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Photometric Stereo, Shape
from Shading SfS
Chapter 12.1.1. Szelisky

Guido Gerig
CS 6320, Spring 2012

Credits: M. Pollefey UNC CS256, Ohad Ben-Shahar CS BGU, Wolff JUN
(http://www.cs.jhu.edu/~wolff/course600.461/week9.3/index.htm)
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Photometric Stereo
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Depth from Shading?

First step: Surface
Normals from Shading

Second step:
Re-integration of
surface from Normals
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Original Image

Examples

http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related

Simulated voyage over the surface of Neptune's large moon Triton

http://www.youtube.com/watch?v=nwzVrC2GQXE

http://www.youtube.com/watch?v=KiTA6ftyQuY

OpenGL Window


http://www.youtube.com/watch?v=sfCQ7f7PMbc&feature=related
http://www.youtube.com/watch?v=KiTA6ftyQuY
http://www.youtube.com/watch?v=nwzVrC2GQXE
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Shape from Shading
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Inverting the image formation process
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Image formation = “Shading from shape” (and light sources)

Credit: Ohad Ben-Shahar CS BGU
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Shape from Shading
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Authors: Emmanuel Prados and Olivier Faugeras

CVPR'2003, International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005.
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c) d)

a) Synthetic image generated from the classical Mozart's face [Zhang-Tsai-etal:99]; b) reconstructed surface from a) by new algorithm;
c) real image of a face; d)-e) reconstructed surface from c) by new algorithm.
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Photometric Stereo
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e Assume:
— a local shading model

— a set of point sources that are infinitely
distant

— a set of pictures of an object, obtained in
exactly the same camera/object
configuration but using different sources

— A Lambertian object (or the specular
component has been identified and
removed)
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Setting for Photometric Stereo

il

3

Wil

e R —
T

Multiple images with different lighting (vs
binocular/geometric stereo)

Camera
J
ﬁ

e g Y,
Surface Plane/
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Goal: 3D from One View and
multiple Source positions
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Usable Data

Input Images Mask
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Scene Results
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Projection model for surface recovery -
usually called a Monge patch
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Image
Plane

direction
of projection

height
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Lambertian Reflectance Map
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LAMBERTIAN MODEL

E =p<nn>=pCOS0
Y.

(p’q"l) ®

COS@ — 1+ ppL + qu
\/1+ p°+q° \/1+ p°+q,°




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(G, 1, -1 =

z=f(x,y)
Surface

Orientation
A J
(-fx, -fy, 1)
vﬂ\

X

IMAGE PLANE




REFLECTANCE MAP IS A VIEWER-CENTERED
REPRESENTATION OF REFLECTANCE

(-fx Ty, 1) > ('p’ -d, 1)

P, g comprise a gradient or gradient space representation for
local surface orientation.

Reflectance map expresses the reflectance of a material directly

In terms of viewer-centered representation of local surface
orientation.
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Reflectance Map (ps=0, gs=0)
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The Reflectance Map — Lambertian surface from overhead source position

R(p,q) =
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Reflectance Map
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Shading on Lambertian surface — Overhead point source

1
\fp2+q2+l

I(x,»)= p(N-[0,0.1)= p

Z

=R(p.q)

e

(X,y,H(x,y)) L N

Credit: Ohad Ben-Shahar CS BGU
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Reflectance Map
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Shape from Shading

Shading on Lambertian surface — General point source

—p-L-x—q-L},+LZ p-p;+q-q;+1

I=p(N-L)= =
Pl ) p1Jp2+q2+l\/sz+Ly2+L22 p,,/p2+q2+l\/p12+qlz+1
AT

(x, v, H(x,)) o

Credit: Ohad Ben-Shahar CS BGU
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Reflectance Map
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The Reflectance Map — Lambertian surface from general source position

p;+q-q; +1
R(qu): : p QpL. q Q; 2
\/p +q +l\/pl +q,” +1
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Gradient point of maximum brightness
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Reflectance Map (General)
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Figure 10-13. The reflectance map is a plot of brightness as a function of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of a Lambertian surface under point-source illumination, the contours turn
out to be nested conic sections. The maximum of R(p,q) occurs at the point
(p,q) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the contour map.
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Reflectance Map

Given Intensity I in image,
there are multiple (p,q)
combinations (= surface
orientations).

