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Geometric Camera Calibration
Chapter 2

Guido Gerig
CS 6320 Spring 2013

Slides modified from Marc Pollefeys, UNC Chapel Hill, Comp256,
Other slides and illustrations from J. Ponce, addendum to course book,
and Trevor Darrell, Berkeley, C280 Computer Vision Course.
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Equation: World coordinates to
image pixels

pixel coordinates
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world coordinates
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Calibration target
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The Opt1-CAL Calibration Target Image
Find the position, u; and v;, in pixels,
of each calibration object feature point.
netic.bc.ca/CompVision/opti-CAL.html
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Camera calibration

From before, we had these equations
relating image positions,

u,v, to points at 3-d positions P (in
homogeneous coordinates):

So for each feature point, I, we have:

(ml _uims)'
(mz _Vims)’
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Camera calibration
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Stack all these measurements of 1=1...n points
(ml —uim3) B = 0
(mz _Vims)' P| =0
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Into a big matrix:

(BT 0" —uR" 0

0" P’ —vP" (M) |o
m2 —

T T T 0

P2 OT —UnPnT \m3/ )

\O P —-v P y \_/
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Camera
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We want to solve for the unit vecfor m (the
stacked one) that minimizes |Qm)

The eigenvector assoc. to the minimum eigenvalue of
the matrix QTQ gives us that because it is the unit
vector X that minimizes x" Q'Q x.
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Given n points P, ..., P, with known positions and their images
Ply---5Pn

Find 2 and e such that

. \2 2]
(m_ml(z,e) Pi) —|—(U=‘—m2(t.?e) ii)‘ is minimized
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Analytical Photogrammetry

|
)

Given n points Py, ..., P, with known positions and their images
P1;---3Pn
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Find 2 and e such that

‘ 18 minimized

Non-Linear Least-Squares Methods

 Newton
» Gauss-Newton
* Levenberg-Marquardt

Iterative, quadratically convergent in favorable situations
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Homogeneous Linear Systems
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A X | =10 * unique solution: 0

* unless Det(A)=0

Rectangular system ??

 01is always a solution

Minimize |Ax| °
- under the constraint |x| =1




How do you solve overconstrained
homogeneous linear equations ??
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E=Uz”=z" U U=

e Orthonormal basis of eigenvectors: ey, ..., e,.
e Associated eigenvalues: 0 < A < ... < A,.

eAny vector can be written as
L= (1€ + ...+ l€,

for some y; (i = 1,...,q) such that p? +... —|—,u:3 = 1.

E(xz) — E(e;) (Z»{TH):B —el(U"U)e;

- )kl,uq +.o. Aqn — A The solutionis e

> Mpi+...+p2-1)=0
remember: EIG(UTU) SVD(U) l.e. solution is V,,
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Matlab Solution

Example:
60 point pairs

Figure 1: Checkerboard pattern on the wall corner and the world frame coordinate axes

Least squares method is used to estimate the calibration matrix. There are 120 homogeneous linear
equations in twelve variables, which are the coefficients of the calibration matrix M. Lets denote this
system of linear equations as

Pm =0, m:=[m; my mg]T, (1)

where, mj, ma, mg are first, second and third rows of the matrix M respectively. m is a 12 x 1 vector,
and P is a 120 x 12 matrix. The problem of least square estimation of P is defined as

min|Pm|?, subject to ||Jm|*> = 1. (2)

As it turns out, the solution of above problem is given by the eigenvector of matrix PTP having
the least eigenvalue. The eigenvectors of matrix P7P can also be computed by performing the singular
value decomposition (SVD) of P. The 12 right singular vectors of P are also the eigenvectors of PTP.

#Perform SVD of P
[US V] = svd(P);
[min_val, min_index] = min(diag(S(1:12,1:12)));

%m is given by right singular vector of min. singular value
m= V(1:12, min_index);
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Degenerate Point Configurations

= =
= -— Are there other solutions besides M ??

N (P{ 0" —u,P]) (PIA—u Piv)
S — 1 141 1 141
T of Pl —uy,PT |/ Py — v, Py

0=Pl=| ... ... [,u)
P of —u,PT|\v P\ —u,P'v
\0" P, —u,P) \P.p—v.Pv)

) miP U ‘ Pi(Am; —mw")P; =0
), mgPt- r, _ P?(pmg — mgvT)Pi =0

 Coplanar points: (A,u,v )=(I1,0,0) or (0,I1,0) or (0,0,IT)

» Points lying on the intersection curve of two quadric
surfaces = straight line + twisted cubic

Does not happen for 6 or more random points!
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Camera calibration
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Once you have the M matrix, can recover the
Intrinsic and extrinsic parameters.

Estimation of the Intrinsic and Extrinsic
Parameters, see pdf slides S.M. Abdallah.

arl —acotOr] +ugrl  at, — o cotOt, + ut.

