frac{\P f(x)}{\P t} = 0 \quad \text{Because no change in brightness with time}$$

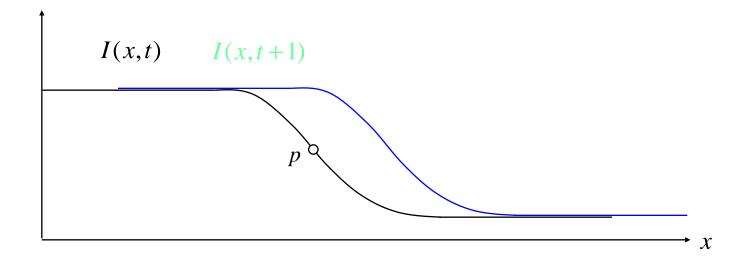
$$\frac{\P I}{\P x} \left| \bigotimes_{t} \stackrel{\bullet}{=} \frac{\Pi}{\varphi} + \frac{\Pi I}{\P t} \right|_{x(t)} = 0$$

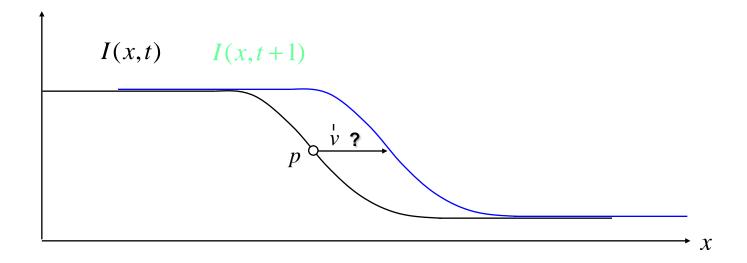
$$\downarrow_{x} \qquad \qquad \downarrow_{t}$$

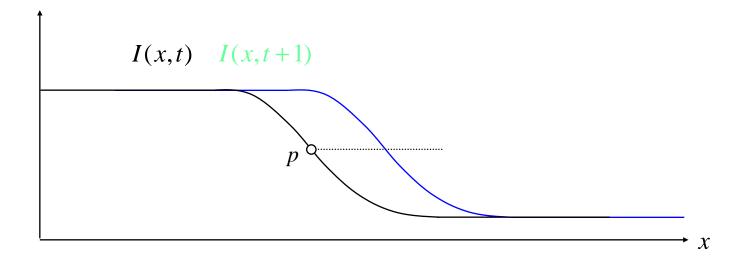
$$\triangleright \quad v = -\frac{I_{t}}{I_{x}}$$

