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Abstract: The world is undergoing rapid changes in its climate, environment, and ecosystems
due to increasing population growth, urbanization, and industrialization. Numerical simulation
is becoming an important vehicle to enhance the understanding of these changes and
their impacts, with regional and global simulation models producing vast amounts of data.
Comprehending these multidimensional data and fostering collaborative scientific discovery requires
the development of new visualization techniques. In this paper, we present a cyberinfrastructure
solution—PolarGlobe—that enables comprehensive analysis and collaboration. PolarGlobe
is implemented upon an emerging web graphics library, WebGL, and an open source virtual globe
system Cesium, which has the ability to map spatial data onto a virtual Earth. We have also integrated
volume rendering techniques, value and spatial filters, and vertical profile visualization to improve
rendered images and support a comprehensive exploration of multi-dimensional spatial data. In this
study, the climate simulation dataset produced by the extended polar version of the well-known
Weather Research and Forecasting Model (WRF) is used to test the proposed techniques. PolarGlobe
is also easily extendable to enable data visualization for other Earth Science domains, such as
oceanography, weather, or geology.
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1. Introduction

The world is undergoing significant environmental and global climate change due to
increasing population growth, urbanization, and industrialization [1–4]. These changes [5–7]
are exemplified in the Earth’s polar regions, as evidenced by melting sea ice [8] and glacier retreat [9],
which significantly affect the living environment of wildlife and biodiversity in these areas. To better
understand these climate phenomena and their driving mechanics, there exists an urgent need for new
data, techniques, and tools to support scientific studies and the development of effective strategies to
mitigate their negative influences [10].

Climate simulation has been considered a critically important means to address the aforementioned
research challenges [11]. Global or regional climate models, such as WRF (Weather Research
and Forecasting), are often used by the climate modeling community to unveil the historical
climate trajectory and make projections for future changes. Through long-duration computations,
these simulation models often generate very large climate data [12]. It is estimated that worldwide
climate simulation data will reach hundreds of exabytes by 2020 [13]. Besides falling into the category
of “big data” due to its size, climate data is multidimensional in nature. In other words, the time-series
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data not only spread across a geographic area on the Earth’s surface (horizontal dimension), but they
also occupy different altitudes with varying pressure levels (vertical dimensions).

Scientific visualization is considered an effective vehicle for studying such complex, big volume,
and multiple dimension data [14]. By providing visual representations and analytics, visualization
has the capability to validate hypothesis, uncover hidden patterns, and identify driving factors
of various climate and atmospheric phenomena [15]. Nonetheless, the scientific visualization
community still faces challenges in efficient handling of big data, the complex projection between the
viewport coordinate system and the raw geospatial dataset, and finding innovative ways to present
the voluminous data in order to reveal hidden knowledge. With the widespread adoption of Web
technology, there is also an urgent demand for a Web-based visualization platform to allow web-scale
access, visualization, and analysis of spatial dataset.

This paper introduces our PolarGlobe solution, a Web-based virtual globe platform that supports
multi-faceted visualization and analysis of multi-dimensional scientific data. Built upon the popular
Cesium 3D globe system, the PolarGlobe tool has the advantage of being seamlessly integrative with
Web browsers, eliminating the need to install or configure any plug-ins before data viewing. In addition,
an emerging graphics language (WebGL) is utilized to operate the GPU (Graphics Processing Unit) and
develop functions for data rendering. The remainder of this paper is organized as follows: Section 2
reviews relevant works in the literature; Section 3 introduces the visual analytical techniques being
applied to the PolarGlobe system; Section 4 demonstrates the PolarGlobe GUI (graphic user interface);
Section 5 describes a number of experiments to test system performance; and Section 6 concludes this
work and discusses future research directions.

2. Literature Review

In this section, we organize the review of previous works from two perspectives: (1) previously
established visualization platforms and (2) key techniques employed to support such visualization.

