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ABSTRACT 

In this report, we summarize and analyze the PLDI 2003 paper “A 

Type and Effect System for Atomicity” by Flanagan and Qadeer 

[1]. We show that while this paper is the first to use static analysis 

to successfully verify a fundamental correctness property in 

multithreaded programs that is atomicity, its approach has 

limitations that should be, and indeed have been, addressed in 

future work.     

1. INTRODUCTION 
There have been strong beliefs in recent years that parallel 

computing is the future for computing. As a consequence, 

multicore machines, and multithreaded software that can take 

advantage of such machines, have becoming increasingly more 

popular. Compared to serial programs, multithreaded programs 

are harder to test and debug. The main reason is that the 

interleaving of threads results in many complex execution 

scenarios and makes synchronization bugs non-deterministic, thus 

hard to reproduce and fix. 

One common source of bugs in parallel programs is race 

condition, where more than one threads try to access a shared 

variable simultaneously, and at least one of the accesses is a write. 

There have been works trying to detect race conditions using a 

variety of techniques. However, Flanagan and Qadeer [1] argue 

that the absence of race conditions is neither necessary nor 

sufficient for a program to be correct. They advocate checking for 

a stronger non-interference property called atomicity, where 

atomic methods can be assumed to execute in “one step”, without 

interferences of methods from other threads. To that end, the 

authors propose a type system to specify and verify the atomicity 

of methods in multithreaded Java programs. They show that their 

approach successfully finds atomicity violations in the JDK’s 

codebase that can lead to crashes. 

This report elaborates more on the importance of atomicity, and 

discusses race conditions and atomicity in a larger context. We 

also give reasons to justify the use of a type system instead of 

other static analysis techniques. In the same spirit, we states the 

advantages and disadvantages of the static analysis approach 

taken by [1] compared with other methods such as dynamic 

analysis and model checking used in later papers. Finally, we 

explain in detail and give examples to illustrate the limitations of 

the proposed type system when verifying atomicity in practice.   

2. SUMMARY 

2.1 The Need for Atomicity 
As mentioned, race conditions are a common source of 

synchronization bugs. As an example, consider the Java program 

fragment below. 

class Account { 
  int balance = 0; 

 
  int deposit(int x) { 
    balance = balance + x; 
  } 
} 

The code above can behave unexpectedly when two or more calls 

to deposit are interleaved. The final value of balance may only 

reflect one of the many calls. That is because the program 

contains a race condition on the variable balance. We can protect 

that variable by putting the update statement into a 

synchronized context, thus getting rid of the race condition. 

int deposit(int x) { 
  synchronized (this) { 
    balance = balance + x; 
  } 
} 

However, race-freedom does not imply a program is error-free. 

Consider the code below where we extends the Account class 

above to include two more methods. 

int readBalance() { 
  synchronized (this) { return balance; } 
}    
 

void withdraw(int amt) { 
  int b = readBalance(); 
  synchronized (this) { balance = b - amt; } 
} 

There are no races in either method, but an execution like the one 

below will cause an incorrect behavior of the method withdraw. 

Thread 1: int b = readBalance(); 

Thread 2: deposit(10); 
Thread 1: synchronized (this) { 
         balance = b – amt; 
       } 

The reason the above execution can happen is because in the 

withdraw method, its statements can interleave with those from 

other threads and change the program’s behavior. We can rewrite 

the method to make it atomic and at the same time rewrite 

readBalance to get rid of the redundant synchronized context as 

follows. 

int readBalance() { return balance; } 
 
void withdraw(int amt) { 
  synchronized (this) { 
    balance = balance – amt; 
  } 
}



Now there is a race condition on the variable balance, but it is 

benign as it does not affect the correctness of the program. We 

can conclude that a race condition does not necessarily mean a 

program has bugs, and the absence of race conditions does not 

imply a program is correct either. 

The problems with race-conditions call for the need of another, 

stronger non-interference property that is atomicity. A method is 

atomic if for any execution of the program in which the method’s 

statements are arbitrarily interleaved with statements from other 

threads, there is an equivalent execution of the program in which 

the method’s statements are executed serially without 

interferences. In other words, if a method is atomic, the scheduler 

can freely interleave the execution of that method with other 

threads, the result of the program is the same regardless. 