= Use multiple images with
different light source
directions.

s

q:% e

Figure 10-13. The reflectance map is a plot of brightness as a function of
surface orientation. Here it is shown as a contour map in gradient space. In the
case of a Lambertian surface under point-source illumination, the contours turn
out to be nested conic sections. The maximum of R(p,q) occurs at the point
(p.q) = (ps,qs), found inside the nested conic sections, while R(p,q) = 0 all
along the line on the left side of the contour map.
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Multiple Images = Multiple
Maps

Can isolate p, g as contour intersection
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Figure 10-21. In the case of a Lambertian surface illuminated successively by
two different point sources, there are at most two surface orientations that pro-
duce a particular pair of brightness values. These are found at the intersection
of the corresponding contours in two superimposed reflectance maps.




Example: Two Views

I(x,y)=R(p.q)
lj(x_a,y) — Rj(paQ)

Photometric Stereo
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Still not unique for certain intensity pairs.




Constant Albedo

I, =pS,;.N

Photometric Stereo

R

PN = S Solve linear equation system

to calculate N.
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Ponce:
I(z,y) = kB(x)
For each point source, we = kB(z,y)
know the source vector (by :@p (z QlN z,y) - @
assumption). We assume we —
know the scaling constant of = 9( Y- Vi
the linear camera (k). Fold
the normal (N) and the
reflectance (p(x,y)) into one _
vector g, and the scaling * In shadow:
constant and source vector I(x, y) =0

into another Vj.

where g(z,y) = p(xz,y) N (x,y) and V| = kS, where k is the constant connecting
the camera response to the input radiance.
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Multiple Images:
Linear Least Squares Approach

e Combine albedo and normal
e Separate lighting parameters
e More than 3 images => overdetermined system
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i(z,y) = {(z,y), L(2,y), .., In(z,y)}"

i(z,y) = Vg(z,y) _
g is obtained by solving this linear system: g_ (X,y):V_ll(X,y)

e How to calculate albedo pand N?
g(x,y) = p(x, yIN(xy)

- 1V=|‘;%|, p(x,y) = g




iy
I

Example LLS Input
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Problem: Some regions in some images are in
the shadow (no image intensity).




Dealing with Shadows (Missing

—_—
= = InfO)
——B0r each point source, ® Qut of shadow:
know the source
: I.(x,y)=kB(x,
tor (by assumption). 1(57) ()
2 assume we know the = kp(x, y)(N(x, y)eS j)
1ling constant of the
= X, .V.
ear camera. Fold the glx.y)eV,
mal and the
lectance into one ® |In shadow:
tor g, and the scaling
) I —
stant and source i%y)=0

tor into another Vj No partial shadow
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Matrix Trick for Complete
Shadows

e Matrix from Image Vector:

I(z,y) 0 0
Leg—| O EEw o0
0 0 v In(zyy)

e Multiply LHS and RHS with diag matrix
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Ii =1IVg(z,y)
(12(x,))  (1,(x,y) 0 . o Yv™)
; 0 .. . r
LIZ (x,y)J { R 0 Jtvz Jg(x,y)
I2(x,») 0 N 0 I\v' T
| |
Known Known Unknown

Known

= Relevant elements of the left vector and the matrix
are zero at points that are in shadow.
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Obtaining Normal and Albedo
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Given sufficient sources, we can solve the
previous equation (most likely need a least
squares solution) for g(x, y).

Recall that N(Xx, y) is the unit normal.

This means that p(x,y) is the magnitude of
g(x, y).
This yields a check

- If the magnitude of g(Xx, y) is greater than 1,
there’s a problem.

And N(x, y) = g(x, y) / p(X,Y).

- —
-
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Example LLS Input
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Example LLS Result

N
]
=0
‘(
1
f——)
=y
oy
N

T - em—

k

e Reflectance / albedo:
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Goal

Shape as surface with depth and normal
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Recovering a surface from

= = normals - 1
=
= D call the surface is ® If we write the known
ritten as vector g as
(%, 3,/ (x, 7)) (& (x.))