2.1. Popular Visualization Platforms for Climate Research

Visualization has a long tradition in supporting climate research [16]. Standard 2D presentation
techniques such as time/bar charts, 2D maps, and scatterplots are most frequently used in analyzing
climate data [17]. Popular visualization tools, such as UV-CDAT (Ultrascale Visualization Climate
Data Analysis Tool) [18], provide great support for data regridding, exploratory data analysis,
and parallel processing of memory-greedy operations [19]. However, these tools suffer great limitations
in the context of cyberinfrastructure and big data science [20]. For instance, users need to download
and setup the software in order to get access to the tools. To visualize a scene, users also need to write
corresponding (python) code, which often requires a long learning curve. As climate simulation data
is becoming multi-dimensional, the lack of support in multi-dimensional data analysis poses many
challenges for visualizing these data, especially those with time-series stamps. Moreover, in most tools,
data is visualized as an individual piece without being integrated with terrain and morphology data
to enhance understanding.

Overcoming these limitations has become a significant research thread of virtual globe
visualization. Inspired by the vision of “Digital Earth” (by former US vice president Al Gore) [21],
a number of virtual globe tools have been developed to digitally depict our living planet. Popular ones
include Google Earth [22], NASA WorldWind (National Aeronautics and Space Administration; [23],
and Microsoft Virtual Earth [24]. Using these tools, climate data visualization can be integrated into
the actual terrain and Earth scene. Sun et al. (2012) developed a geovisual analytical system to
support the visualization of climate model output using Google Earth [25]. Varun et al. [26] developed
iGlobe, an interactive visualization system that integrates remote sensing data, climate data, and
other environmental data to understand weather and climate change impacts. Helbig et al. [27]
presents a workflow for 3D visualization of atmospheric data in a virtual reality environment.
HurricaneVis [28] is a desktop visualization platform that focuses on scalar data from numerical
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weather model simulations of tropical cyclones. Leveraging the power of graphics cards, multivariate
real-time 4D visualization can also be achieved [29]. These works demonstrate a great advantage in data
visualization over traditional approaches that rely solely on 2D maps and scatter plots. However, most
of these applications are desktop-based or require pre-installation and configuration, limiting their
widespread use and adoption by Internet users.

As cyberinfrastructure evolves, research that develops web-based visual analytical tools has
gradually increased. For instance, Fetchclimate [30] and the USGS (United States Geological Survey)
National Climate Change Viewer (UCCV) [31] provide solutions for environment information retrieval
and mapping. Similar online visualization applications have also been applied to other geoscience
disciplines such as hydrology [32–34], oceanography [35], and polar [20,29], etc. Open source packages,
such as Cesium [36] or NASA’s new WebWorldWind [37], are also exploited to construct web-based
environmental applications [38,39]. Though these existing studies provide a satisfying solution to 2D
spatiotemporal data visualization, they have very limited capability at visualizing high-dimensional
spatiotemporal climate data.

2.2. Key Techniques in Multidimensional Visualization of Spatial Data

Spatiotemporal multidimensional data visualization is a hotspot in the field of scientific
visualization. The existing work varies from organizing and visualizing time-varying big data
to applying multiple visual analytic techniques for planning, predicting, and decision-making.
There are two key issues in developing an efficient web-based visual analytic tool.

The first is efficient management and transmission of big data from the server to client end.
With the popularity of ‘big data’ in both academia and industry, increasing research focuses
on managing big data for scientific visualization [40,41]. Others address big data usage on
visualization in emerging environments [42,43]. In climate study, Li and Wang [39] proposed a video
encoding and compression technique to efficiently organize and transmit time-varying big data over
successive timestamps.

