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1. Overview 

One of the key problems in P2P is efficient lookup. Given a key, we want to locate the nodes that store the data 

associated with the key. A system that provides that hash-table-like service is called a distributed hash table 

(DHT). In this report, we study three early, notable DHT systems out of the many that have been proposed in 

recent years, namely CAN [1], Pastry [2], and Chord [3]. We look at how each of them solves the basic lookup 

problem, compare their performances and scalabilities, and assess them with regards to important criteria such as 

load balancing, data availability, and robustness. Along the way, we also comment on their shortcomings and 

propose possible research directions to overcome those drawbacks. 

2. Identifier Space 

Usually, a DHT system uses some hash function to map keys to a space called “identifier space” (ID space). An 

ID space is divided among the nodes by assigning a different “zone” to each node. A node stores the data/values 

associated with the keys within its zone. 

CAN uses a uniform hash function to map a key to a point in a wrapped 𝑑-dimensional Cartesian space. The 

entire space is partitioned into distinct zones, each own by a node. The mapping of a zone to a node is done 

randomly when the node joins the system. 

The ID space in Pastry is a 128-bit field. Both the keys and the nodes’ IDs (e.g. IP addresses) are put through a 

hash function, typically SHA-1. In the ID space, the ID of a node or a key is a sequence of digits written in base 

2𝑏. A node is responsible for the keys that are numerically closest to it. 

Similar to Pastry, Chord also uses 𝑚-bit IDs for both keys and nodes, and uses SHA-1 as the hash function. The 

ID place consists of all possible IDs put on a circle of size 2𝑚 (basically the IDs wrapped around, and all 

arithmetic operations are done in modulo 2𝑚). A key is assigned to the first node whose ID is equal or bigger than 

itself. 

3. Routing 



In this section, we look at how the DHT systems route a key lookup from a requesting node to the node(s) 

responsible for the key. DHT routing is often about the trade-off between per-node state size and routing path 

length. The more data a node store, the more efficiently it can route. 

In CAN, each node maintains a list of neighbors. Two nodes are neighbors if their zones span the same ranges in 

𝑑 − 1 dimensions and are adjacent in the last dimension. Upon receiving a key lookup, if a node doesn’t own the 

key, it forwards the lookup message to one of its neighbors, the one whose zone is closest to the key. Basically, 

the message follows a straight line in the ID space from the source node to the destination node. A CAN node in 

a 𝑑-dimensional space manages a list of 𝑂(2𝑑) neighbors. Since 𝑑 is fixed, as the number of nodes 𝑁 increases, 

the storage on each node stays the same. However, a small 𝑑 implies longer routing path lengths (number of 

nodes on the path). On the other hand, letting 𝑑 grows dynamically as 𝑁 grows means big overheads when 𝑁 is 

large (since the topology of the ID space needs to be rebuilt again each time 𝑑 changes), so that’s not an option. 

With 𝑑 fixed, the routing path length grows as fast as 𝑂(𝑁1 𝑑⁄ ), which is not as good as Pastry’s and Chord’s 

performances (𝑂(log 𝑁)). 

A Pastry node has a list of leaf nodes, a routing table, and a neighborhood set. The leaf set consists of 𝐿 nodes 

numerically closest to the current node. 𝐿 2⁄  nodes out of which have smaller IDs than the current node, and 𝐿 2⁄  

nodes have larger IDs. For a system consisting of 𝑁 nodes, a routing table has log2𝑏 𝑁 rows and 2𝑏 columns. An 

entry on row 𝑛, column 𝑐 (𝑐 ≤ 2𝑏) points to a node whose ID shares the same first 𝑛 digits as the current node’s, 

and has 𝑐 as its (𝑛 + 1)th digit. In principle, there are many nodes satisfying the condition. The stored node is 

chosen so that it’s close to the current node “geometrically” (e.g. in round-trip-time, or IP hops, not numerical 

distance in ID space). If 𝑐 is the (𝑛 + 1)th digit of the current node’s ID, the entry is actually empty (it’s 

supposed to be the current node itself). A neighborhood set contains 𝑀 geometrically closest nodes to the current 