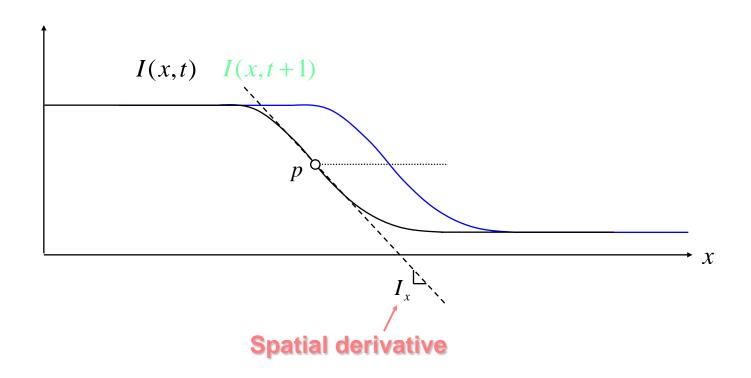


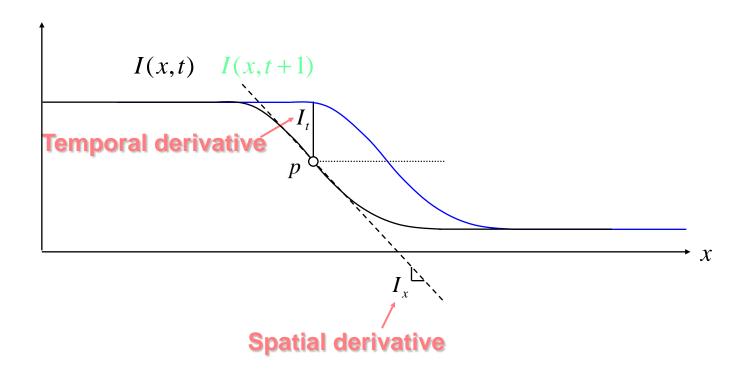


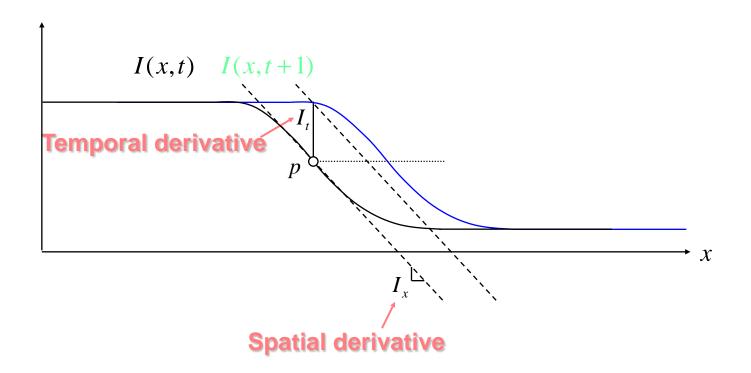


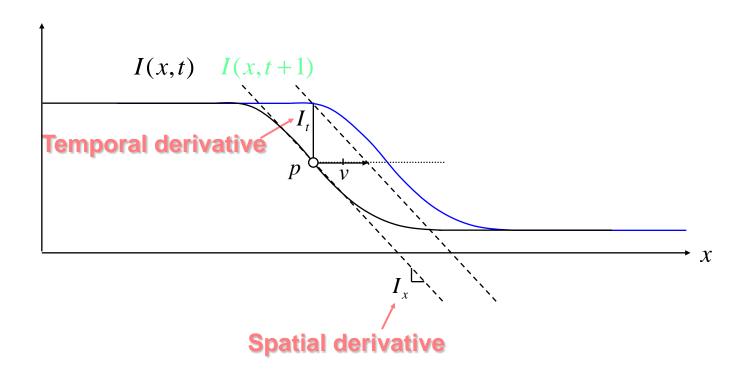


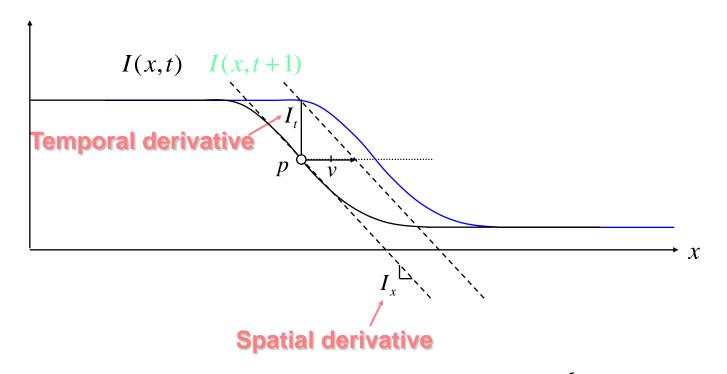












$$I_{x} = \frac{\P I}{\P x}$$

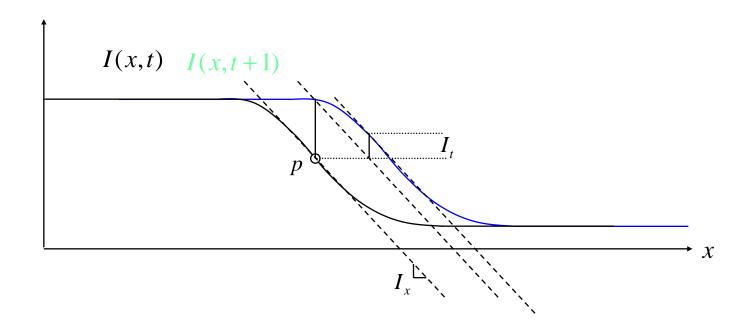
$$I_x = \frac{\P I}{\P x}\Big|_{t}$$
 $I_t = \frac{\P I}{\P t}\Big|_{x=p}$ $\stackrel{\Gamma}{\longrightarrow}$ $\stackrel{\Gamma}{V} \gg -\frac{I_t}{I_x}$ Assumptions:

• Brightness constancy
• Small motion

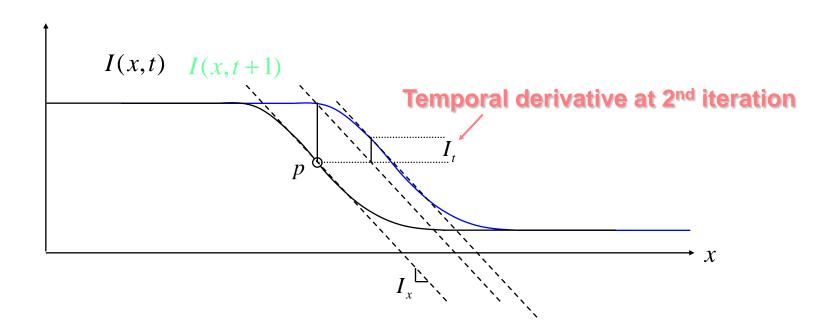
$$r v \gg - \frac{I_t}{I_x}$$

Assumptions:

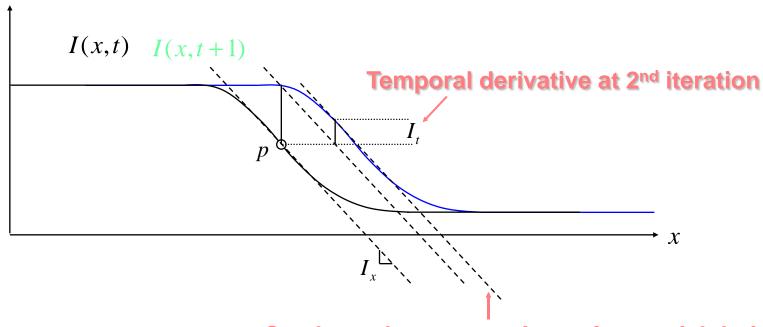
Iterating helps refining the velocity vector



Iterating helps refining the velocity vector

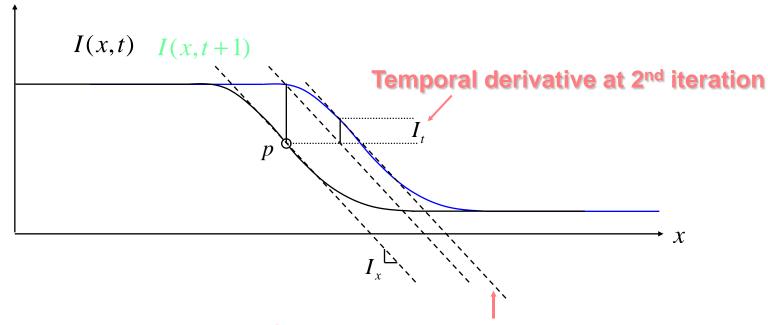


Iterating helps refining the velocity vector



Can keep the same estimate for spatial derivative

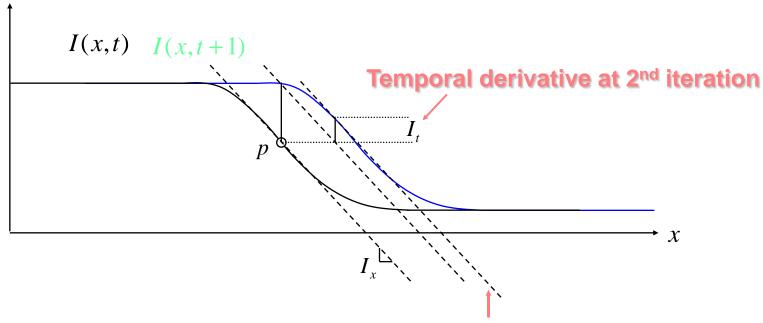
Iterating helps refining the velocity vector