The second is exploiting visualization techniques to provide real-time realistic visualization.
Wong et al. [44] assembled multiple information visualization and scientific visualization techniques
to explore large-scale climate data captured after a natural phenomenon. Li et al. [45] implemented
a volume rendering technique for visualizing large-scale geosciences phenomena, i.e., dust storms.
An octree data structure, in combination with a view-dependent LOD (Level of Detail) strategy, is used
to index 3D spatial data to improve rendering efficiency. Liang et al. [46] further improved this method
to introduce a volumetric ray-casting algorithm to avoid loss of accuracy. The algorithm avoids over- or
under-sampling when converting geospatial data from a spherical coordinate system to a Cartesian
coordinate system for visualization. To boost rendering performance, GPU is always employed for
parallel rendering [47,48]. In order to present volumetric data from multiple facets, these techniques
need to be extended to include more novel visual effects for a comprehensive visual exploration.

In the next section we describe, in detail, our proposed techniques, including an enhanced octree
model to support efficient visualization and analysis of climate data in a cyberinfrastructure environment.

3. Methodology

3.1. Three-Dimensional Data Volume Rendering

The goal of this section is to explain the creation of a panoramic view of climate variables on and
above the Earth’s surface. To accommodate the multivariate characteristics of climate data (horizontal
and vertical), we developed a volume rendering technique to present the variances in the north polar
region and its upper air [49]. To take full advantage of highly detailed datasets such as reanalysis
data, point clouds visualization is adopted. To support this visualization strategy, a value filter and
a region filter were also developed to provide more perspectives and enable a better understanding of
various climate phenomena. Challenges in efficiently transferring large datasets between client and
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server, and rendering big data in the client browser, were also addressed. For instance, there are almost
4 million points at a single timestamp in the climate simulation data we adopted [50]. To overcome
these obstacles, an enhanced octree-based Level of Detail (LOD) method is utilized in the point
cloud visualization.

The LOD strategy is adopted, because it is a widely-used technique in multi-dimensional
visualization that decreases total data volume while boosting rendering and data transfer speed
at the same time [51]. Based on the principle that the further the data is observed, the fewer details
will need to be shown, the loading and rendering of 3D volume data can be greatly improved.
When the octree-based LOD is applied to 3D volume visualization, the data size is reduced by a power
of eight (23). Because our goal is to realize Web-scale visualization for multi-dimensional data such
that people from any place of the world can access the system, the octree is implemented on both
the backend (Web server side) and frontend (client browser side). The server side is responsible for
preparing the LOD data to respond to clients’ requests. The frontend deals with acquiring the proper
LOD data and rendering them in the browser using WebGL (Web Graphics Language). We describe
the implementation of these two parts in detail below.

3.1.1. Data Preparation at the Server Side

Though the octree can be built from original data and kept in the memory of the server for
responding to requests from clients from time to time, this is not only time consuming, which will
keep the user waiting longer to acquire the LOD data, but it is also a great burden on the server’s
memory, especially when the data volume is big or multiple data sources are in use. To overcome
these limitations, we adopted a strategy that pre-processes the original data and produces different
LOD data as files. In order to prepare the LOD data, the first task is to decompose the original data
volume (which consists of numerous points distributed in a 3D grid) into multiple special cubes.
These cubes are considered special because their length, measured by the number of points along
one side, should be a power of 2. This length will be evenly cut along each side of the cube by 2.
Such decomposition ensures an evenly increasing ratio of data size along with the increasing LOD.
The iterative decomposition process continues until every cube contains only one point—the highest
LOD. The following equation can be used to determine the length L of the initial cube:

L = 2( f loor(logM
2 )+1) (1)

where M is the minimum size amongst the length, width, and height of the original data volume,
and floor() is a function to receive the integer part of a floating number, given any positive input.

In Equation (1), L is the minimum power of a power of 2 number that is no smaller than M.
After identifying the size of the initial cube, the decomposition process starts by dividing the cube
into eight equally sized sub-cubes. The sub-cubes generated after the first decomposition are called
the roots of the octrees. For convenience, let us state that the roots are at level 0. Because each cube
is represented by one data value, a generalization process should be invoked to derive this value.
A typical approach is to average the values on all the grid points falling in the cube. This process
requires extra storage in order to store the generalized value for the cubes that share the same root.