Atomicity as a concept is useful since once a method is known to 

be atomic, it can be further analyzed and reasoned about using 

sequential reasoning techniques. Atomicity is a fundamental 

correctness property since atomic operation is a common way for 

ensuring thread safety. In practice, a lot of interface methods are 

intended to be atomic (or thread-safe). Therefore, it is useful to 

provide programmers with a methodology to specify and verify 

the desired atomicity of methods. To achieve that goal, Flanagan 

and Qadeer [1] propose a type system for specifying and checking 

atomicity properties of methods. We will give an overview and 

assess this type system for atomicity in subsequent Subsections. 

2.2 Lipton’s Theory of Reduction 
The type system presented in [1] is based on Lipton’s theory of 

right and left movers [2]. An action is a right mover if it can 

always be swapped with its immediately following action from 

another thread without changing the resulting state. A left mover 

is defined similarly. In a multithreaded programming context, a 

lock acquiring action is a right mover, while a lock releasing 

action is a left mover. A variable access while holding the 

corresponding lock is both a right and left mover. The following 

example illustrates the use of this theory to verify atomicity. 

void deposit(int x) { 
  synchronized (this) { b = b + x; } 
} 

Below are two different executions of the code above. In the first 

execution, the operations of method deposit are interleaved with 

other operations from another thread. Then, the operations that are 

movers are swapped with their neighbors resulting in the second, 

non-interleaving, execution of deposit. By swapping operations 

according to the rules of Lipton’s theory, method deposit can be 

proven atomic. 

→ 𝑎𝑞𝑢𝑖𝑟𝑒 → 𝑥 → 𝑟 = 𝑏 → 𝑦 → 𝑏 = 𝑟 + 𝑥 → 𝑧 → 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 → 
→ 𝑥 → 𝑎𝑞𝑢𝑖𝑟𝑒 → 𝑟 = 𝑏 → 𝑏 = 𝑟 + 𝑥 → 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 → 𝑦 → 𝑧 → 

In general, the theory states that any sequence of actions 

consisting of a sequence of right movers, followed by at most one 

atomic action, followed by a sequence of left movers, can be 

considered atomic. 

2.3 Atomicity Types 
The proposed type system assigns to each expression an atomicity 

type. At the fundamental level, there are five basic atomicities 

described below. 

• 𝑐𝑜𝑛𝑠𝑡: An expression 𝑒 has type 𝑐𝑜𝑛𝑠𝑡 if valuating 𝑒 

does not depend or change any mutable state. 

• 𝑚𝑜𝑣𝑒𝑟: An expression 𝑒 is a 𝑚𝑜𝑣𝑒𝑟 if it can be 

swapped with its immediate neighboring operations of 

other threads. 

• 𝑎𝑡𝑜𝑚𝑖𝑐: An expression 𝑒 is 𝑎𝑡𝑜𝑚𝑖𝑐 if its execution can 

safely be considered a non-interleaved one. 

• 𝑐𝑚𝑝𝑑: An expression 𝑒 has atomicity type 𝑐𝑚𝑝𝑑 if it 

does not belong to one of the above categories. 

• 𝑒𝑟𝑟𝑜𝑟: An expression 𝑒 has atomicity type 𝑒𝑟𝑟𝑜𝑟 if it 

violates the locking rules used by the program. 

In an intuitive way, iterative closure (where an expression is 

executed a number of times) and sequential composition (when 

two expressions are executed one after another) of the five basic 

atomicity types are defined. We give some examples below. 

𝑚𝑜𝑣𝑒𝑟∗ = 𝑚𝑜𝑣𝑒𝑟 
𝑎𝑡𝑜𝑚𝑖𝑐∗ = 𝑐𝑚𝑝𝑑 

𝑐𝑚𝑝𝑑∗ = 𝑐𝑚𝑝𝑑 
𝑚𝑜𝑣𝑒𝑟; 𝑎𝑡𝑜𝑚𝑖𝑐 = 𝑎𝑡𝑜𝑚𝑖𝑐 

𝑎𝑡𝑜𝑚𝑖𝑐; 𝑎𝑡𝑜𝑚𝑖𝑐 = 𝑐𝑚𝑝𝑑 
𝑐𝑚𝑝𝑑; 𝑐𝑚𝑝𝑑 = 𝑐𝑚𝑝𝑑 

Two atomicities can also be joined together by the joint operator 

(⊔). This joint type (𝛼1 ⊔ 𝛼2 where 𝛼1 and 𝛼2 are basic 

atomicities) reflects the atomicity type of an if statement. 

