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Multi-View Geometry:
Find Corresponding Points
(New book: Ch7.4, 7.5, 7.6

Old book: 11.3-11.5)

Guido Gerig
CS 6320 Spring 2013
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Credit for materials: Trevor Darrell, Berkeley, C280, Marc Pollefeys,
UNC/ETH-Z, CS6320 S012, Andrew Zisserman, MVG Book




Excellent Website:
http://vision.middlebury.edu/stereo/

/i vision.middlebury.edu

stereo|* mview = MRF = flow = color
Stereo Evaluation * Datasets * Code * Submit

Daniel Scharstein « Fichard Szeliski

Wilcome to the Middlebury Stereo Vision Page, formerly located at www middlebury edussterea. This website accompanies our
taxonormy and comparison of two-frame stereo correspondence algarithms [1]. 1t containg:

& An on-line evalustion of current algorithms
* Many steren datasets with ground-truth disparities
* Qur stereo correspondence software

® An on-line subrnission script that allows you to evaluate yvour stereo algorithm in our framewark

How to cite the materials on this website:

Wi grant permission to use and publish all images and numerical results on this website, If you report performance results, we reguest
that you cite our paper [1]. Instructions on how to cite our datasets are listed on the datasets page IFyou want to cite this website,
please use the URL "vision.middlebury.edu/stereo/".

References:

[1] D. Scharstein and R. Szeliski. A taxonormy and evaluation of dense fwo-frame stereo correspondence algorithms
international Jownal of Computer Vision, 47(1/2/3) 7-42, April-June 2002
Microsoft Research Technical Beport MSE-TRE-2001-81, November 2001,

Suppoart for this work was pravided in part by NSF CAREER grant 9954485 and MNEF grant 15-0413168. Any opinions, findings, and conclusions or recommendations expressed in this material are thoze of the authors and do
not necessarily reflect the vieves of the Mational Science Foundation.



Stereo reconstruction: main steps

— Calibrate cameras
— Rectify iImages
— Compute disparity
— Estimate depth



Stereo reconstruction: main steps

— Calibrate cameras
— Rectify images
— Compute disparity
— Estimate depth




Correspondence problem

Multiple match
* fvpothesis 1 hynotheses satisfy
© Hypothesis 2 .

epipolar
constraint, but
which is correct?

© Hypothesis 3

/
Oc

Left image Right image

Figure from Gee & Cipolla 1999



Correspondence problem

* Beyond the hard constraint of epipolar geometry,
there are “soft” constraints to help identify
corresponding points

— Similarity

— Uniqueness

— Ordering

— Disparity gradient



Correspondence problem

* Beyond the hard constraint of epipolar geometry,
there are “soft” constraints to help identify
corresponding points

— Similarity

— Uniqueness

— Ordering

— Disparity gradient

 To find matches in the image pair, we will assume
— Most scene points visible from both views
— Image regions for the matches are similar in appearance



Your basic stereo algorithm

T HON. ABRAIAM LINCOLN, President of United States. ""l"
v e : ‘“_‘_"'FI

Adapted from Li Zhang



Your ba3|c stereo algorithm
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For each epipolar line:

Adapted from Li Zhang



Your ba3|c stereo algorithm

== HON. ﬂ'I’IEhi.IIf.riM LINCOL N, Irl:'bl Il:'l.'lt ol 'Lnltul Htates, —-'.vl-'
A i = - u_d_lﬁ — 1

For each epipolar line:
For each pixel in the left image

Adapted from Li Zhang



Your basic stereo algorithm
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For each epipolar line:

For each pixel in the left image
e compare with every pixel on same epipolar line in right image

Adapted from Li Zhang



Your basic stereo algorithm

mﬁg'-

HON. ﬂ'l’lihi.llf.riM LINCOL N, I"n‘blllcut of 'Lnlhtl Htates, —-'vl-'
. = au—a_nﬂ R ity >
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For each epipolar line:

For each pixel in the left image
e compare with every pixel on same epipolar line in right image

e pick pixel with minimum match cost

Adapted from Li Zhang



Your basic stereo algorithm
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For each epipolar line:

For each pixel in the left image
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e pick pixel with minimum match cost

Adapted from Li Zhang



Your basic stereo algorithm

::,__-‘—-'-

HON. ﬂ'l’lihi.llf.riM LINCOL N, I"n‘blltcut of 'Lnlhtl Htates, —-Jl-'
= - R i—lﬂ - —_ - g

""""""

For each epipolar line:
For each pixel in the left image
e compare with every pixel on same epipolar line in right image
e pick pixel with minimum match cost
Improvement. match windows

e This should look familiar...

Adapted from Li Zhang « E.g. SSD, correlation etc.



Stereo matching

« Search is limited to epipolar line (1D)
* Look for “most similar pixel”

for x=1:w,

for y=1:h,
bestdist=inf;
for i=-dr:0,

if (dist(pix(x,y),pix(x+i,y))<bestdist)
d(x,y)=i; best=sim(pix(x,y),pix(x+i,y)); end

end

end

end



Stereo matching algorithms
* Match Pixels in Conjugate Epipolar Lines
— Assume brightness constancy
— This Is a tough problem

— Numerous approaches
 dynamic programming [Baker 81,0hta 85]
e smoothness functionals

* more images (trinocular, N-ocular) [Okutomi
93]

e graph cuts [Boykov 00]
— A good survey and evaluation:

— http://vision.middlebury.edu/stereo/



http://vision.middlebury.edu/stereo/

Correspondence using Discrete Search

Left Right

crror
Criterion function: h e
-

disparity




Comparing image regions

Compare intensities pixel-by-pixel

- — [ -

Similarity measures

Census
125 | 126 | 125 0 0 0
127 | 128 [ 130 |[—] o0 1 | — [00001111]
129 | 132 | 135 RN only compare bit signature

(Real-time chip from TYZX based on Census)



Sum of Squared Differences (SSD)

Right
W, W,
_“Liﬂ‘. il T
"f‘ ; e ml o o

(x,.0,) (x,—d.y;)

w, and w, are corresponding m by m windows of pixels.
We define the window function :

f oy —
H/m (J” ’ }’) o ’
The SSD cost measures the intensity difference as a function of disparity :

C.(x.y.d)y= Y[ (wv)-I(u—d.v)

fwviell (x.v)

(L SuSx+E y-L<y<Sy L




Example

Feature Matching

Evaluate NCC for all features with similar coordinates

(3‘ J’ [x__ J‘+m]><|-.} 10 J’er]

Keep mutual best matches
Still many wrong matches!




Example ctd

Feature Example

0.98 040 018 -0.3g 0.1

-0.05 0.73 DAy 0.51 0.7z

018 -0.349 0.7 0.15 0.7%

027 049 0.18 0.7a 0.2t

0.08 0.50 045 0.23 033

Gives satisfying results
for small image motions



Example image pair — parallel cameras




First image
~——




Second Image




Intensity profiles

AN\

20 280
200 200 b
Hrm.f'
130 —/’ 150 F
100 100 I
al a0 M
0 : L L L ! 0 L L L L L
1] 100 200 300 400 a00 1 100 200 oo 400 aln

* Clear correspondence between intensities, but also noise and ambiguity



Dense correspondence algorithm

Parallel camera example — epipolar lines are corresponding rasters




Dense correspondence algorithm

Parallel camera example — epipolar lines are corresponding rasters




Dense correspondence algorithm

Parallel camera example — epipolar lines are corresponding rasters

AN\ R —
2 h )

epipolar
line




Dense correspondence algorithm

Parallel camera example — epipolar lines are corresponding rasters

line

Search problem (geometric constraint): for each point in the left image, the
corresponding point in the right image lies on the epipolar line (1D ambiguity)

Disambiguating assumption (photometric constraint): the intensity neighbourhood of
corresponding points are similar across images

Measure similarity of neighbourhood intensity by cross-correlation



Correspondence problem

| _epipolar
line

Neighborhood of corresponding points are similar
In Intensity patterns.