To address this data challenge, we propose a new octree multi-level storage strategy, or differential
storage, to reduce data redundancy across octree layers. The idea comes from differential backup that
saves only the changes made in a computer system since the last backup. For our purposes, each
higher layer of the octree only stores the differential or incremental dataset(s) from its precedent layers.
These values are a sample from the original data points rather than averaged from them. Figure 1
demonstrates a design of the proposed octree with differential storage support. This data structure
saves substantial storage space. For example, we estimate saving approximately 14% of the storage
space for a three-layer octree using this data structure.
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Once the octree model is established, all cubes and sub-cubes are indexed. The root contains
eight initial cubes with index from 0 to 7. As the decomposition continues, every cube is split into
eight sub-cubes of the same size until the LOD reaches the highest level n. The naming of each
sub-cube follows the patterns of (1) the name of its parent cube+; and (2) its index (from 0 to 7). Hence,
the sub-cubes with the same root have the same prefix in its name. The strategy used to record data
is what distinguishes levels 1 and higher from level 0. At level n, all the generalized data derived from
the same roots are written in a single file whose filename contains the level number and the index of
the root recorded at level n−1. Those sub-cubes with no grid points are ignored. Using this strategy,
the web server can rapidly locate the LOD data with a specified region and level. It repeats the process
applied to level 1 until level n is reached. It then splits every cube produced in level n−1 to get 8 n
sub-cubes where no more than one point in a cube exists. The generalized data values, as well as
some necessary metadata (such as the range of value variation and the maximum LOD), are recorded
in a single file for data initialization at the client side.Informatics 2017, 4, 17  5 of 17 
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3.1.2. Data Rendering on the Client Side

Thus far, LOD data is prepared at all levels. The server will return the data by specifying the root
index and the LOD as parameters in the request. The client side is now able to access any data it needs.
The workflow at the client side starts with retrieving the data at level 0 from the server for initialization.
Using the indices recorded in level 0 data, the whole data volume is split up into multiple cubes
(differed by their indices) for rendering, management, and further operation. If the cubes have been
initialized or a user changes the view perspective, the rendered data will be refreshed by updating
the LOD information in each cube. Since the location of each cube is known, the distances from
the viewport to all cubes are a fixed number at all levels. For a given cube, the data at which LOD
should be rendered is decided by the below equation:

LOD =

√
C

dist
(2)

where dist denotes the view distance, and C is a constant value which needs to be adjusted by
user experience.

Applying this equation, the data with higher details are loaded as the view distance decreases.
Giving the calculated level and its own index, the cube sends a request to the server and retrieves
the desired LOD data. Once a request is sent, the level in the unit is marked and temporarily cached
in memory for future rendering purposes. This way, repeated requests for the same data are avoided.

Data loading and rendering performance are greatly enhanced with the proposed LOD strategy,
especially when the data is observed from a long distance. If the view distance becomes very short or
the observer dives inside the data cubes, however, a large portion or even all of the data is loaded at
the highest LOD. This may keep the user waiting a long time and can greatly impede the efficiency



Informatics 2017, 4, 17 6 of 17

of visualization. To resolve this issue, we developed a perspective-based data clipper to eliminate
the invisible parts of the data.

The data clipping strategy adopts popular interactive clipping techniques in volume
visualization [52] and the WebGL implementation of clipping pixels, in order to remove the data
not visible in the current viewport. Benefitting from the decomposition of the whole data volume,
the clipping process can be achieved by checking whether the centers of the decomposed cube
are within the viewport by applying the following equation:

cp = VP·ep (3)

where ep denotes the vector consisting of the visual coordinates of the position at the center of
a decomposed cube with a number 1 appended (e.g., [x, y, z, 1]). VP is the view-projection matrix
with a 4 × 4 dimension, produced by how a user views the scene and the view projection setting.
cp is the desired vector, from which whether a point is within the viewport or not can be determined.