Since some expressions have different atomicity types depending 

on which locks are held at the time of executing the expression, 

the set of atomicities is also extended with conditional atomicities. 

For example, accessing a protected field with the corresponding 

lock held is a 𝑚𝑜𝑣𝑒𝑟, but without the lock held it is an 𝑒𝑟𝑟𝑜𝑟. If 

an expression 𝑒 has a conditional atomicity type of the form 

𝑙? 𝑎: 𝑏, it means the atomicity type of 𝑒 is 𝑎 when lock 𝑙 is held, 

otherwise it is 𝑏. 

Iterative closure (∗), sequential composition (;), and joint operator 

(⊔) are intuitively extended to conditional atomicities as well. 

Some of the rules are provided below. 

(𝑙? 𝑎: 𝑏)∗ = 𝑙? 𝑎∗: 𝑏∗ 
(𝑙? 𝑎1: 𝑎2); 𝑏 = 𝑙? (𝑎1; 𝑏): (𝑎2; 𝑏) 

(𝑙? 𝑎1: 𝑎2) ⊔ 𝑏 = 𝑙? (𝑎1 ⊔ 𝑏): (𝑎2 ⊔ 𝑏) 

For subtyping to work and thus the type system can be more 

precise, an order is defined over the set of atomicity types. The 

ordering rules can be summarized as follows. 

𝑐𝑜𝑛𝑠𝑡 ⊏ 𝑚𝑜𝑣𝑒𝑟 ⊏ 𝑎𝑡𝑜𝑚𝑖𝑐 ⊏ 𝑐𝑚𝑝𝑑 ⊏ 𝑒𝑟𝑟𝑜𝑟 

𝑎 ⊑ 𝑎∗ 
𝑎 ⊑ 𝑎; 𝑏 

𝑙? 𝑎1: 𝑎2 ⊑ 𝑏 if 𝑎1 ⊑ 𝑏 and 𝑙 is held, or 𝑎2 ⊑ 𝑏 and 𝑙 is not held. 

Finally, a set of rules are defined so that atomicity types can be 

easily manipulated and simplified. Some of them are reproduced 

below. 

(𝑎∗)∗ ≡ 𝑎∗ 
(𝑎; 𝑏); 𝑐 ≡ 𝑎; (𝑏; 𝑐) 
𝑎; 𝑐𝑜𝑛𝑠𝑡 ≡ 𝑎 

𝑎; (𝑏 ⊔ 𝑐) ≡ 𝑎; 𝑏 ⊔ 𝑎; 𝑐 
(𝑎 ⊔ 𝑏)∗ ≡ 𝑎∗ ⊔ 𝑏∗ 

2.4 Type Annotations 
A subset of the Java language is extended with type annotations 

so that the programmer can specify the intended atomicity type of 

each method and other synchronization information needed to 

type-check the program. In particular, each field can be protected 

by a lock with the guarded_by annotation. A method declaration 

can specify a set of locks that are supposed to be held when the 



execution of the method begins using the requires annotation. 

An example is provided below. 

class Account { 
  int balance write_guarded_by this = 0; 
  atomic int withdraw(int x) requires this { … } 
} 

In practice, the annotations are implemented as special forms of 

Java comments. 

2.5 Type Checking Rules 
The core of the type system is a set of rules to verify the atomicity 

of expression given the atomicity types of its components. The 

system takes as input a fully annotated program and verifies the 

intended atomicity of each method. A type judgment has the form 

𝑃; 𝐸 ⊢ 𝑒: 𝑡 & 𝑎 and it means for program 𝑃, under type 

environment 𝐸, expression 𝑒 has type 𝑡 and atomicity 𝑎. Note that 

even though the authors of [1] use the term “atomicity types”, the 

atomicities are actually specified as an effects; the type of each 

expression is just its ordinary type in Java. We reproduce four 

rather simple rules below and briefly explain their meaning. The 

rest of the rules and more detailed explanations can be found in 

[1] or [3]. 