X,))= X,
his means the normal B%))=| & (%.7)
as the form: g,(x,y)

— £ ® Then we obtain values
J for the partial derivatives

of the surface:

[0 =(g,(x, )/ g:(x,))
[0 =(g,(x,»)/ g,(x,))
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Recovering a surface from

= =
== normals - 2
‘;: ® Recall that mixed second ~ ® \We can now recover the
partials are equal --- this surface height at any
gives us an integrability point by integration
check. We must have: along some path, e.g
& (x,0)/ & (x,)) _ )
% FCey) = [ fuls,y)ds +
(g, (x,)/&(x,1)) 0
ox

Jy‘fy(x,t)dt +c
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Height Map from Integration
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How to integrate?



Possible Solutions

 Engineering approach: Path integration
(Forsyth & Ponce)

* In general: Calculus of Variation
Approaches

» Horn: Characteristic Strip Method

« Kimmel, Siddigi, Kimia, Bruckstein: Level
set method

* Many others ....



Shape by Integation (Forsyth&Ponce)

« The partial derivative gives the change in surface height
with a small step in either the x or the y direction

« \We can get the surface by summing these changes in
height along some path.

- /0f Of
f(%y):jé (8373,9) -dl +c

For example, we can reconstruct the surface at (u,v) by starting at (0,0), sum-
ming the y-derivative along the line x = 0 to the point (0,v), and then summing
the xz-derivative along the line y = v to the point (u,v)

B U (‘_}f | WU af ‘
fwo) = [ S+ [ Faod



Obtain many images in a fixed view under different illuminants
Determine the matrix ) from source and camera information

Create arrays for albedo, normal (3 components),
p (measured value of 97) and
&3
q (measured value of ay)

For each point in the image array
Stack image values into a vector %
Construct the diagonal matrix 7
Solve IVg =11%

to obtain g for this point

albedo at this point is | g |

normal at this point is %%

p at this point is %%

g at this point is %%
end

Check: 1is (QEAA—Q%)Q small everywhere?
top left corner of height map is zero
for each pixel in the left column of height map
height value=previous height value + corresponding q value

end

for each row
for each element of the row except for leftmost

height value = previous height value + corresponding p value

end
end

Simple Algorithm
Forsyth & Ponce

Problem: Noise and
numerical (in)accuracy are
added up and result in
distorted surface.

Solution: Choose several
different integration paths,
and build average height
map.
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Mathematical Property:
Integrability

e Smooth, C2 continuous surface:

Z(XY) oy =Z(X,Y)yx

0 9,
= P24
Jdy Ox

= check if (Zf] — ZZ)Z is small
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SHAPE FROM SHADING
(Calculus of Variations Approach)

 First Attempt: Minimize error in agreement
with Image Irradiance Equation over the
region of Interest:

[] (1, y)— R(p, ) dxdy

object




SHAPE FROM SHADING
(Calculus of Variations Approach)

« Better Attempt: Regularize the Minimization of
error in agreement with Image Irradiance Equation
over the region of interest:

[[ 2 +p2+0%+0% + A(1(x,y) - R(p,q))° dxdy

object
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Horn: Characteristic Strip Method
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Small step in X,y — change in depth: Chagé%r1215,5
bz=mpdx+ qdy PP

New values of p,q at this new point (X,y):

bp=roéxr+séy and oOg=sd6z+1tdy
(r, s, t: second partial derivatives of z(x,y) w.r.t. x and y)

P\ _m (%), H=(" °) Hessian: curv. of surface
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Horn: Characteristic Strip Method
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Horn,
Irradiance Equation, Reflectance Map: | Chapterll,

pp. 250-255
E(z,y) = R(p,q)
Derivatives (chain rule):

bBe=rR,+sR;, and E,=sRk,+tR,,

() =m (%)

Relationship between gradient
In the image and gradient in the
reflectance map

- —
T
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Horn: Characteristic Strip Method
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Horn,

2 Equations for 3 unknowns (r,s,t): We Chapterl1,
can’t continue in artibrary direction. pp. 250-255

- —
T

— Trick: Specially chosen direction

bz\ [ R, 5 Step in image E(x,y) parallel
by ] -\ Ry ¢ to gradient in R
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=#=—% Horn: Characteristic Strip Method
;_?: Horn,
o 2 Equations for 3 unknowns (r,s,t): We | Chapterll,
can’t continue in artibrary direction. pp. 250-255