For convenience, the elements of the vector cp are sequentially marked as xclip, yclip, zclip, and wclip,
and the following calculation is performed:

xviewport =
xclip

wclip
(4)

yviewport =
yclip

wclip
(5)

zviewport =
yclip

wclip
(6)

If xviewport, yviewport, and zviewport both range from −1 to 1 (boundaries excluded), the decomposed
units are determined to be visible. In this case, the data point is reserved and rendered. The data points
that do not fall in the above range are disregarded.

3.2. Data Filtering

This point cloud visualization provides an overview of the entire multi-dimensional data volume.
By adjusting the size or transparency of the points, the internal variation of the data may also
be observed. However, when millions of points are being simultaneously rendered in the viewport,
the information that a user needs may still be hidden. In order to uncover important details of the data,
we suggest three strategies to filter the data points and reveal only the data variables of interests to
end-users in both space and time.

First, a value-based filter is introduced in the system. This approach has a great advantage for
3D visualization. Specifically, filtering the value range requires that only part of the data points need
to be rendered. For example, high temperature values can be filtered out to allow scientists to focus
on analyzing cold spots. These cold spots or regions will form a particular shape and temperature
variance will be differed by colors. This function allows users to investigate data variation by colors as
well as by shape.

Second, a filter of data by regions is developed to regional studies as well as global studies.
For instance, geographical coordinates of the boundary information can filter data within a country
or state. To accomplish this task, point-in-polygon operations are performed for each data point
in the original dataset after orthogonal projection. However, this may present a problem when
the boundary polygons are complex, as computing time for determining the relationship of
a polygon and a point substantially increases as the number of the vertices in the polygon increases.
In order to reduce the computing burden, a generalization process is applied to the polygon before
the point-in-polygon calculation.
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In our work, the Douglas-Peucker line simplification algorithm is adopted [53]. The algorithm
performs as follows: (1) for every two vertices in the polygon that share the same edge, if the distance
between them is under a threshold, they will be merged into a new one—the midpoint of the shared
edge; (2) Step 1 is repeated until there are no pairs of points whose interval is less than the threshold.
It should be noted that while this simplification process helps accelerate the filtering speed, it could
also affect result accuracy. Our preliminary experiments show that with the proper threshold, the time
cost of filtering regional points is greatly reduced with little impact on filtering precision.

The last filter targets the vertical variation. Drawing lines on the surface of Earth, the values on
the vertical slices of the data volume along those lines are extracted and rendered in a special way.
This process is explained in the following section.

3.3. Vertical Profile Visualization

A vertical profile image provides a cross-sectional view of a cubical data. x dimension of
the cross-sectional view is a user-defined path along the Earth’s surface, and y dimension is normally
elevation for spatial data. Interactive vertical profile visualization has the capability to intuitively
demonstrate the inner structure and information inside a 3D volume, and reveal the variation of
a specific factor in a vertical direction (perpendicular to the Earth’s surface), which is very helpful
in climate research [54]. Generally, this function is developed in three steps. The first is a response to
user requests that involve drawing a polyline on the Earth’s surface, indicating a trajectory of interest,
e.g., along the east coastline of Greenland. The second is generation of an image according to the original
three-dimensional data. Each pixel in the image displays the climate variable values at coordinates
(x, z), where the x-axis is the location along the trajectory, and the z-axis shows the location changes on
the 29 vertical pressure levels of the raw data. The third step is displaying the image on the ground
along the user-defined polyline. Three software modules are developed to handle the above tasks.

The Interactive Module (Figure 2) handles user input. The Image Generator Module acquires
the data defined from the user input and converts it to a smooth image, showing the variation from
ground to space as well as along the drawn polyline. The 3D Primitive Module projects the image
from the Image Generator Module on a blank wall created on the surface of the virtual Earth.
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We built the Interactive and 3D Primitive Modules on the open source library Cesium—a very
popular virtual globe platform that supports the rendering of spatial data in a 3D virtual space.
The following algorithm was developed to generate the image demonstrating the change in some
variables along a specific path inside the data cube.