Source: Andrew Zisserman



Correlation Methods (1970--) F&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w’ Is maximized.
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Correlation Methods (1970--) F&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w’ Is maximized.

Normalized Correlation: minimize q instead.



Correlation Methods (1970--) F&P book new: 7.4, old 11.3

Slide the window along the epipolar line until w.w’ Is maximized.
2

Normalized Correlation: minimize q instead. = Minimize |w-w’



Cross correlatlon of nelghbourhood regions

left and right windows encoded as vectors w and w’
zero-mean vectors (w — w) and (w' — w’)
Normalized cross-correlation:

1 1

|w — wl| [[w" — @]

C(d) = (w—w) - (w' —@')]

Advantage: Invariant to intensity differences: Invariant to affine intensity
transformation I' = al + u



Cross correlatlon of nelghbourhood regions
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e zero-mean vectors (w — w) and (w' — w’)
» Normalized cross-correlation:
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« Advantage: Invariant to intensity differences: Invariant to affine intensity
transformation I' = al + u
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Cross correlatlon of nelghbourhood regions

1

1

i epipolar
line

left and right windows encoded as vectors w and w’
zero-mean vectors (w — w) and (w' — w’)
Normalized cross-correlation:

o(d) = — L (w—®)- (' — @)
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Advantage: Invariant to intensity differences: Invariant to affine intensity
transformation I' = al + u



Cross correlatlon of nelghbourhood regions

1

1

i epipolar
line

left and right windows encoded as vectors w and w’
zero-mean vectors (w — w) and (w' — w’)
Normalized cross-correlation:

o(d) = — L (w—®)- (' — @)

|w — wl| [[w" — @]

Advantage: Invariant to intensity differences: Invariant to affine intensity
transformation I' = al + u



Correlation-based window matching

. left image band (x)

Source: £



Correlation-based window matching

J left image band (x)
| g right image band (x/)

Source: £



Correlation-based window matching

‘ left image band (x)
g right image band (x/)

Cross
correlation

x'{  disparity = X/ - x
Source: Andrew Zisserman



Correlation-based window matching

‘ left image band (x)
g right image band (x/)

Cross
correlation

x'{  disparity = X/ - x
Source: Andrew Zisserman



Correlation-based window matching

‘ left image band (x)
a right image band (x/)

Cross
correlation

x't | disparity = X - X

Source: Andrew Zisserman



Textureless regions

/target region
E- l- “‘II eft image band (¥

Source: Andrew Zisserman Grauman



Textureless regions

/target region
E- l- “‘II eft image band (¥

Source: Andrew Zisserman Grauman



Textureless regions

k"

' “r l 1 target region
| mlzl ‘ left image band (x)
\é right image band (x)

c§.5_ no - - ) Ccross
: [ A\ ,"ﬂll\ correlation

E | \ :

E |’ ,l J'-ﬂ' Jllr"v._.' 1 } E .

{0 \ / J \ ;' \ W Nﬂ/ | f Lw-u«.q i Textureless regions are
E I | I tLII H . . -

m / non-distinct; high
ambiguity for matches.
Source: Andrew Zisserman



Textureless regions
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Source: Andrew Zisserman
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Textureless regions

target region

|
A
Izl left image band (x)

é right image band (x/)

G5 Ao - - 3 cross
; [l | M\ fﬁ\ Al correlation |
: \ [ A IJ'”"\ A / v | [\ ' Textureless regions are
1YY L | 7. 1 non-distinct; high
\ YRV : v ! ambiguity for matches,

— wrong matches
Source: Andrew Zisserman



Effect of window size

Source: Andrew Zisserman Grauman



Effect of window size

Source: Andrew Zisserman Grauman



Effect of window size

epipolar
line

Source: Andrew Zisserman Grauman



Problems with window matching

Patch too small?