B B
M= ——rI ! —t, + vot,
sing 2 3 sing -
,
f'3 rz_'

W. Freeman


Slides-Camera-Calibration-Abdallah..pdf
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Once M is known, you still got to recover the intrinsic and
extrinsic parameters !!!
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This Is a decomposition problem, not an estimation
problem.

(ar] — acotOrd + uyrd  at, — acotOt, + ugt, )

p| M = b rl + vyrd b

sin ¢ sin ¢
\ 3 t )

ty + vt

e Intrinsic parameters

 EXtrinsic parameters




Slide Samer M Abdallah, Beirut

Estimation of the intrinsic and extrinsic parameters
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o wr; —acot Hrf t woprs
Write M = (4, b). therefore ALA (D) =K(R: 1) ”)(a{) . 'Pu’{ Hvor]

j siné -

o

1, Pl

Using the fact that the rows of a rotation matrix have unit length and are perpendicular to each other yields

p = &/lasl,
rs = pdas,

' /_-.-‘ where &= Fl.
up = p-la; -az),

A
Vg = plaz - as),

Since # is always in the neighborhood of /2 with a positive sine, we have

5 : |
po(a; X az) = —ar; —ocotdr), pllay x ai] = ——,
sinfl
- and
pla X az) = — r. 2, ““”
sin # priar x ay| = —.
sinf
Thus,
CmH:_(a.xa_;)-(agxa;). r —fi‘“;i"(r)(a X @3) = (@, % as)
. la, Xflzl_lﬂ: X a;| and VST . Y lar xasz) o
a = p*la, x a|sin@, ry=ryXr.

B = plas x az|sind,

Note that there are two possible choices for the matrix R depending on the value of &.
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Estimation of the intrinsic and extrinsic parameters

The translation parameters can now be recovered by writing Kt = pb, and hence t = pK~'b.
In practical situations, the sign of 7. is often known in advance (this corresponds to knowing
whether the origin of the world coordinate system is in front or behind the camera), which allows
the choice of a unique solution for the calibration parameters.
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Linear Systems
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Square system:

e unique solution
A X! =1Db |

- —
‘-‘

e Gaussian elimination

Rectangular system ??

e underconstrained:
Infinity of solutions
A X | = b 4

e gverconstrained:
no solution

EE) Minimize |Ax-b|’
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How do you solve overconstrained linear equations ??

e At a minimum,

e Define E = |e|? = e - e with

e = Axz—-b=|¢|el...|c,

= r1€1 +T9C + -+ T, — b

oE  Oe N de _238
dx; B O ere dx; B Oz; ©
—Za(fsc + - 4z, —b)-e=2¢ -e
= r, 1€C1 nCn = 4G
= 2¢f(Az — b) =0
e or
o
0=1]: |(Az —b) = AT(Azx — b) = ATAx = ATb,
c,
where & = A'b and AT = (AT A)~1AT is the pseudoinverse of A'!
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Homogeneous Linear Systems
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Square system:
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A X | =10 * unique solution: 0

* unless Det(A)=0

Rectangular system ??

 01is always a solution

Minimize |Ax| °
- under the constraint |x| =1




How do you solve overconstrained
homogeneous linear equations ??
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E=Uz”=z" U U=

e Orthonormal basis of eigenvectors: ey, ..., e,.
e Associated eigenvalues: 0 < A < ... < A,.

eAny vector can be written as
L= (1€ + ...+ l€,

for some y; (i = 1,...,q) such that p? +... —|—,u:3 = 1.

E(xz) — E(e;) (Z»{TH):B —el(U"U)e;

- )kl,uq +.o. Aqn — A The solutionis e

> Mpi+...+p2-1)=0
remember: EIG(UTU) SVD(U) l.e. solution is V,,
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Linear Camera Calibration

Given n points P, ...

Py -3 Pn

f/ml'Pi"ﬁ
(ui): ms - P; (ml_uimH)P-:[}
U; mg~P1‘ o — UMy !
l'\mﬂ'Ptfl
(PT 07 —u,PT)
of Pl —u P!
Pm=0withP®|. ... .. -, and m ¥
pl of unPE
LunT Pi UnPn)

L%
(%

, P, with Enown positions and their images

0
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Useful Links
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Demo calibration (some links broken):

e http://mitpress.mit.edu/e-
journals/Videre/001/articles/Zhang/Calib
Env/CalibEnv.html

Bouget camera calibration SW:

e http://www.vision.caltech.edu/bouguetj/
calib doc/

CVonline: Monocular Camera calibration:

e http://homepages.inf.ed.ac.uk/cqgi/rbf/C
VONLINE/entries.pl?TAG250



http://mitpress.mit.edu/e-journals/Videre/001/articles/Zhang/CalibEnv/CalibEnv.html
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http://homepages.inf.ed.ac.uk/cgi/rbf/CVONLINE/entries.pl?TAG250