Given that 3D gridded data is being visualized, a horizontal slice of the data means that the vertical
dimension is the value distribution in a given study area, identified by latitude and longitude,
at a certain altitude. Note that some data might use pressure levels as the vertical dimension, but can
be converted to altitude during preprocessing, if preferred. When we look at the data cube, it would
look like columns of data points neatly standing on the Earth’s surface. When a path of interest is drawn
on the Earth’s surface, we first need to determine all the nearby columns as the gridded data is not
continuous on a 2D surface. The key idea is to rasterize the polyline representing the path. Figure 3
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shows an example. Taking a horizontal data slice as a reference, the user-input vector is rasterized on
a grid. The highlighted data points falling on the path of interest are extracted for all horizontal data
slices to generate the vertical profile image.Informatics 2017, 4, 17  8 of 17 
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Rasterization is valid only when all the columns are evenly distributed in a grid, which means there
is a specific map projection applied to the data. However, the projection of the input polyline may not
always be the same as the one adopted in the original data source. For example, the polyline retrieved
using the API was provided by Cesium is WGS (World Geodetic System) 84 [55], while the data used
for our study is an azimuthal equidistant projection [56]. In this case, a re-projection process is required
before rasterization. The projection information of a data source can usually be found in its metadata.

The next task is to sequentially project the selected columns on a planar coordinate system, whose
axes stand for elevation and distance. In this way, a 2D grid can be built. This step unfolds the wall
and lays it on a plane (if a user draws a complex path rather than a straight line). Figure 4a shows
an example of the selected data points along a user chosen path. Only one image is produced and
projected on 3D primitives, rather than multiple images that correspond to all the facets of the folded
wall. In this new planar coordinate system, the distance between every two neighboring columns
should be the same as the one in the 3D space. The great circle distance between the locations where
the columns stand determines this. A final image (Figure 4b) is then generated by interpolating all
the data points falling in the image region to generate the raw image matrix. Finally, this matrix
is converted to a RGB image with proper color mapping.
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4. Graphic User Interface

Figure 5 demonstrates the PolarGlobe GUI. The climate data used in the visualization is the air
temperature output from the Polar version of the WRF Model. This data covers 20 degree latitude
and north, and contains 29 vertical layers differed by pressure levels. The spatial resolution
is 30 km. By applying a predefined color map, this panoramic view of data clearly shows the change
in temperature with a cold spot on top of the Greenland ice sheet.
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Figure 5. Graphic User Interface of PolarGlobe (http://cici.lab.asu.edu/polarglobe2): (a) a screenshot
of temperature visualization in the whole study area; (b) a close look at the distribution of air
temperature in Alaska, US on 1 January 2012; (c) a view of temperature of Alaska from the side;
(d) the value filtering effect (Air temperature higher than −20 degree Celsius for data presented
is shown here); (e) the vertical profile view and statistics.

A spatial filter can be applied to make further exploration of the air temperature data at an area
of interest, such as Alaska, US. Once “Alaska” is selected from the dropdown menu of the spatial
region, the original data cube (temperature data at all pressure layers) is cut by the geographical
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boundary of Alaska. Figure 5b,c demonstrates the temperature data in the winter (1 January 2012),
from different angles. It can be seen that it is much warmer along the coast of the Gulf of Alaska and
inland (near the south) than in other parts. This observation can be verified by conducting a value
filtering in the PolarGlobe system (see results in Figure 5d).

When an inner structure of the data volume needs to be examined, our vertical profile visualization
will serve this purpose. Figure 5e shows the temperature change along 65 degree North near Alaska and
northwest Canada. It can be observed that the near surface temperature in Canada along the trajectory
of interest is higher than that in Alaska, and the value keeps increasing when moving toward the east.

5. Experiments and Results

This section provides quantitative analysis of the performance improved by the proposed methods
for accomplishing real-time and interactive visualization of the voluminous dataset. The experiments
were conducted on a Dell workstation with 8 cores at 3.4 GHz and 8 gigabytes memory size.

