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Materials 
• Gary Bradski & Sebastian Thrun, Stanford CS223 

http://robots.stanford.edu/cs223b/index.html  
• S. Narasimhan, CMU: http://www.cs.cmu.edu/afs/cs/academic/class/15385-

s06/lectures/ppts/lec-16.ppt 
• M. Pollefeys, ETH Zurich/UNC Chapel Hill: 

http://www.cs.unc.edu/Research/vision/comp256/vision10.ppt  
• K.H. Shafique, UCSF: http://www.cs.ucf.edu/courses/cap6411/cap5415/  

– Lecture 18 (March 25, 2003), Slides: PDF/ PPT   
• Jepson, Toronto: 

http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf  
• Original paper Horn&Schunck 1981: 

http://www.csd.uwo.ca/faculty/beau/CS9645/PAPERS/Horn-Schunck.pdf  
• MIT AI Memo Horn& Schunck 1980: 

http://people.csail.mit.edu/bkph/AIM/AIM-572.pdf 
• Bahadir K. Gunturk, EE 7730 Image Analysis II 
• Some slides and illustrations from L. Van Gool, T. Darell, B. Horn, Y. Weiss, P. 

Anandan, M. Black, K. Toyama 
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Tracking – Rigid Objects 



What is Optical Flow (OF)? 
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Optical flow is the relation of the motion field: 
• the 2D projection of the physical movement of points relative to the observer 

to 2D displacement of pixel patches on the image plane. 
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Common assumption: 
The appearance of the image patches do not change (brightness constancy) 
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Optical flow is the relation of the motion field: 
• the 2D projection of the physical movement of points relative to the observer 

to 2D displacement of pixel patches on the image plane. 
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Common assumption: 
The appearance of the image patches do not change (brightness constancy) 
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Note: more elaborate tracking models can be adopted if more frames are process all at once  

Optical flow is the relation of the motion field: 
• the 2D projection of the physical movement of points relative to the observer 

to 2D displacement of pixel patches on the image plane. 



Optical Flow 

• Brightness Constancy 
• The Aperture problem 
• Regularization 
• Lucas-Kanade 
• Coarse-to-fine 
• Parametric motion models 
• Direct depth 
• SSD tracking 
• Robust flow 
• Bayesian flow 

 



Optical Flow and Motion 

• We are interested in finding the 
movement of scene objects from time-
varying images (videos). 

• Lots of uses 
– Motion detection 
– Track objects 
– Correct for camera jitter (stabilization) 
– Align images (mosaics) 
– 3D shape reconstruction 
– Special effects 
– Games: http://www.youtube.com/watch?v=JlLkkom6tWw  

– User Interfaces: http://www.youtube.com/watch?v=Q3gT52sHDI4  

– Video compression 

http://www.youtube.com/watch?v=JlLkkom6tWw
http://www.youtube.com/watch?v=Q3gT52sHDI4
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Optical Flow: 
Where do pixels move to? 



Related to: Optical flow 

Where do pixels move? 



Related to: Optical flow 

Where do pixels move? 



Tracking – Non-rigid Objects 

(Comaniciu et al, Siemens) 



Tracking – Non-rigid Objects 



Optical Flow: Correspondence 

Basic question: Which 
Pixel went where? 



Optical Flow is NOT 3D 
motion field 

http://of-eval.sourceforge.net/ 

Optical flow: Pixel  
motion field as 
observed in image. 



Structure from Motion? 

• Known: optical flow 
(instantaneous 
velocity) 

• Motion of camera / 
object? 
 