• [WHILE] 

𝑃; 𝐸 ⊢ 𝑒1: 𝑖𝑛𝑡 ⅋ 𝑎1

𝑃; 𝐸 ⊢ 𝑒2: 𝑡 & 𝑎2

𝑃; 𝐸 ⊢ 𝑤ℎ𝑖𝑙𝑒 𝑒1 𝑒2: 𝑖𝑛𝑡 & (𝑎1; (𝑎2; 𝑎1)∗)
 

• [REF GUARD] 

𝑃; 𝐸 ⊢ 𝑒: 𝑐 ⅋ 𝑎
𝑃; 𝐸 ⊢ (𝑡 𝑓𝑑 𝑔𝑢𝑎𝑟𝑑𝑒𝑑_𝑏𝑦 𝑙 = 𝑒′) ∈ 𝑐

𝑏 ≡ (𝑙[𝑡ℎ𝑖𝑠 ≔ 𝑒] ?  𝑚𝑜𝑣𝑒𝑟)

𝑃; 𝐸 ⊢ 𝑏
𝑃; 𝐸 ⊢ 𝑒. 𝑓𝑑: 𝑡 & (𝑎; 𝑏)

 

• [CALL] 

𝑃; 𝐸 ⊢ 𝑒𝑖: 𝑡𝑖  ⅋ 𝑎𝑖

𝑡0 = 𝑐

𝑃; 𝐸 ⊢ 𝑏[𝑡ℎ𝑖𝑠 ≔ 𝑒0]

𝑃; 𝐸 ⊢ (𝑏 𝑠 𝑚𝑛(𝑡1 𝑦1, … , 𝑡𝑛 𝑦𝑛) { 𝑒 }) ∈ 𝑐

𝑃; 𝐸 ⊢ 𝑒0. 𝑚𝑛(𝑒1, . . , 𝑒𝑛): 𝑠 & (𝑎0; … ; 𝑎𝑛; 𝑏[𝑡ℎ𝑖𝑠 ≔ 𝑒0])
 

• [SUB] 

𝑃; 𝐸 ⊢ 𝑒: 𝑠 ⅋ 𝑎
𝑃 ⊢ 𝑠 <: 𝑡

𝑃; 𝐸 ⊢ 𝑎 ⊑ 𝑏
𝑃; 𝐸 ⊢ 𝑒: 𝑡 & 𝑏

 

The [WHILE] rule says that if 𝑒1 has atomicity 𝑎1, 𝑒2 has 

atomicity 𝑎2, the expression 𝑤ℎ𝑖𝑙𝑒 𝑒1 𝑒2 has atomicity 

(𝑎1; (𝑎2; 𝑎1)∗). The [REF GUARD] rule is used when 𝑒 is an 

expression accessing a variable 𝑓𝑑 guarded by lock 𝑙. Expression 

𝑒 has atomicity type 𝑚𝑜𝑣𝑒𝑟 provided 𝑙 is held, otherwise it is an 

𝑒𝑟𝑟𝑜𝑟. The [CALL] rule says that the atomicity type of a call 

expression is the sequential composition of the atomicities of its 

arguments followed by the annotated atomicity of the callee. The 

[SUB] rule allows for subeffecting, making the system more 

precise. One important point to note is that in practice, the type 

system relies on a race condition checker called rccjava [4] to 

obtain the set of locks held at each program point. rccjava is the 

checker for another type system developed by the same authors to 

detect race conditions.  

2.6 Evaluation 
The authors of [1] manually annotate several classes in the JDK 

and show that their type system successfully discovers atomicity 

violations which are not race conditions in the JDK’s 

java.util.StringBuffer and java.lang.String classes. 

They also provide the exact number of annotations needed and the 

number of lines of code for each class to convince that their type 

system requires a reasonable amount of annotations. On average, 

23.3 annotations are needed per KLOC. 