5.1. Performance on Data Loading and Rendering

To accelerate data loading speed, we introduced the enhanced octree-based LOD and viewport
clip to filter out the invisible part of the data volume to reduce data size to be loaded. This experiment
provides a comparison in terms of data loading time, using: (1) the non-optimized approach,
in which the entire dataset will be loading for visualization; (2) the approach that adopts only
the LOD; and (3) the one with both the LOD and viewport clip, applied to reveal the advantages of
the optimization strategy. In the experiment, we assume a user is viewing the Earth from space and
his eye sight falls on the location of 75◦ W, 60◦ N on the Earth’s surface. As he looks closer or further,
the angle remains the same and only the view distance changes. The loading efficiency under the three
scenarios is compared and results are shown in Figure 6.
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Figure 6. Comparison of data loading time before and after applying optimization strategies as the view
distance becomes shorter. (Error bars are smaller than the plot markers).

It can be observed from Figure 6 that data loading with no optimization takes much more time
than in the other two situations, no matter how far away a user views the data volume. When the view
distance is below 8 million meters, the loading time with LOD-adopted is comparable to the LOD + Clip.
Beyond that view distance, the LOD with data clipping presents a conspicuous advantage over
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the LOD alone. As expected when data volume is observed in shorter distances, a greater amount of
points are filtered out because of their invisibility (the smaller the data volume being loaded, the less
computation burden on the graphic processor). Therefore, a higher rendering performance (in terms
of frame rate) can be achieved. We also compare the rendering performances by their frame rates
when refreshing the data volume. Similar results are presented in Figure 7. In Figure 7, an interesting
bell-shaped curve is shown for our proposed LOD + Clip method. At the distances of 6000 km and
4000 km, the frame rate drops to about half of that at other distances. This is due to the reason that
these distances are close enough to load the data at a higher level of detail, but not close enough to
clip the data volume, since most of the data volume remains in the viewport. This fact can be cross
validated with the results in Figure 6 (at the given two distances); there is, in fact, an increase in the data
loading time. The data-loading curve starts to drop when the view distances move below 4000 km for
the LOD + clip method (dashed line in Figure 6).
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5.2. Experiment on Accuracy vs. Efficiency in Spatial Filtering and Generalization

As mentioned, we introduced a simplification process for determining spatial boundaries.
This clips the original data volume to support the spatial filtering operation. Knowing that an increasing
level of simplification introduces a larger error in the boundary data, and thus affects the accuracy of
the results, we implemented the filtered grid points. Here the level of simplification was determined
by a distance tolerance, used to determine which neighboring vertices should be kept or deleted.
The resulting accuracy was measured by the ratio of correctly filtered grid points, using the simplified
boundary versus the results obtained by using the original boundary.

We used the boundary of Wisconsin, US as the test data (125,612 vertices in total). Figure 8
illustrates the results. The results reveal a rapid decline of time cost when distance tolerance begins
to increase in the simplification process. Here, the unit of this distance tolerance is a degree of
latitude/longitude. Accuracy, on the other hand, remains at 100% until the tolerance value is set
higher than 0.0064. Hence, the threshold 0.0064 is an ideal parameter setting for spatial boundary
simplification that maximizes both filtering efficiency and data accuracy.
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5.3. Impact of Interpolation on the Efficiency of Vertical Profile Generation and Visualization

Although interpolation is only a small part of implementing vertical profile visualization, it has
the greatest impact on efficiency in generating a profile. This step is needed, since our original test data
has a relatively coarse resolution—30 km, and the data points are not evenly distributed within space
(see illustration in Figure 4). The time cost of the interpolation is affected by three factors: (1) the number
of input points, namely, how many data values will be selected as the reference for interpolation;
and (2) the number of output points. This is a measure of the resolution of the interpolated image by
the total number of pixels, and (3) which interpolation method is used. We designed two experiments
to reveal the impact of these three factors on the interpolation performance.