Can keep the same estimate for spatial derivative

$$\begin{array}{ccc}
\Gamma & \Gamma \\
V & \neg \end{array} V_{previous} - \frac{I_t}{I_x}$$

Iterating helps refining the velocity vector



Can keep the same estimate for spatial derivative

$$\begin{array}{ccc}
\Gamma & \Gamma \\
V & \neg V_{previous} & \overline{I_t} \\
I_r
\end{array}$$

Converges in about 5 iterations

1D:
$$\frac{\P I}{\P x} \left| \mathop{\text{cel}}_{t} \overset{\text{o}}{=} \frac{1}{\P t} \right|_{x(t)} = 0$$

1D:
$$\frac{\P I}{\P x} \left| \mathop{\operatorname{cel}}_{t} \overset{\circ}{\operatorname{e}} \frac{1}{\P t} \overset{\circ}{\operatorname{e}} + \frac{\P I}{\P t} \right|_{x(t)} = 0$$

2D:
$$\frac{\|I\|}{\|x\|_t} \stackrel{\text{def}}{\underset{t \in \mathbb{R}}{\text{def}}} \frac{\ddot{o}}{\dot{e}} + \frac{\|I\|}{\|y\|_t} \stackrel{\text{def}}{\underset{t \in \mathbb{R}}{\text{def}}} \frac{\ddot{o}}{\dot{e}} + \frac{\|I\|}{\|t\|_{x(t)}} = 0$$

1D:
$$\frac{\P I}{\P x} \left| \stackrel{\text{eff}}{\underset{t \text{ e}}{\P t}} \stackrel{\text{o}}{\underset{\varphi}{\to}} + \frac{\P I}{\P t} \right|_{x(t)} = 0$$

2D:
$$\frac{\|I\|}{\|x\|_{t}} \stackrel{\text{o}}{\notin} \frac{\|x\|}{\varphi} \stackrel{\text{o}}{\mapsto} + \frac{\|I\|}{\|y\|_{t}} \stackrel{\text{o}}{\notin} \frac{\|y\|}{\varphi} \stackrel{\text{o}}{\mapsto} + \frac{\|I\|}{\|t\|_{x(t)}} = 0$$
$$\frac{\|I\|}{\|x\|_{t}} \frac{\|u + \frac{\|I\|}{\|y\|_{t}} \frac{\|y + \frac{\|I\|}{\|t\|_{x(t)}}}{\|t\|_{x(t)}} = 0$$

1D:
$$\frac{\P I}{\P x} \left| \stackrel{\text{eff}}{\underset{t \text{ e}}{\P t}} \stackrel{\text{o}}{\underset{\varphi}{\to}} + \frac{\P I}{\P t} \right|_{x(t)} = 0$$

2D:
$$\frac{\P I}{\P x} \left| \underbrace{\overset{\circ}{\operatorname{e}} \frac{\mathbb{I} x}{\mathbb{I} x} \overset{\circ}{\operatorname{e}} + \frac{\P I}{\P y}}_{t} \right| \underbrace{\overset{\circ}{\operatorname{e}} \frac{\mathbb{I} y}{\mathbb{I} x} \overset{\circ}{\operatorname{e}} + \frac{\P I}{\P t}}_{x(t)} = 0$$

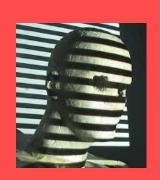
$$\frac{\P I}{\P x} \left| \underbrace{u + \frac{\P I}{\P y}}_{t} \right| \underbrace{v + \frac{\P I}{\P t}}_{x(t)} = 0$$

Shoot! One equation, two velocity (u,v) unknowns...

Optical Flow vs. Motion: <u>Aperture Problem</u>

Barber shop pole:

http://www.youtube.com/watch?v=VmqQs613SbE

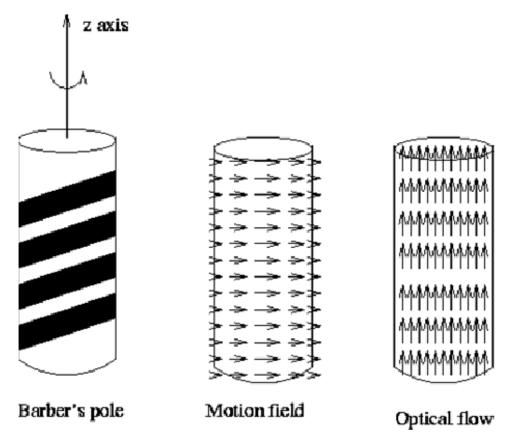


Optical Flow vs. Motion: <u>Aperture Problem</u>

Barber shop pole:

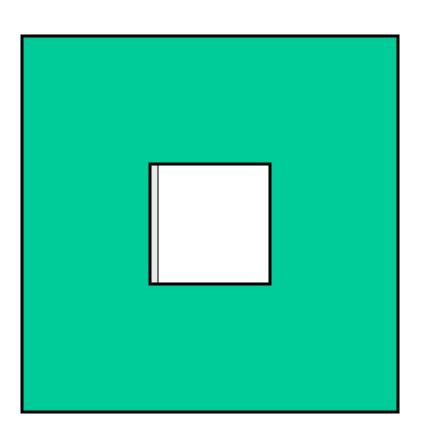
http://www.youtube.com/watch?v=VmqQs613SbE