node; it is not used in routing but helps the system achieve better locality. Given a key lookup, a node first finds 

in its leaf set the node that covers the key. If such a node exists, it forwards the lookup message to that node. If 

not, it finds in the routing table a node whose ID have a longer common prefix with the key than its own and 

forward the message to that node. If that is still not possible, the current node looks (in its leaf set, routing table, 

and neighborhood set) for a node whose ID is numerically closer to the key than itself (both have the same 

common prefix length with the key) and forward to that node. The message will eventually reach its destination 

since each step shortens the distance towards the destination. In a Pastry system with 𝑁 nodes, a routing table has 



approximately log2𝑏 𝑁 ∗ (2𝑏 –  1) entries. Typical values for 𝐿 and 𝑀 are 2𝑏 or 2 ∗  2𝑏. Typical value for 𝑏 is 4, 

a small constant not depending on 𝑁. So the typical total amount of storage per node is 𝑂(log2𝑏 𝑁). Path length 

is 𝑂(log2𝑏 𝑁) as well since each routing step comes one digit closer to the key. 

A node in Chord has a “finger table” with 𝑚 entries. The 𝑖th entry in the table of node 𝑛 refers to the first node 

that succeeds 𝑛 by at least 2𝑖−1 in the circle (e.g. when 𝑖 =  1, it is the immediate successor of 𝑛). The 𝑖th entry 

also associates that node with a range, [𝑛 +  2𝑖−1, 𝑛 +  2𝑖) (remember all arithmetic operations are done in 

modulo 2𝑚). Finally, a node stores links to its 𝑟 successors and the immediate predecessor in the circle. The role 

of the successor list is somewhat similar to that of the leaf set in Pastry (to route in “slow” mode when there are 

no other choices). When a node 𝑛 receives a lookup message, there are three cases. In the first case, the key does 

not belong to 𝑛 itself, and also does not belong to its immediate successor (i.e. the key falls between 𝑛 and its 

successor), 𝑛 uses its finger table to find the range in which the key falls into, and forwards the message to the 

node associated with that range. In the second case, the key belongs to 𝑛’s successor, 𝑛 forwards the request to 

the successor. In the trivial last case, the key belongs to 𝑛 itself, no more routing needs to be done. The lookup 

message will eventually reach the destined node since each step makes progress towards the key. Each node in a 

Chord system with 𝑁 nodes stores a finger table with 𝑚 entries, so the per-node storage is fixed at 𝑂(𝑚) (in the 

sense that 𝑚 does not change during runtime). Routing path length is 𝑂(log 𝑁) with high probability 

(experiments show the expected value is 
1

2
log 𝑁). Intuitively, that can be explained by observing that a lookup 

message for a faraway key travels very fast in the beginning, roughly halving the distance in each step. Since 𝑚 

is fixed, we can assume 𝑚 is chosen to be big enough to “cover” any potentially big 𝑁, which implies a lot of 

redundant storage is wasted when 𝑁 is actually small. 

4. Self-Organization 

Self-organization refers to the ability of a DHT system to maintain correct and efficient routing in the presence of 

multiple node arrivals and departures. A good DHT system should have small overheads when nodes joining and 

leaving the system. 

4.1. Node Arrival 

Generally, when a new node wants to join a system, it must somehow know about an existing node and 

contact that node to get information about other nodes so that it can initialize its own routing table. Usually 

one existing node will split its zone in the ID space and transfer a portion to the new node. Some other 



existing nodes must also be notified of the new node so that they can update their routing tables to reflect the 

new system state. 

When a new node 𝐴 wants to join a CAN system, it looks up the CAN domain name using DNS to find a 

bootstrap node’s IP. The bootstrap node sends 𝐴 the IPs of random nodes in the system. 𝐴 then chooses a 

random point in the ID space and sends a join request for that point. The request is routed normally to a node 

𝐵 responsible for the point. 𝐵 then splits its zone in two and gives 𝐴 one half. 𝐴 initializes its neighbor set 

using a subset of 𝐵’s neighbor set. 𝐵 also removes some nodes which are no longer its neighbor from the set. 