Optical Flow is NOT 3D 
motion field 

http://en.wikipedia.org/wiki/File:Opticfloweg.png 
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Definition of optical flow 

OPTICAL FLOW = apparent motion of  
                               brightness patterns 

Ideally, the optical flow is the projection of the 
three-dimensional velocity vectors on the image 

è 
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Optical Flow 

• Brightness Constancy 
• The Aperture problem 
• Regularization 
• Lucas-Kanade 
• Coarse-to-fine 
• Parametric motion models 
• Direct depth 
• SSD tracking 
• Robust flow 
• Bayesian flow 

 



Start with an Equation: 
Brightness Constancy 

Point moves (small), but its 
brightness remains constant: 
 

𝐼𝑡𝑡(𝑥, 𝑦) = 𝐼𝑡𝑡(𝑥 + 𝑢, 𝑦 + 𝑣) 
 

𝐼 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 →  
𝑑𝑑
𝑑𝑑

= 0 

𝐼1 𝐼2 

Time: t Time: t + dt 



Mathematical formulation 

I (x(t),y(t),t) = brightness at (x,y) at time t 

Optical flow constraint equation (chain rule):  
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Brightness constancy assumption (shift of location  
but brightness stays same): 



The aperture problem  
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The aperture problem  
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1 equation in 2 unknowns 
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Optical Flow: 1D Case 
  Brightness Constancy Assumption: 
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Tracking in the 1D case: 

x

),( txI

Gary Bradski & Sebastian Thrun, Stanford CS223 http://robots.stanford.edu/cs223b/index.html  

http://robots.stanford.edu/cs223b/index.html
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Tracking in the 1D case: 

x

),( txI )1,( +txI

Gary Bradski & Sebastian Thrun, Stanford CS223 http://robots.stanford.edu/cs223b/index.html  
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Tracking in the 1D case: 

x

),( txI )1,( +txI

p

Gary Bradski & Sebastian Thrun, Stanford CS223 http://robots.stanford.edu/cs223b/index.html  

http://robots.stanford.edu/cs223b/index.html
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vr ? 

Tracking in the 1D case: 

x

),( txI )1,( +txI

p

Gary Bradski & Sebastian Thrun, Stanford CS223 http://robots.stanford.edu/cs223b/index.html  
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• Brightness constancy 
• Small motion 



Tracking in the 1D case: 
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Tracking in the 1D case: 

x
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Temporal derivative at 2nd iteration 

Iterating helps refining the velocity vector 

Can keep the same estimate for spatial derivative 

x

t
previous I

Ivv -¬
rr

Converges in about 5 iterations 



From 1D to 2D tracking 
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From 1D to 2D tracking 
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From 1D to 2D tracking 
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From 1D to 2D tracking 
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Shoot! One equation, two velocity (u,v) unknowns… 



Optical Flow vs. Motion: 
Aperture Problem 

Barber  shop pole: 
http://www.youtube.com/watch?v=VmqQs613SbE   

http://www.youtube.com/watch?v=VmqQs613SbE
http://www.youtube.com/watch?v=VmqQs613SbE
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Optical Flow 

• Brightness Constancy 
• The Aperture problem 
• Regularization 
• Lucas-Kanade 
• Coarse-to-fine 
• Parametric motion models 
• Direct depth 
• SSD tracking 
• Robust flow 
• Bayesian flow 

 



How does this show up visually? 
Known as the “Aperture Problem” 

Gary Bradski & Sebastian Thrun, Stanford CS223 
http://robots.stanford.edu/cs223b/index.html  
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Aperture Problem Exposed 

Motion along just an edge is ambiguous 
Gary Bradski & Sebastian Thrun, Stanford CS223 
http://robots.stanford.edu/cs223b/index.html  

http://robots.stanford.edu/cs223b/index.html
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Aperture Problem in Real Life 
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Normal Flow 

* Slide from Michael Black, CS143 2003 

We get at most “Normal Flow” – with one point we can only detect movement  
perpendicular to the brightness gradient.  Solution is to take a patch of pixels 
Around the pixel of interest.     