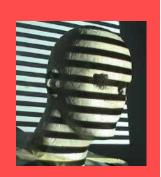
Barber pole illusion

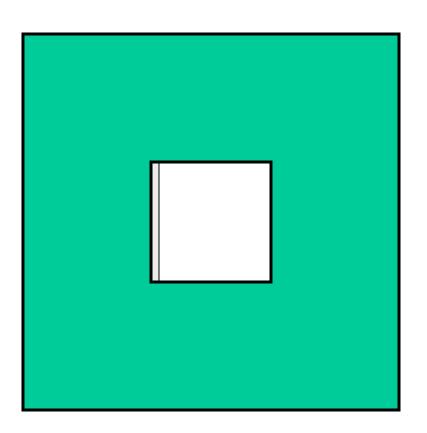


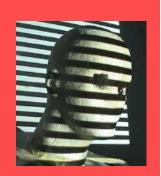
Optical Flow

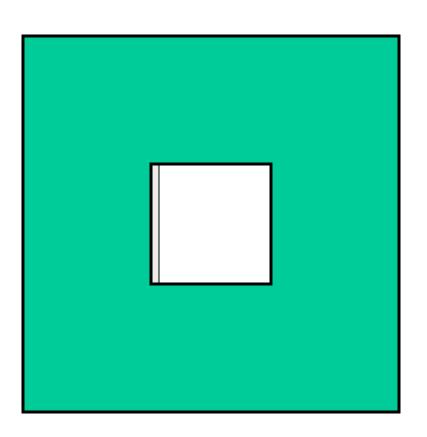
- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