In the first one, we controlled the number of output points (the total pixel numbers of the output
image) at 160,000 and compared the performance of different types of interpolation methods by altering
the number of input points. Here, the comparison is applied to three types of interpolation which all
meet the demand in our case. They are nearest neighbor interpolation [57], linear interpolation [58],
and cubic precision Clough-Tocher interpolation [59]. In the second experiment, we controlled
the number of input points at 5000 and changed the number of output points. The results of the two
experiments are presented in Figures 9 and 10, respectively.

Both figures show that, when either the number of input points or output points increases,
an increase in interpolation time can be observed. In addition, it is obvious that linear interpolation
achieves the highest efficiency, while the nearest neighbor performs the worst. This is because
the nearest neighbor interpolation requires the construction of a KD-tree during the processing,
which costs more time. However, the speed is not the only indicator used to evaluate an interpolation
method. It is more important to figure out how well an interpolation method emulates our data.
Therefore, a third experiment was conducted to test the precision of interpolation.

We choose 10,353 points as the data in this experiment. These 10,353 points consist of 357 columns.
In other words, 357 points in the original data grid were selected along a user drawn path on the Earth’s
surface. This number is related to the density of the raw data points. On each column, there exists
29 data points (since the raw data’s z dimension is 29, representing 29 pressure levels). To evaluate
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the accuracy in the interpolation, part of all the data points were selected and served as the input for
interpolation (we call it train data). The rest is used as test/ground truth data.
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For the simulated output points, there are two values associated with them: si (the interpolated
values); and the real values (ri). The accuracy δ is calculated using the Normalized Euclidean Distance
(NED) between the two vectors, composed respectively by the interpolated and real values:

δ =
1

NED
(7)
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NED =
n

∑
i=1

√
(si − ri)

2

n
(8)

where n denotes the number of the points in the test data. When a higher NED is observed, a lower
accuracy value δ will be obtained. Figure 11 demonstrates the accuracy of each interpolation approach
by changing the sampling ratio between train and test data.
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As shown, the accuracy of interpolation rapidly declines as fewer training data are selected,
as reflected by a decreasing sampling ratio. This is especially true for linear and Clough-Tocher
interpolations. On the other hand, these two methods still perform better than the nearest neighbor
interpolation at each sampling rate. Clough-Tocher interpolation performs a bit better than linear
interpolation when the sampling ratio is controlled above 1/8. When the ratio is below 1/8, we observe
very similar resultant accuracy values. Synthesizing results from all three experiments, linear
interpolation is the best fit in our visualization system, with real-time requirement due to its fast
speed and high accuracy.

6. Conclusions

This paper introduces PolarGlobe, a Web-based virtual globe system to allow Web-scale access
of big climate simulation data. Different from previous work, our proposed platform does not
require installation of plugins. This substantially reduces the learning curve of the software tool.
Technically, the major contributions of this work include: (1) a server-client architecture powered up by
a new differential-storage-enhanced octree model to support efficient spatial indexing, transmission,
and rendering of big climate data; (2) a combined value and spatial filter to enable perception-based
visualization and interactive data exploration; and (3) vertical profile visualization to allow examination
of variations in climate variables on a cross-section inside the data cube. Although primarily tested
on climate simulation data, visualization techniques can be widely applied to other Earth science
domains, such as oceanography, hydrology, and geology. We believe this platform will provide strong
support to scientists for testing models and validating hypotheses, as well as for the general public to
understand different components of the Earth system and its interactions.



Informatics 2017, 4, 17 15 of 17

In the future, we will enhance the PolarGlobe system in the following directions: first, methods
will be developed to effectively present multivariate geoscientific data for an integrated analysis;
second, strategies for visualizing vector data on the globe will also be exploited; and third, we will
extend the current visualization capability with advanced data mining or spatial analysis capability,
to equip PolarGlobe as not only a system for visualization but also for knowledge discovery.
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