For other nodes in the system to know about the new situation, an update message is sent periodically by each 

node to its neighbor. All of 𝐴’s neighbors will know about 𝐴 when they receive update messages from 𝐴, and 

all of 𝐵’s remaining neighbors will know that 𝐵 now only owns half of its old zone once 𝐵 updates them. 

Even though each node has only 𝑂(𝑑) neighbors, the addition of a CAN node has a cost of 𝑂(𝑁1 𝑑⁄ ), since it 

involves routing the new node to its chosen zone. 

In Pastry, a new node 𝑋 knows about an existing node 𝐴 using “expanding ring” IP multicast or by outside 

means. 𝐴 is assumed to be close to 𝑋 in some proximity metric (such as distance message travel or IP routing 

hops). 𝑋 sends 𝐴 a join message with the key 𝑋. Pastry routes the join message to an existing node 𝑍 whose 

range covers 𝑋. 𝑋 initializes its leaf set using 𝑍’s leaf set since these two nodes are very close numerically. 

With regards to the routing table, the first row in 𝑋’s routing table is taken from the first row in 𝐴’s table 

(assume 𝐴 and 𝑋 share no common prefixes). The second row in 𝑋’s table is taken from the second row in 

𝐵’s table, where 𝐵 is the second node (after 𝐴) on the path that the join message travels from 𝐴 to 𝑍. This 

makes sense since 𝑋 and 𝐵 share a common prefix of one digit. The process continues similarly for the rest of 

the rows. For the neighborhood set, 𝑋 copies that from 𝐴 since they are assumed to be close “geometrically”. 

Finally, 𝑋 sends its leaf set and routing table to every node it has found so far so that those nodes can update 

their state if necessary. There are no mentions of actual keys/values transfer in the paper, but we can assume 

this can be done easily by making the new node contacting its two immediate neighbors to get its share of 

keys/values. The cost of node arrival in Pastry is 𝑂(log2𝑏 𝑁), which is roughly the number of nodes on the 

path from 𝐴 to 𝑍.  𝑂(log2𝑏 𝑁) is the best node arrival performance among the three systems, as far as the 𝑂() 

notation is concerned. 



In Chord, a new node 𝑛 needs to know about an existing node 𝑛’ before it can join a system. To fill its finger 

table, 𝑛 asks 𝑛’ to look for the successors of 𝑛 + 1, 𝑛 +  21, 𝑛 +  22, etc. It optimizes a bit by checking if the 

𝑖th finger is also the (𝑖 + 1)th finger without querying 𝑛’ every time. 𝑛’s predecessor and successor pointers 

can also be found easily using its neighbor’s corresponding pointers.  To notice other nodes to update their 

finger tables, for each 𝑖 ≤  𝑚, 𝑛 find the immediate predecessor of 𝑛 – 2𝑖−1, called 𝑝. If the 𝑖th finger of 𝑝 

succeeds 𝑛, then 𝑝 needs to update its 𝑖th finger to 𝑛. Finally, 𝑛 contacts its immediate successor to ask that 

node to transfer the keys/values that 𝑛 is now responsible for. It is shown in the paper that with the 

optimization mentioned above (when filling the finger table), the cost of node addition in Chord is 𝑂(𝑙𝑜𝑔2𝑁). 

This is better than CAN but worse than Pastry. As an improvement, a new node will not right away construct 

its finger table. It will only ask for the immediate successor and predecessor to be able to route in the most 

basic way. The successor and predecessor pointers are also checked periodically by each node. Also, each 

node will periodically “update” a random entry in its finger table (by sending a find-predecessor request, 

similar to a key lookup) and attempt to fix the entry if it’s incorrect. The cost of this stabilizing process is 

quantified in [4]. 

4.2. Node Departure/Failure 

Usually when a node leaves, its zone/range should be transferred to some other node, and nearby nodes must 

update their routing tables. When a node fails, some other node must detect the failure and can take over the 

failed node’s zone, other nodes also need to update their routing states. As we will see, some DHT systems 

consider leaving the same as failing and no zone transfer is done, only routing information is corrected. 