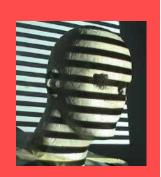


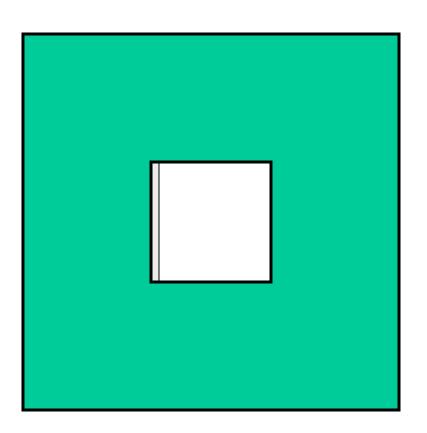


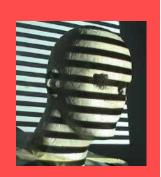


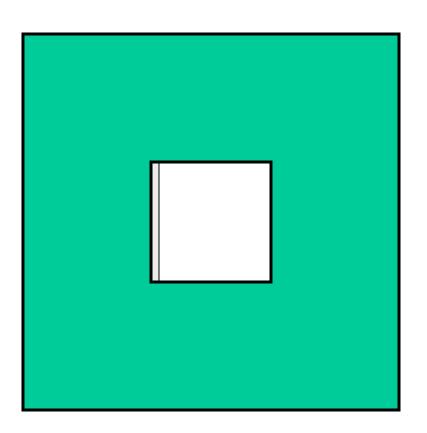


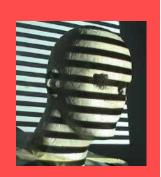


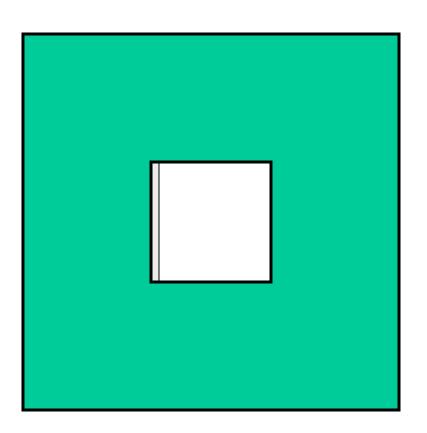


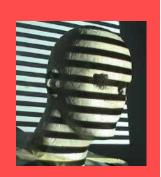


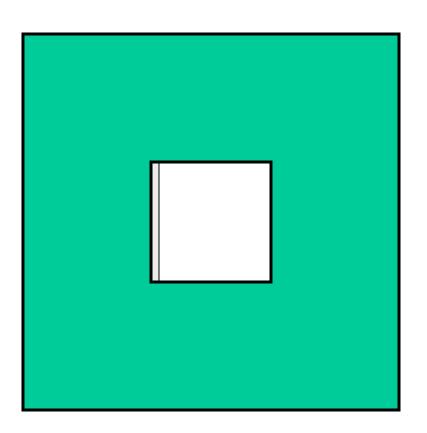




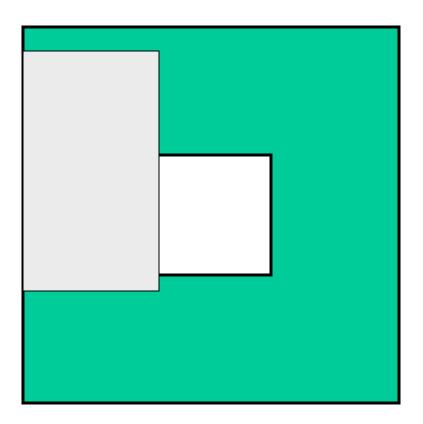








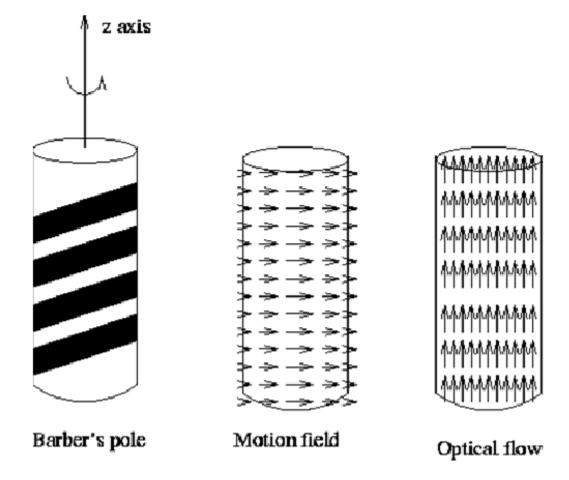
Aperture Problem Exposed



Motion along just an edge is ambiguous

perture Problem in Real Life Aperture Problem

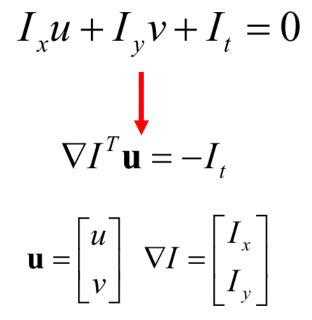
Barber pole illusion

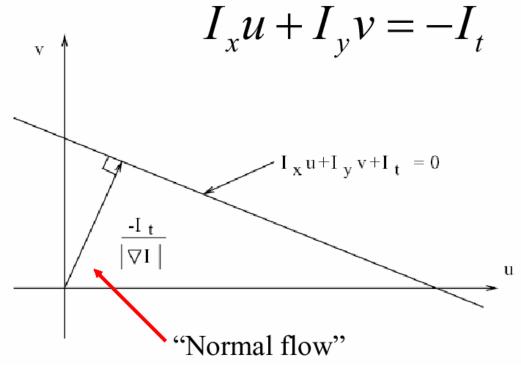


Normal Flow

Notation

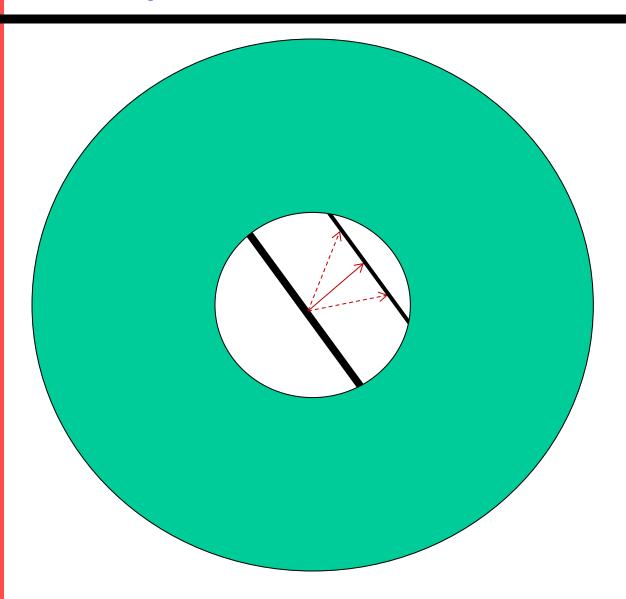
At a single image pixel, we get a line:



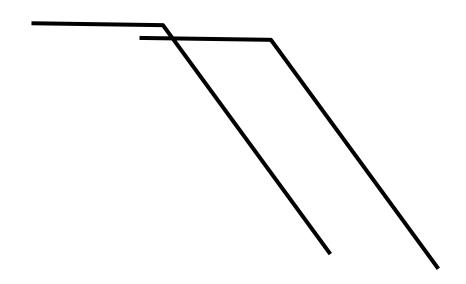


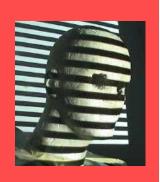
We get at most "Normal Flow" – with one point we can only detect movement perpendicular to the brightness gradient. Solution is to take a patch of pixels Around the pixel of interest.

Aperture Problem

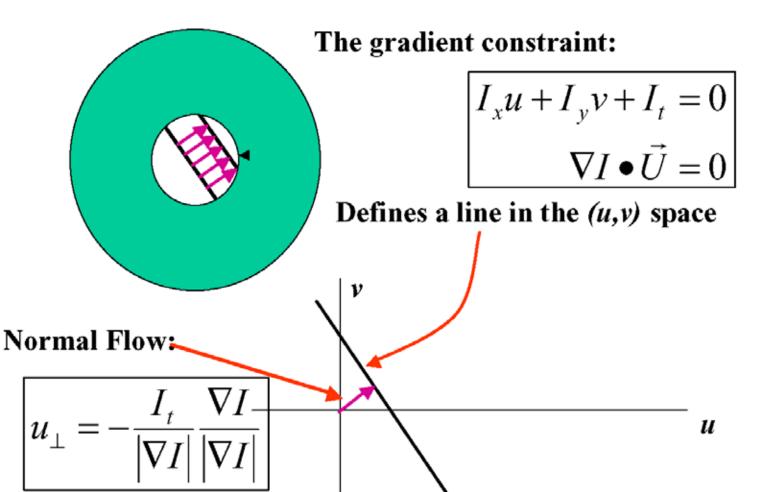


Aperture Problem

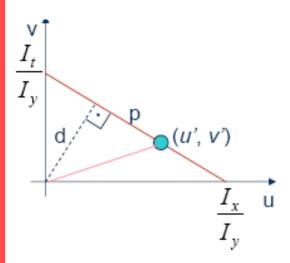




Aperture Problem and Normal Flow



Aperture Problem and Normal Flow



$$v = u \frac{I_x}{I_y} + \frac{I_t}{I_y}$$

- Let (u', v') be true flow
- True flow has two components
 - Normal flow: d
 - Parallel flow: p
- Normal flow can be computed
- Parallel flow cannot

Computing True Flow

- Horn & Schunck
- Schunck
- Lukas and Kanade

Possible Solution: Neighbors

Two adjacent pixels which are part of the same rigid object:

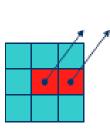
- we can calculate normal flows \mathbf{v}_{n1} and \mathbf{v}_{n2}
- Two OF equations for 2 parameters of flow: $\bar{v} = \begin{pmatrix} v \\ u \end{pmatrix}$

