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Shape Statistics: Averages

→



Shape Statistics: Variability

Shape priors in segmentation



Shape Statistics: Classification

http://sites.google.com/site/xiangbai/animaldataset

http://sites.google.com/site/xiangbai/animaldataset


Shape Statistics: Hypothesis Testing

Testing group differences

Cates, et al. IPMI 2007 and ISBI 2008



Shape Application: Bird Identification

Glaucous Gull Iceland Gull

http://notendur.hi.is/yannk/specialities.htm

http://notendur.hi.is/yannk/specialities.htm


Shape Application: Bird Identification

American Crow Common Raven



Shape Application: Box Turtles

Male Female

http://www.bio.davidson.edu/people/midorcas/research/Contribute/boxturtle/boxinfo.htm

http://www.bio.davidson.edu/people/midorcas/research/Contribute/box turtle/boxinfo.htm


Shape Statistics: Regression

  

Application: Healthy Brain Aging
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What is Shape?

Shape is the geometry of an object modulo position,
orientation, and size.



Geometry Representations

I Landmarks (key identifiable points)
I Boundary models (points, curves, surfaces, level

sets)
I Interior models (medial, solid mesh)
I Transformation models (splines, diffeomorphisms)



Landmarks

FromGalileo (1638) illustrating the differences in shapes

of the bones of small and large animals.

5

Landmark: point of correspondence on each object

that matches between and within populations.

Different types: anatomical (biological), mathematical,

pseudo, quasi

6

T2 mouse vertebra with six mathematical landmarks

(line junctions) and 54 pseudo-landmarks.

7

Bookstein (1991)

Type I landmarks (joins of tissues/bones)

Type II landmarks (local properties such as maximal

curvatures)

Type III landmarks (extremal points or constructed land-

marks)

Labelled or un-labelled configurations
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From Dryden & Mardia

I A landmark is an identifiable point on an object that
corresponds to matching points on similar objects.

I This may be chosen based on the application (e.g.,
by anatomy) or mathematically (e.g., by curvature).



Landmark Correspondence
Shape and Registration

Homology: 

Corresponding 

(homologous) 

features in all 

skull images.

Ch. G. Small, The Statistical Theory of Shape

From C. Small, The Statistical Theory of Shape



More Geometry Representations

Dense Boundary
Points

Continuous Boundary
(Fourier, splines)

Medial Axis
(solid interior)



Transformation Models

From D’Arcy Thompson, On Growth and Form, 1917.



Shape Spaces

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.



Shape Spaces

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.



Shape Spaces

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.



Shape Spaces

A shape is a point in a high-dimensional, nonlinear
manifold, called a shape space.



Shape Spaces

x

y

d(x, y)

A metric space structure provides a comparison
between two shapes.



Recommended Reading about Manifolds

I W. H. Boothby, An Introduction to Differentiable
Manifolds and Riemannian Geometry

I M. do Carmo, Riemannian Geometry
I J. M. Lee, manifold book series:

I Introduction to Topological Manifolds
I Introduction to Smooth Manifolds
I Riemannian Manifolds: An Introduction to Curvature
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Manifolds

M

U

ϕ(U )

ϕ

A manifold is a smooth topological space that “looks”
locally like Euclidean space, via coordinate charts.



Examples
I Euclidean Space: Rd

id : Rd → Rd is a global coordinate chart
I The Sphere: Sd

I Local coordinate chart for S2:

(−π, π)× (0, 2π)→ S2

(θ, φ) 7→ (cos(θ) cos(φ), cos(θ) sin(φ), sin(θ))

θ

φ



Examples: Matrix Groups

I General Linear Group: GL(n)
I Space of nonsingular n× n matrices
I Open set of Rn×n

I Special Linear Group: SO(n)
I Rotations of Rn

I All matrices R ∈ GL(n) such that RRT = I and
det(R) = 1
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Examples: Positive-Definite Tensors

a

c

b
l

γ

p

p

0

1

A ∈ PD(2) is of the form

A =

(
a b
b c

)
,

ac− b2 > 0, a > 0.

Similar situation for PD(3) (6-dimensional).



Examples: Shape Spaces

Kendall’s Shape Space Space of
Diffeomorphisms



Tangent Spaces

p
    

X

M

Infinitesimal change in shape:

p X

A tangent vector is the velocity of a curve on M.



Riemannian Metrics

A Riemannian metric is a smoothly varying inner
product on the tangent spaces, denoted 〈v,w〉p for
v,w ∈ TpM.

This metric now gives us the norm of a tangent vector:

‖v‖p =
√
〈v, v〉p.