A CAN node before leaving will transfer its zone to one of its neighbors, the one with the smallest zone. If the 

transferred zone and its neighbor’s zone can be merged into one valid zone, it’s done. Otherwise, the neighbor 

will temporarily handle both zones. A background process to reassign zones will prevent further 

fragmentations of the ID space. On the other hand, node failure is detected by the absence of periodic 

updating messages. Using different timers, among the neighbors, the one with the smallest zone will take over 

the failed node’s zone. Zone transferring and take over is unique to CAN since it the mapping of zones to 

nodes is less “deterministic” than in the other two systems. That is to say, when a node in Pastry or Chord 

leaves, its zone automatically belongs to another node. However, Pastry and Chord may still benefit from 

zone transferring since not only the keys but also the associated values are transferred; it should improve data 



availability. Unlike in the case of node arrival, node departure in CAN does not involving routing, so the 

complexity is only 𝑂(𝑑), which is better than the other two systems. 

In Pastry, a node departure/failure is treated as the same thing and is detected by its neighbors when they try 

to contact it unsuccessfully. If 𝐴 detects that some node 𝐵 in its leaf set is gone, it contacts the furthest node 𝑍 

in the leaf set in the direction of the failed node, and asks for 𝑍’s leaf set. 𝐴 then chooses one appropriate 

node 𝐶 in the received leaf set to replace 𝐵 in its own leaf set. To replace a failed node on row 𝑖 column 𝑗 in 

the routing table, a node first asks other nodes on the same row for the entry at (𝑖, 𝑗) in their tables. Should 

that fails, it tries the next row, 𝑖 +  1, and so on. Finally, if a node finds that some node in its neighborhood 

set fails, it queries other nodes in the set for their neighborhood sets and use that to repair its own 

neighborhood set. Because each node has 𝑂(log2𝑏 𝑁) neighbors, if we assume the expected amount of 

operations a neighbor must do when it detects a node failure in its routing table is constant, the cost of node 

departure/failure in Pastry is 𝑂(log2𝑏 𝑁). 

A Chord node keeps a list of 𝑟 successors and updates this list every time it detects node failure/departure 

(same thing in Chord). A stabilization process is run periodically in the background to correct wrong finger 

table and successor entries. The successor list helps when all routing paths found using the (outdated) finger 

table fail, in which case a message is routed using only successors (slow but correct). The cost of node 

failure/departure in Chord is 𝑂(𝑙𝑜𝑔2𝑁) since there are expectedly 𝑂(log 𝑁) nodes that need to repair their 

finger table index entry that contains the fail node, which in turn takes 𝑂(log 𝑁) steps. 

5. Additional Properties 

Beside the basic operations described above, we can assess a DHT system based on other important criteria such 

as load balancing, locality, data availability, and routing fault tolerance. 

5.1. Load Balancing 

In a P2P system, it’s very important that every node has roughly the same amount of computation and traffic 

load. In the context of DHTs, there are two different kinds of load balancing: static load balancing and 

dynamic load balancing. Static load balancing has to do with the hash function and the way the identifier 

space is partitioned: the more uniform it is, the more balanced the load. Dynamic load balancing attempts to 

make “hot” keys more available by, for example, replicate them on multiple nodes (so that the few nodes 

responsible for those keys are not too busy with lots of queries). 



CAN supports static load balancing (uniform partition) by changing the way a new node joining the system 

acquires its zone. When 𝐴 tries to join, it decides on a random position 𝑃, which is in the zone of 𝐵. 𝐵 finds 

among its neighbors a node 𝐶 that has the largest zone, and let 𝐶 splits its zone to give to 𝐴 (it was 𝐵 who did 

the splitting in the original design). Similarly, when a node leaves the system, the neighbor with the smallest 

zone takes over, as mentioned before. With regards to dynamic load balancing (hotspot control), CAN does 

both caching and replication. Values are cached along routing paths so that when the same key lookup is 

encountered, the corresponding value can be accessed from the cache. Also, a node can replicate certain 

keys/values on its neighbors if it finds the keys being looked up by many nodes. The design of CAN is 

elegant since static load balancing is achieved almost automatically (unlike Pastry and Chord which must 

worry about uniform distribution). However, caching and replication are not integrated parts in the design and 

can be adopted in other systems as well. 