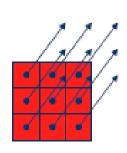
$$abla I_1. \, \bar{v} - I_{t1} = 0
abla I_2. \, \bar{v} - I_{t2} = 0$$

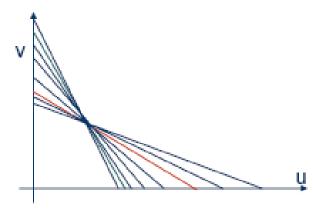
Considering Neighbor Pixels

Schunck

- If two neighboring pixels move with same velocity
 - Corresponding flow equations intersect at a point in (u,v) space
 - Find the intersection point of lines
 - If more than 1 intersection points find clusters
 - Biggest cluster is true flow

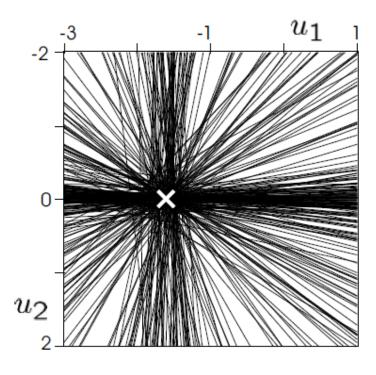






Alper Yilmaz, Fall 2005 UCF

Considering Neighbor Pixels



Cluster center provides velocity vector common for all pixels in patch.

Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization: Horn & Schunck
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

Horn and Schunck's approach — Regularization

Two terms are defined as follows:

• Departure from smoothness

$$e_s = \int \int_{\Omega} ((u_x^2 + u_y^2) + (v_x^2 + v_y^2)) dx dy$$

• Error in optical flow constaint equation

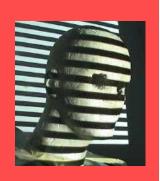
$$e_c = \int \int_{\Omega} (E_x u + E_y v + E_t)^2 dx dy$$

The formulation is to minimize the linear combination of e_s and e_c ,

$$e_s + \lambda e_c$$

where λ is a parameter.

Note: In this formulation, u and v are functions of x and y. Physically, u is the x-component of the motion, and v is the y-component of the motion.



$$\int_{D} (\nabla I \cdot \vec{v} + I_{t})^{2} + \lambda^{2} \left[\left(\frac{\partial v_{x}}{\partial x} \right)^{2} + \left(\frac{\partial v_{x}}{\partial y} \right)^{2} + \left(\frac{\partial v_{y}}{\partial x} \right)^{2} + \left(\frac{\partial v_{y}}{\partial y} \right)^{2} \right] dx dy$$

Additional smoothness constraint (usually motion field varies smoothly in the image → penalize departure from smoothness):

$$e_s = (u_x^2 + u_y^2) + (v_x^2 + v_y^2) dxdy,$$

OF constraint equation term (formulate error in optical flow constraint):

$$e_c = i (I_x u + I_y v + I_t)^2 dx dy,$$

minimize es+l ec

Variational calculus: Pair of second order differential equations that can be solved iteratively.

Define an energy function and minimize

$$E(x, y) = (uI_x + vI_y + I_t)^2 + \lambda (u_x^2 + u_y^2 + v_x^2 + v_y^2)$$

Differentiate w.r.t. unknowns u and v

$$\begin{split} \frac{\partial E}{\partial u} &= 2I_x(uI_x + vI_y + I_t) + \frac{\partial f}{\partial u} & \frac{\partial f}{\partial u} = \frac{\partial}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial}{\partial u} \frac{\partial u}{\partial y} = 2\underbrace{(u_{xx} + u_{yy})}_{\text{laplacian of } u} \\ \frac{\partial E}{\partial v} &= 2I_y(uI_x + vI_y + I_t) + 2\underbrace{(v_{xx} + v_{yy})}_{\text{laplacian of } v} \end{split}$$

$$I_x(uI_x + vI_y + I_t) + \Delta^2 u = 0$$

$$I_x(uI_x + vI_y + I_t) + \Delta u = 0$$

$$I_y(uI_x + vI_y + I_t) + \Delta v = 0$$

- Laplacian controls smoothness of optical flow
 - A particular choice can be $\Delta^2 u = u u_{av\sigma}$, $\Delta^2 v = v v_{av\sigma}$.
- Rearranging equations

$$\begin{split} u \Big(\lambda + I_x^2 \Big) + v I_x I_y + I_x I_t - \lambda u_{\text{avg}} &= 0 \\ v \Big(\lambda + I_y^2 \Big) + u I_x I_y + I_y I_t - \lambda v_{\text{avg}} &= 0 \end{split}$$

- 2 equations 2 unknowns
- Write v in terms of u
- Plug it in the other equation

$$u = u_{avg} - I_x \left(\frac{I_x u_{avg} + I_y v_{avg} + I_t}{I_x^2 + I_y^2 + \lambda} \right)$$

$$u = u_{avg} - I_x \left(\frac{I_x u_{avg} + I_y v_{avg} + I_t}{I_x^2 + I_y^2 + \lambda} \right) \qquad v = v_{avg} - I_y \left(\frac{I_x u_{avg} + I_y v_{avg} + I_t}{I_x^2 + I_y^2 + \lambda} \right)$$

- Iteratively compute u and v
 - Assume initially u and v are 0
 - Compute u_{avq} and v_{avq} in a neighborhood

Horn & Schunck

The Euler-Lagrange equations:

$$F_{u} - \frac{\P}{\P x} F_{u_{x}} - \frac{\P}{\P y} F_{u_{y}} = 0$$

$$F_{v} - \frac{\P}{\P x} F_{v_{x}} - \frac{\P}{\P y} F_{v_{y}} = 0$$

In our case,

$$F = (u_x^2 + u_y^2) + (v_x^2 + v_y^2) + I(I_x u + I_y v + I_t)^2,$$

so the Euler-Lagrange equations are

$$Du = I(I_x u + I_y v + I_t)I_x,$$

$$\mathsf{D} v = I (I_x u + I_y v + I_t) I_y,$$

$$D = \frac{\P^2}{\P x^2} + \frac{\P^2}{\P v^2}$$
 is the Laplacian operator

Horn & Schunck

Remarks:

 Coupled PDEs solved using iterative methods and finite differences

$$\frac{\P u}{\P t} = Du - /(I_x u + I_y v + I_t)I_x,$$

$$\frac{\P v}{\P t} = Dv - /(I_x u + I_y v + I_t)I_y,$$

- 2. More than two frames allow a better estimation of I_t
- 3. Information spreads from corner-type patterns

Discrete Optical Flow Algorithm

Consider image pixel (i, j)

• Departure from Smoothness Constraint:

$$s_{ij} = \frac{1}{4} \left[(u_{i+1,j} - u_{i,j})^2 + (u_{i,j+1} - u_{i,j})^2 + (v_{i+1,j} - v_{i,j})^2 + (v_{i,j+1} - v_{i,j})^2 \right]$$

•Error in Optical Flow constraint equation:

$$c_{ij} = (E^{ij}_{x} u_{ij} + E^{ij}_{y} v_{ij} + E^{ij}_{t})^{2}$$

• We seek the set $\{u_{ij}\}$ & $\{v_{ij}\}$ that minimize:

$$e = \mathring{\mathbf{a}} \mathring{\mathbf{a}} (s_{ij} + / c_{ij})$$

NOTE: $\{u_{ij}\}$ & $\{v_{ij}\}$ show up in more than one term

Discrete Optical Flow Algorithm

• Differentiating e w.r.t v_{kl} & u_{kl} and setting to zero:

$$\frac{\P e}{\P u_{kl}} = 2 (u_{kl} - \overline{u_{kl}}) + 2I (E_x^{kl} u_{kl} + E_y^{kl} v_{kl} + E_t^{kl}) E_x^{kl} = 0$$

$$\frac{\P e}{\P v_{kl}} = 2 (v_{kl} - \overline{v_{kl}}) + 2I (E_x^{kl} u_{kl} + E_y^{kl} v_{kl} + E_t^{kl}) E_y^{kl} = 0$$

• v_{kl} & u_{kl} are averages of (u, v) around pixel (k, l)

Update Rule:

$$u_{kl}^{n+1} = \overline{u_{kl}^{n}} - \frac{E_{x}^{kl} u_{kl}^{n} + E_{y}^{kl} v_{kl}^{n} + E_{t}^{kl}}{1 + I \left[(E_{x}^{kl})^{2} + (E_{y}^{kl})^{2} \right]} E_{x}^{kl}$$

$$v_{kl}^{n+1} = \overline{v_{kl}^{n}} - \frac{E_{x}^{kl} u_{kl}^{n} + E_{y}^{kl} v_{kl}^{n} + E_{t}^{kl}}{1 + I \left[(E_{x}^{kl})^{2} + (E_{y}^{kl})^{2} \right]} E_{y}^{kl}$$

Horn-Schunck Algorithm: Discrete Case

- Derivatives (and error functionals) are approximated by difference operators
- Leads to an iterative solution:

$$u_{ij}^{n+1} = \overline{u}_{ij}^{n} - aE_{x}$$
 $v_{ij}^{n+1} = \overline{v}_{ij}^{n} - aE_{y}$
 $a = \frac{E_{x}\overline{u}_{ij}^{n} + E_{y}\overline{v}_{ij}^{n} + E_{t}}{1 + I(E_{x}^{2} + E_{y}^{2})}$

 \overline{u} , \overline{v} is the average of values of neighbors

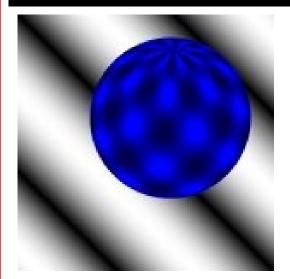
Intuition of the Iterative Scheme

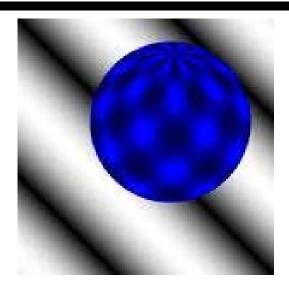


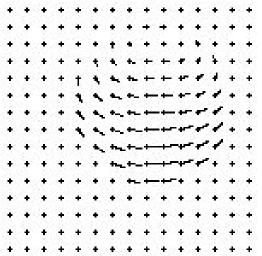
The new value of (u,v) at a point is equal to the average of surrounding values minus an adjustment in the direction of the brightness gradient


```
begin
         for j := 1 to M do for i := 1 to M do begin
                   calculate the values E_y(i,j,t), E_y(i,j,t), and E_t(i,j,t) using
                             a selected approximation formula;
                                        { special cases for image points at the image border
                                                                   have to be taken into account ?
                   initialize the values u(i, j) and v(i, j) with zero
         end {for};
         choose a suitable weighting value λ:
                                                                                         \{ e.g \ \lambda = 10 \}
         choose a suitable number n_0 \ge 1 of iterations;
                                                                                              [ n_0 = 8 ]
          n := 1;
                                                                                  { iteration counter }
         while n \le n_0 do begin
                   for j := 1 to N do for i := 1 to M do begin
                             \overline{u} := \frac{1}{4} \{ u(i-1,j) + u(i+1,j) + u(i,j-1) + u(i,j+1) \};
                             \overline{V} := \frac{1}{4} (v(i-1,j) + v(i+1,j) + v(i,j-1) + v(i,j+1));
                                       { treat image points at the image border separately }
                             \alpha := \frac{E_x(i,j,t)\overline{u} + E_y(i,j,t)\overline{v} + E_t(i,j,t)}{1 + \lambda \Big(E_x^2(i,j,t) + E_y^2(i,j,t)\Big)} \cdot \lambda \quad ;
                              u(i,j) := \overline{u} - \alpha \cdot E_{\nu}(i,j,t) \; ; \quad v(i,j) := \overline{v} - \alpha \cdot E_{\nu}(i,j,t)
                    end (for):
                    n := n + 1
         end {while}
end;
```