— Trick: Specially chosen direction

Step in image E(x,y) parallel
to gradient in R

Solvmg for new™walues for p q:

6 Change In (p,q) can
( ) ( ) §¢. be computed via

- gradient of image
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Horn: Characteristic Strip Method

//é\\iwx

Figure 11-6. Curiously, the step taken in pg-space is parallel to the gradient of
E(z,y), while the step taken in ry-space is parallel to the gradient of R(p, g).
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Horn: Characteristic Strip Method

i=R1h ?;"=Rq: é=p-R13+qRqa
f}:Ema ':.:'"I‘_"‘Eya
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dots denote differentiation with respect to &

Solution of differential equations: Curve on surface

X+6X, y+dy, Z+4&z, p+ép. q+8g
X Y. Z.Pq
Figure 11-5. The solution of the shape-from-shading problem is determined by

solving five differential equations for z, y, z, p, and ¢g. The result is a characteristic
strip, a curve in space along which surface orientation is known.
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Horn: Characteristic Strip Method

Shape recovery via characteristic strips

Shape from Shading via Characteristic Curves
Given
* I{x,v) of an (orthographic) projection of unknown Hyx,v)
* The reflectance map R(p.q)
* Initial data x, 1, H(X,¥,), P(X,V,), q(Xp0,)
Develop a curve solution on Hfx,y) by taking small steps of size 0s
via the system & =R &
=R
&H =(pR, +qR, )
p=1%
qg=1&
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Horn: __Characteristic Strip Method
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Horn,
Chapterll,
pp. 250-255

Figure 11-7. The shape-from-shading method is applied here to the recovery
of the shape of a nose. The first picture shows the (crudely quantized) gray-level
image available o the program. The second picture shows the base characteristics
superimposed, while the third shows a contour map eomputed from the elevations
found along the characteristic curves,
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Another Solution to SFS:
Kimmel, Siddiqgi, Kimia, Bruckstein
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Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).
[Kimmel et al., IJCV9I5]
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Height climbed while progressing a distance
IAC in the direction n in_the (x.y) plane is
given by |[AC| = |Az|cot(a).

Let z denote time in the course of evolution, T
i.e., z=1t. Since E = pAcos(a), we have ’K\]AZ\\
AC| _ E/pA ol
N cot(a) = : (11) -

V1= (E/p))? N

pdf document



sfs-siddiqi.pdf
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Kimmel, Siddiqgi, Kimia, Bruckstein
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Proposed Solution: Evolve a curve such that
it tracks the height contours of z(x, y).
[Kimmel et al., IJCV9I5]
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T he curve evolution equation is:
ac L/ pA -
{ 8/1 Ez/(p}‘i)2

C(s.0)
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Kimmel, Siddiqgi, Kimia, Bruckstein
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Examples - Pyramids
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shaded image equal height contours

numerical solution true surface
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e Kimmel, Siddiqi, Kimia, Bruckstein
=" Wecam —.—

— | — Examples - Three Mountains R
e
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shaded image equal height contours

numerical solution true surface
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Application Area: Geography
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Abb. 13 Sehrsglicts. Sctodghetrchumianeg & Unarmndoeggabiars auf Dl &5 v ieren
DOM (Azdocrng = [0w:), thaciagers iz dee bares (= yet) 22 moacchan (=i} Sorelesoe wad dos
Mohmitoosn (=Maan) AbY Ddusgsmabusb 1.2 800
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Application: Braille Code
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Abbiidung 3

Oben Iinks: Messanordnung mit einer Kamera und vier blauen LED-Leuchtieldern.
Uniten finks: Ausschnitt einer Naltschachtel mit Blindenschrift-"ragung.

Rechts: 3D-Bild nach SFS-Analyse. Darunter ist ein Hohenprofil durch drei Braille-Punkte dargestelit

pdf document



Braille-code.pdf
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Mars Rover Heads to a New
Crater NYT Sept 22, 2008
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Limitations
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e Controlled lighting environment
— Specular highlights?
— Partial shadows?
— Complex interrreflections?

e Fixed camera
- Moving camera?
— Multiple cameras?

=> Another approach: binocular /
geometric stereo