Pastry makes no efforts to support dynamic load balancing. For static load balancing, other than using a 

uniform hash function (e.g. SHA-1), Pastry does not guarantee anything. This is partly because the mapping 

of keys to nodes in Pastry is more deterministic than in CAN. In Pastry the nodes are also hashed into the ID 

space, and a node is responsible for the keys closest to it, so techniques used in CAN do not work here. The 

base hash function (SHA-1) and the mapping of keys to nodes in Pastry, however, is quite similar to Chord. 

So it may benefit from the techniques Chord uses to achieve more load balancing, described next. 

Chord also uses SHA-1 as the base hash function to map nodes and keys to identifier space, and consistent 

hashing to map keys to nodes. However, the authors find that nodes are not distributed evenly in the identifier 

space under the base hash function. They propose distributing 𝑟 ∗  𝑁 (𝑟 ~ log 𝑁) nodes uniformly in the 

identifier space and assign 𝑟 virtual nodes to each real node. That means the mapping of keys to nodes 

described before is still correct, but with regards to virtual nodes instead. This way Chord achieves better load 

balancing but at the cost of increased per-node storage since each real node now must store a finger table for 

each of the 𝑟 virtual node. Also, the worst-case query path length is longer, though this is not reflected well by 

the big O analysis (𝑂(log 𝑁 log 𝑁) is still 𝑂(log 𝑁)). Similar to Pastry, no explicit support for dynamic load 

balancing is mentioned in the paper. 

5.2. Locality 



(Logical) path length is not the only metric used to measure the efficiency of a routing algorithm. Another 

useful metric concerns the actual number of IP hops or routing latencies between nodes. Good locality means 

on average the travelling time of messages between nodes are short. 

The authors of CAN propose two improvements to shorten the routing latency. The first improvement is to 

use the ratio of logical distance and actual round-trip-time as the routing metric and not the logical distance 

alone. This is actually a greedy algorithm and may not work well in all cases. This scheme works better as the 

number of dimension increases, however, because then the number of a node’s neighbors increases, the 

average path length decreases, and the greedy choice becomes more “certain”. The second improvement is 

that when a node joins the system, it is assigned a zone according to its distances to a well-known set of  

machines on the net (e.g. the root DNS servers) called landmarks. The reason is that nodes that are close to 

each other “geometrically” are likely to have similar distances to those landmarks and thus be close in the ID 

space. This scheme, however, depends a lot on the distribution of the landmarks, and in some cases can 

conflict with the load balancing requirement, since some parts of the ID space can be more populated than the 

others.  

Pastry achieves locality by storing on each node a neighborhood set 𝑀. When a node 𝑋 joins the system, it 

builds its routing table based on the nodes on the routing path from 𝐴 to 𝑍 (see the routing section). 𝑋 also 

retrieves the neighborhood sets of those nodes to augment its own routing table and neighborhood set. The 

paper argues that if the nodes in the routing table of any node 𝐵𝑖 on the path from 𝐴 to 𝑍 are close to Bi, then 

the nodes in 𝑋’s routing table are also close to 𝑋. This argument is rather vague and weak, drawing 

conclusion mostly from experimental results. The routing based on a routing table constructed in this way is 

also a greedy approach, which is not guaranteed to work well in all cases, similar to CAN. 

Chord is different from the other two systems in that it makes no explicit efforts to optimize for locality in its 

design. One possible way to make Chord aware of locality is to borrow CAN’s idea and attach a round-trip-

time to each entry in the finger table, and use it as a weight to estimate the message travel time when 

messages are routed to each finger node (e.g. some finger may result in longer path length but shorter latency 

to make up for that). However, that’s still a greedy, local approach which requires experiments to verify. 

5.3. Data Availability 



In a good P2P system, when some of the nodes fail, the data belong to them should still be available. This is 

not a strict requirement but is nice to have. Usually availability is achieved replicating data on multiple nodes. 

However, with replication, a system’s complexity and traffic load will increase in general. 