Patch too large?

Can try variable patch size [Okutomi and Kanade/,
or arbitrary window shapes [Veksler and Zabih]



Effect of window size

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with about
the same disparity.

Figures from Li Zhang



Effect of window size

W =20

Want window large enough to have sufficient intensity
variation, yet small enough to contain only pixels with about
the same disparity.

Figures from Li Zhang



Problems?

e Ordering
e Occlusion
* Foreshortening

Solutions:
e Formulate Constraints
e Use more than two views

e Smart solutions vs. “brute force” searches with
statistics



Exploiting scene constraints




Additional geometric constraints for
correspondence

[Faugeras, pp. 321]

ABC
e Ordering of points:
Continuous surface:
same order in both
Images.
e |s that always true? // \\\
AB A BC

— —



The Ordering Constraint




The Ordering Constraint

But it is not always the case..



Ordering constraint

surface slice surface as a path

occlusion left

occlusion right

N 1)

1 2 3 45 6



Stereo matching

Constraints
 epipolar

e ordering

e unigueness

o disparity limit

Trade-off
» Matching cost (data)
 Discontinuities (prior)

Consider all paths that satisfy the constraints

pick best using dynamic programming



Stereo matching

Constraints
 epipolar

e ordering

e unigueness

o disparity limit

Trade-off
» Matching cost (data)
 Discontinuities (prior)

Consider all paths that satisfy the constraints

pick best using dynamic programming



Dynamic Programming (Baker and Binford, 1981)

1 2 3 4 5 6




Dynamic Programming (Baker and Binford, 1981)

% Loop over all nodes (k,[) in ascending order.
for k=1 to m do
for{=1tondo
% Imitialize optimal cost C(k,[) and backward pointer B(k, ).
C(k, 1) « +o0; Bk, 1) + nil;
% Loop over all inferior neighbors (1, 7) of (k,1).
for (1, j) € Inferior — Neighbors(k, I) do
%% Compute new path cost and update backward pointer if necessary.
d+ C(1,5) + Arc — Cost(z, 7, k, 1);
if d < C(k,I) then C(k, 1) + d; B(k,1) + (i, j) endif
endfor;
endfor;
endfor;
% Construct optimal path by following backward pointers from (m,n).
P+ {{m,n}}; (1,5} + (m,n};
while B(4,7) # nil do (1, 5) + B(t,5); P + {(3,7)} U P endwhile.
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The Ordering Constraint




The Ordering Constraint

But it is not always the case..



Forbidden Zone




Forbidden Zone

/!

\

m, N

M, My



Forbidden Zone

Forbidden
Zone of M:

Violation of
ordering
constraints

/!
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M, My



Forbidden Zone

Forbidden
Zone of M:

Violation of
ordering
constraints

/!

\

mi

M, My

Practical applications:

— Object bulges out: ok

— In general: ordering across
whole image is not reliable
feature

— Use ordering constraints for
neighbors of M within small
neighborhood only



Disparity map

image 1(x,y) Disparity map D(x,y) image I'(x",y’)

(X",y )=(x+D(x,y).y)



Hierarchical stereo matching

Allows faster computation

Deals with large disparity
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Dynamic Programming (Ohta and Kanade, 1985)

Reprinted from “Stereo by Intra- and Intet-Scanline Search,” by Y. Ohta and T. Kanade, IEEE Trans. on Pattern Analysis and Machine
Intelligence, 7(2):139-154 (1985). O 1985 IEEE.