Aperture Problem 



Aperture Problem 
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Aperture Problem and Normal Flow 



Computing True Flow 

• Horn & Schunck 
• Schunck 
• Lukas and Kanade 



Possible Solution: Neighbors 

Two adjacent pixels which are part of the same rigid 
object: 
• we can calculate normal flows vn1 and vn2 

• Two OF equations for 2 parameters of flow: 𝑣̅ = 𝑣
𝑢  

𝛻𝐼1. 𝑣̅ − 𝐼𝑡𝑡 = 0 
𝛻𝐼2. 𝑣̅ − 𝐼𝑡2 = 0 



Considering Neighbor Pixels 



Considering Neighbor Pixels 

Jepson, Toronto: http://www.cs.toronto.edu/pub/jepson/teaching/vision/2503/opticalFlow.pdf  

Cluster center provides velocity vector common 
for all pixels in patch. 
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Optical Flow 

• Brightness Constancy 
• The Aperture problem 
• Regularization: Horn & Schunck 
• Lucas-Kanade 
• Coarse-to-fine 
• Parametric motion models 
• Direct depth 
• SSD tracking 
• Robust flow 
• Bayesian flow 
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Horn & Schunck algorithm  

è 
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Horn & Schunck algorithm  

Additional smoothness constraint  
(usually motion field varies smoothly in the image  
→ penalize departure from smoothness) : 

,))()(( 2222 dxdyvvuue yxyxs +++= òò
OF constraint equation term 
(formulate error in optical flow constraint) : 
  ,)( 2 dxdyIvIuIe tyxc ++= òò
minimize es+lec 

è 
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Horn & Schunck algorithm  

è 

Variational calculus: Pair of second order 
differential equations that can be solved iteratively. 
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Horn & Schunck algorithm  

è 
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Horn & Schunck 

The Euler-Lagrange equations :  
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Horn & Schunck 

Remarks :  

1. Coupled PDEs solved using iterative  
    methods and finite differences 

2. More than two frames allow a better  
    estimation of It 

3. Information spreads from corner-type  
    patterns 

è 
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Discrete Optical Flow Algorithm 
 Consider image pixel   
 

• Departure from Smoothness Constraint: 
 
 

  
 
 
 
•Error in Optical Flow constraint equation: 
 
 
 
• We seek the set                          that minimize: 
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Discrete Optical Flow Algorithm 
•  Differentiating       w.r.t                       and setting to zero: 
 
 

  
 
 
 
 
•                        are averages of              around pixel 
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Horn-Schunck Algorithm : 
Discrete Case 

• Derivatives (and error functionals) are 
approximated by difference operators 

• Leads to an iterative solution: 
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Intuition of the Iterative Scheme 

u 

v (Ex,Ey) 

Constraint 
line 

(u,v) 

),( vu

The new value of (u,v) at a point is equal to the average of 
surrounding values minus an adjustment in the direction of 
the brightness gradient 



Horn - Schunck Algorithm 



Example 

http://of-eval.sourceforge.net/ 



Results 



Results 



Optical Flow Result 
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Horn & Schunck, remarks 

1. Errors at boundaries 

2. Example of regularisation 
    (selection principle for the solution of 
    illposed problems) 

è 



Results of an enhanced system  



Results 
http://www-student.informatik.uni-bonn.de/~gerdes/OpticalFlow/index.html  

http://www-student.informatik.uni-bonn.de/~gerdes/OpticalFlow/index.html
http://www-student.informatik.uni-bonn.de/~gerdes/OpticalFlow/index.html
http://www-student.informatik.uni-bonn.de/~gerdes/OpticalFlow/index.html
http://www-student.informatik.uni-bonn.de/~gerdes/OpticalFlow/index.html
http://www-student.informatik.uni-bonn.de/~gerdes/OpticalFlow/index.html


Results 
http://www.cs.utexas.edu/users/jmugan/GraphicsProject/OpticalFlow/  

http://www.cs.utexas.edu/users/jmugan/GraphicsProject/OpticalFlow/
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Optical Flow 

• Brightness Constancy 
• The Aperture problem 
• Regularization 
• Lucas-Kanade 
• Coarse-to-fine 
• Parametric motion models 
• Direct depth 
• SSD tracking 
• Robust flow 
• Bayesian flow 
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