CAN improves data availability through the use of multiple “realities”, overloaded zones, and multiple hash 

functions. Multiple realities mean each node is assigned a different zone in each reality, so the same zone 

actually belongs to multiple nodes in different realities. Overloading zones is to assign two or more nodes to a 

zone instead of one. Multiple hash functions imply hashing a key 𝑘 times using 𝑘 different hash functions so 

that the 𝑘 images belong to different nodes. The three techniques sound very similar to one another and are all 

“orthogonal” to the main design of CAN, which means they can possibly be used by other systems as well. 

A Pastry system makes data more available by replicating the value associated with a key on 𝑘 closest nodes 

to the key. This is simple and sufficient. 

Chord is different to the other two system in that it doesn’t assume the responsibility of replication. Instead, 

replication is supposed to be done by the system in a higher “layer” which uses Chord’s functionalities. Chord 

can use the successor list to inform the higher layer application to replicate a key to 𝑘 nearest nodes whose 

IDs are equal or more than the key. 

5.4. Routing Fault-Tolerance 

Routing fault-tolerance refers to a system’s ability to route correctly (if possible) even when there are multiple 

node failures. In general, it means there must be more than one path between any two nodes, and the system 

should try all those paths in case routing attempts between the two nodes repeatedly fail. All three systems 

satisfy this condition; when some nodes fail, the systems still route correctly, albeit maybe more slowly. Over 

time, a stabilization process will fix the broken links in routing tables. This section only concerns the 

efficiency of routing before fail links are fixed. 

A CAN node stores 𝑂(2𝑑) neighbors and can route through any of them. When nodes fail, on average we 

expect the routing path length to be longer but is still 𝑂(𝑁1 𝑑⁄ ). 

The design of Pastry is quite similar to Chord, so we expect the same results proven in the Chord paper are 

true to Pastry as well, which means the average routing path length when there are failed nodes is the same as 

in normal case – 𝑂(log 𝑁). The experiments also show confirmative results. 



The authors of Chord prove that in case of multiple node failures, with the use of successor list, the expected 

routing path length is still 𝑂(log 𝑁). 

6. Advanced Analysis of Chord 

Liben-Nowell et al. [4] prove a lower-bound on the complexity of maintenance (self-organization) of P2P system 

in general and analyze the maintenance process of Chord more formally. In general, in the presence of node 

arrivals and departures, a P2P system needs 𝑂(log 𝑁) message exchanges at least to “stabilize” the system. In 

addition to the ideal Chord state used in the original paper, this paper defines 3 new loosen “ideal” states in the 

presence of pure node joins, pure node failures, and a combination of both. An ideal state must satisfy certain 

conditions on node distribution, connectivity and validity of successor list and finger table. It shows that in all 

three cases, the routing in Chord is still efficient (𝑂(log 𝑁)), and the stabilizing process runs in 𝑂(𝑙𝑜𝑔2𝑁) time, 

which is a bit more than the theoretical lower bound proven above. One final contribution of this paper is an 

extension of the Chord protocol to allow it to recover from an arbitrary state, not just states that can be reached 

from node arrivals and departures. They show that their algorithm can stabilize the system from an arbitrary state 

in 𝑂(𝑁2) time without node failures, and in 𝑂(𝑁3) time with node failures. These are all interesting results and a 

possible future work would be doing the same (or possibly more) formal analysis to other DHT systems. 

7. Conclusion 

In this report we investigate and compare 3 early DHT systems that are CAN, Pastry, and Chord. The designs of 

CAN and Chord are quite simple and elegant in many aspects. The main drawback of CAN is the rather high 

bound on routing path length. Pastry’s design, on the other hand, is somewhat more ad-hoc and not “integrated”. 

As a result, it is difficult to assess Pastry formally in some criteria (such as locality). There are also quite a 

number of improvements proposed in one paper but can benefit other techniques as well, since those 

improvements are not specifically tied to that one technique. Finally, to better understand the three systems (and 

many others proposed later), formal as well as experimental/practical frameworks such as [4] need to be invented, 

so that we have common grounds based on which the techniques can be better assessed and compared. 
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