Real-time stereo
on graphics hardware

Ruigang Yang and Marc Pollefeys, UNC

Computes Sum-of-Square-Differences

Hardware mip-map generation used to aggregate results over
support region

Trade-off between small and large support window

Shape of a kernel
for summing up 6 levels

140M disparity hypothesis/sec on Radeon 9700pro
e.g. 512x512x20disparities at 30Hz



Stereo results

— Data from University of Tsukuba

— Similar results on other images without ground
truth

-

Ground truth




16 — Fast Correlation *1 — SSD+MF



Results with window correlation

Window-based matching Ground truth
(best window size)



Results with better method

State of the art method

Boykov et al., Fast Approximate Energy Minimization via Graph Cults, Gr()und truth

International Conference on Computer Vision, September 1999.


http://www.cs.cornell.edu/rdz/Papers/BVZ-iccv99.pdf

Material |

http://vision.middlebury.edu/stereo/

(online stereo pairs and truth (depth maps)

Stereo correspondence software: e.qg.
http://vision.middlebury.edu/stereo/data/sce
nes2001/data/imagehtml/tsukuba.html

CVonline compendium:
http://homepages.inf.ed.ac.uk/rbf/CVonline/



http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/data/scenes2001/data/imagehtml/tsukuba.html
http://vision.middlebury.edu/stereo/data/scenes2001/data/imagehtml/tsukuba.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/

Material |l

Epipolar Geometry, Rectification:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/FUSIELLO2/re
ctif cvol.html

and:
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT
11/nodell.html

Stereo:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT
11/lect1ll.html
3D Reconstruction:

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL COPIES/OWENS/LECT
11/node8.html



http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO2/rectif_cvol.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO2/rectif_cvol.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/node11.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/node11.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/lect11.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/lect11.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/node8.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OWENS/LECT11/node8.html

Additional Materials



Problem: Foreshortening

Window methods assume fronto-parallel surface at 3-D point.

! I’

Initial estimates of the disparity can be used to warp the
correlation windows to compensate for unequal amounts of
foreshortening in the two pictures [Kass, 1987; Devernay
and Faugeras, 1994].



Why is cross-correlation such a poor measure in the second
case?

1. The neighbourhood region does not have a “distinctive”
spatial intensity distribution

2. Foreshortening effects
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Why is cross-correlation such a poor measure in the second
case?

1. The neighbourhood region does not have a “distinctive”
spatial intensity distribution

2. Foreshortening effects

Z\

fronto-parallel surface slanting surface

Imaged length the same Imaged lengths differ



Three Views

The third eye can be used for verification..

Demo epipolar geometry



http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html
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Demo epipolar geometry



http://www.ai.sri.com/~luong/research/Meta3DViewer/EpipolarGeo.html

More Views (Okutami and Kanade, 1993)

New book: Ch7.6 p. 215: Pick a reference image, and slide
the corresponding window along the corresponding epipolar
lines of all other images, using inverse depth (Z~1) relative
to the first image as the search parameter.
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inverse distance
Reprinted from “A Multiple-Baseline Stereo System,” by M. Okutami and T. Kanade, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 15(4):353-363 (1993). \copyright 1993 IEEE.

Use the sum of correlation scores to rank matches: SSD used
as global evaluation function: Find Z~* that minimizes SSD.



Multi-camera configurations

& & [ 3 cameras give both robustness
and precision

@ BB 4 cameras give additional

redundancy
@ 3 cameras in a T arrangement
allow the system to see vertical
@ lines.

(illustration from Pascal Fua)
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Reprinted from “A Multiple-Baseline Stereo System,” by M. Okutami and T. Kanade, IEEE Trans. on Pattern
Analysis and Machine Intelligence, 15(4):353-363 (1993). \copyright 1993 IEEE.






Normalized cross correlation

subtract mean: A« A— < A> B+ B— < B>

i 2.5 A(i, §)B(4, j)

NCC =
Vi S AG, )22 55 B(i, §)?

Write regions as vectors region A region B
A—a, B—b g g
NCC = 2P a ! |

o g g
b
-1<NCC<1 .
vector a vector b

Source: Andrew Zisserman



Aggregation window sizes

Small windows

disparities similar
more ambiguities
accurate when correct

Large windows

larger disp. variation
more discriminant
often more robust

use shiftable windows to deal
with discontinuities

(Illustration from Pascal Fua)
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