Geodesics

A geodesic is a curve γ ∈ M that locally minimizes

E(γ) =

∫ 1

0
‖γ′(t)‖2dt.

Turns out it also locally minimizes arc-length,

L(γ) =

∫ 1

0
‖γ′(t)‖dt.



The Exponential Map

p
T M pExp  (X)p

X

M

Notation: Expp(X)

I p: starting point on M
I X: initial velocity at p
I Output: endpoint of geodesic segment, starting at

p, with velocity X, with same length as ‖X‖



The Log Map

p
T M pExp  (X)p

X

M

Notation: Logp(q)
I Inverse of Exp
I p, q: two points in M
I Output: tangent vector at p, such that

Expp(Logp(q)) = q
I Gives distance between points:

d(p, q) = ‖Logp(q)‖.



Shape Equivalences

Two geometry representations, x1, x2, are equivalent if
they are just a translation, rotation, scaling of each other:

x2 = λR · x1 + v,

where λ is a scaling, R is a rotation, and v is a
translation.

In notation: x1 ∼ x2



Equivalence Classes

The relationship x1 ∼ x2 is an equivalence
relationship:

I Reflexive: x1 ∼ x1

I Symmetric: x1 ∼ x2 implies x2 ∼ x1

I Transitive: x1 ∼ x2 and x2 ∼ x3 imply x1 ∼ x3

We call the set of all equivalent geometries to x the
equivalence class of x:

[x] = {y : y ∼ x}

he set of all equivalence classes is our shape space.



Kendall’s Shape Space

I Define object with k points.
I Represent as a vector in R2k.
I Remove translation, rotation, and

scale.
I End up with complex projective

space, CPk−2.



Quotient Spaces

What do we get when we “remove” scaling from R2?

  

x

Notation: [x] ∈ R2/R+
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Constructing Kendall’s Shape Space

I Consider planar landmarks to be points in the
complex plane.

I An object is then a point (z1, z2, . . . , zk) ∈ Ck.
I Removing translation leaves us with Ck−1.
I How to remove scaling and rotation?
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Scaling and Rotation in the Complex Plane
Im

Re
0

!

r

Recall a complex number can be writ-
ten as z = reiφ, with modulus r and
argument φ.

Complex Multiplication:

seiθ ∗ reiφ = (sr)ei(θ+φ)

Multiplication by a complex number seiθ is equivalent to
scaling by s and rotation by θ.



Removing Scale and Rotation

Multiplying a centered point set, z = (z1, z2, . . . , zk−1),
by a constant w ∈ C, just rotates and scales it.

Thus the shape of z is an equivalence class:

[z] = {(wz1,wz2, . . . ,wzk−1) : ∀w ∈ C}

This gives complex projective space CPk−2 – much like
the sphere comes from equivalence classes of scalar
multiplication in Rn.



Alternative: Shape Matrices

Represent an object as a real d × k matrix.
Preshape process:

I Remove translation: subtract the row means from
each row (i.e., translate shape centroid to 0).

I Remove scale: divide by the Frobenius norm.



Orthogonal Procrustes Analysis

Problem:
Find the rotation R∗ that minimizes distance between
two d × k matrices A, B:

R∗ = arg min
R∈SO(d)

‖RA− B‖2

Solution:
Let UΣVT be the SVD of BAT , then

R∗ = UVT



Intrinsic Means (Fréchet)

The intrinsic mean of a collection of points x1, . . . , xN in
a metric space M is

µ = arg min
x∈M

N∑
i=1

d(x, xi)
2,

where d(·, ·) denotes distance in M.



Gradient of the Geodesic Distance

The gradient of the Riemannian distance function is

gradxd(x, y)2 = −2 Logx(y).

So, the gradient of the sum-of-squared distance function
is

gradx

N∑
i=1

d(x, xi)
2 = −2

N∑
i=1

Logx(xi).



Computing Means

Gradient Descent Algorithm:

Input: x1, . . . , xN ∈ M

µ0 = x1

Repeat:

δµ = 1
N

∑N
i=1 Logµk

(xi)

µk+1 = Expµk
(δµ)
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Example of Mean on Kendall Shape Space

Hand data from Tim Cootes

→
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Where to Learn More

Books

I Dryden and Mardia, Statistical Shape Analysis, Wiley, 1998.

I Small, The Statistical Theory of Shape, Springer-Verlag,
1996.

I Kendall, Barden and Carne, Shape and Shape Theory, Wiley,
1999.

I Krim and Yezzi, Statistics and Analysis of Shapes,
Birkhauser, 2006.