Example







http://of-eval.sourceforge.net/

Results

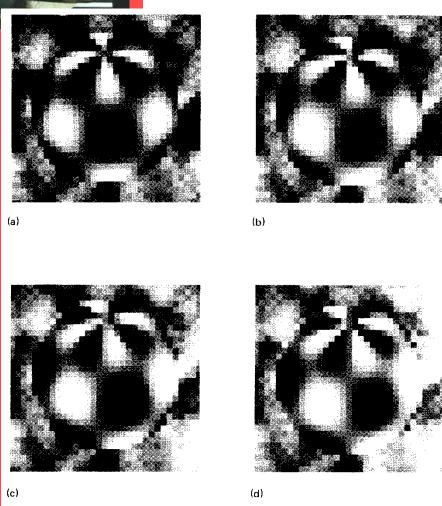


Figure 12-8. Four frames of a synthetic image sequence showing a sphere slowly rotating in front of a randomly patterned background.

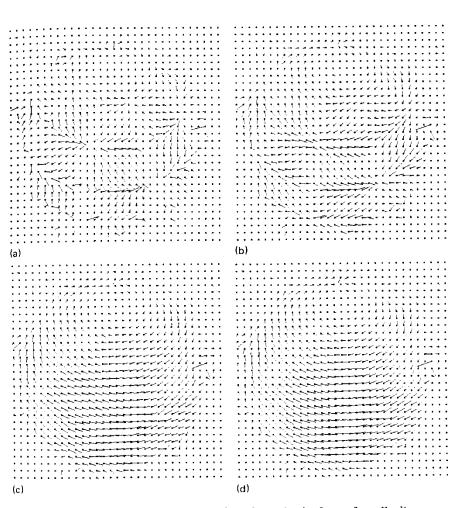


Figure 12-9. Estimates of the optical flow shown in the form of needle diagrams after 1, 4, 16, and 64 iterations of the algorithm.

Results

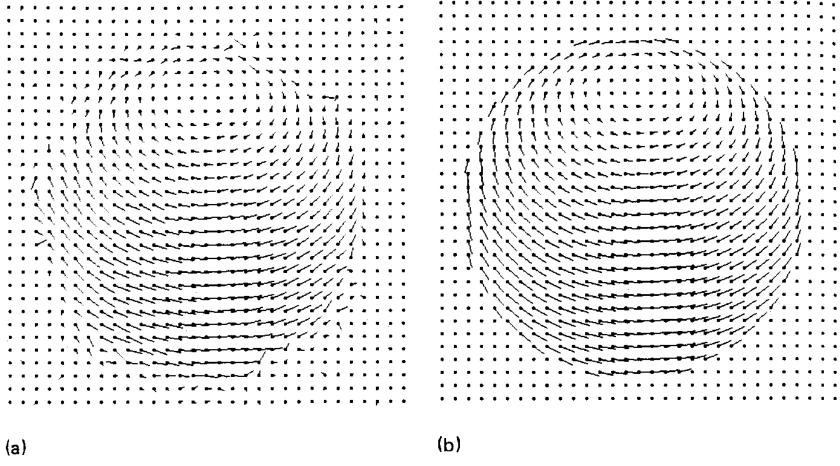


Figure 12-10. (a) The estimated optical flow after several more iterations. (b) The computed motion field.

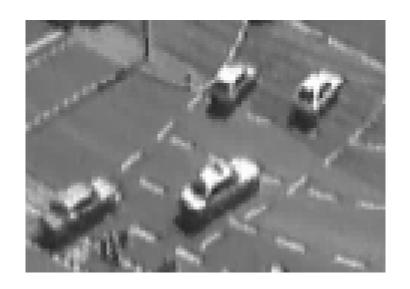
Optical Flow Result

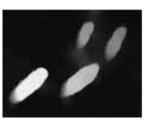
Horn & Schunck, remarks

1. Errors at boundaries

2. Example of *regularisation* (selection principle for the solution of illposed problems)

Results of an enhanced system

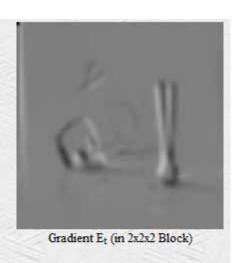




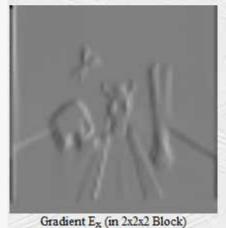


Results

 $\underline{http://www-student.informatik.uni-bonn.de/\sim} gerdes/OpticalFlow/index.html$

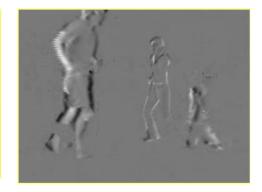


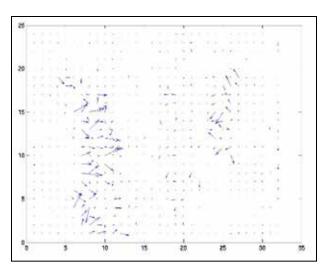
PAPER lambda=0.001 #terationen 1



Results

 $\underline{http://www.cs.utexas.edu/users/jmugan/GraphicsProject/OpticalFlow/}$





Optical Flow

- Brightness Constancy
- The Aperture problem
- Regularization
- Lucas-Kanade
- Coarse-to-fine
- Parametric motion models
- Direct depth
- SSD tracking
- Robust flow
- Bayesian flow