The authors are also aware the limitations of their approach. The 

type system does not capture all synchronization mechanisms in 

practice, so it relies on ad-hoc relaxing techniques such as the 

no_warn and holds annotations and the –
constructor_holds_lock command line tag. The authors also 

report problems with changing protection mechanism (arrays) and 

rep-exposure (java.io.PrintWriter). They also note a case in 

java.net.URL where it is unclear whether the warnings the type 

system gives is benign. 

 

3. ANALYSIS AND DISCUSSION 

3.1 Atomicity and Race Condition 
The authors of [1] state a number of advantages of atomicity to 

convince it is a more meaningful concept than race condition. It is 

more accurate, however, to view atomicity and race condition as 

just two correctness properties at two different levels of 

abstraction. Race condition is at the lower level, where the 

concern is about guarded variable being accessed by more than 

one threads. Atomicity is at a higher level, where the effect of 

interleaving executions is concerned. There are certainly other 

correctness properties at higher level of abstraction. Consider the 

class Account example above; one can, for example, require 

that the first call must be a deposit call instead of a withdraw 

call, since in the beginning there is nothing to withdraw. In 

general, multithreaded methods may not only need to be atomic, 

they may also need to be executed in certain order for the program 

to work correctly. 

It is mentioned in [1] that race freedom is neither necessary nor 

sufficient to ensure the absence of synchronization bugs (actually 

[16] points out that the data races allowed in [1] is not benign in 

the Java or C# memory models, only for sequentially consistent 

systems). Another reason why it makes more sense to say that 

atomicity and race condition are just two concepts at different 

levels of abstraction is that the same thing can be said about 

atomicity. First of all, the lack of atomicity does not mean there 

are bugs. There are synchronization mechanisms that may not rely 

on atomic operations, such as barriers, or any 

synchronization mechanism that does not used share variables. 

Then obviously there are programs that fail even though all of its 

methods are atomic. For an example, consider the class 
Account again, a call to withdraw when the balance is 0 may 

cause unexpected behaviors. 

It is also worth noting that atomicity does not “encompass” or 

“replace” race condition. Methods that check for race conditions 

are still useful, since an atomicity checker must rely on a race 

condition checker to reason about the set of locks held at each 

program point, thereby showing certain expressions are mover. 

The type system described in [1] uses rccjava, a type system for 

race condition, in practice. Also, arguably, many atomicity 

violations are also race conditions [5], thus most of the time one 

can uncover the majority of atomicity violations using a more 



lightweight type system for race condition. The authors of [1] 

should have done experiments with some code base that has both 

types of violations and provided some statistics to convince the 

reader that the number of atomicity violations (that are not race 

conditions) is indeed significant. 

Having said the above, it is still true that atomicity is a very 

important concept and all the advantages of it mentioned in [1] are 

significant. There are also other reasons why atomicity is a 

fundamental correctness property that are not mentioned in [1]. 

For example, data race can be automatically taken care of in a 

transactional programming model (where memory write and read 

operations can be made atomic by hardware or software), but 

atomicity is still a problem [6]. Transactional memory, however, 

does make ensuring atomicity easier for the programmer, so a 

type system to verify atomicity for high level code becomes less 

important. For low level synchronization libraries (e.g. software 

transactional memory libraries), it’s still very valuable. 

3.2 Static Analysis 
There are a number of ways to verify a method’s atomicity, static 

analysis one of them. The other methods include dynamic analysis 

[7], model checking [8], and theorem proving [9]. Among the 

approaches, static analysis is usually conservative (less precise) 

but sound. Dynamic analysis is often unsound and has small 

coverage, but it is often automatic and its results are more precise 

(less approximation). Model checking has the problem of 

exponential number of states, thus its coverage is often small. 

Atomicity verification as a problem does not clearly favor any 

particular approach. In fact, a combination of approaches or a 

hybrid approach usually works better than any of them alone [20]. 

The static analysis approach used by [1], however, is the first 

work to propose the atomicity verification problem and solve it 

using a program analysis method. It is also not surprising that a 

type system is used since the authors already developed a type 

system for race condition checking. The new type system is 

understandably a natural extension of previous work. 

3.3 Type System 
As said above, the type system in [1] is naturally extended from 

another type system developed previously [4]. There may be other 

reasons as to why a type system is used instead of other static 

analysis techniques such as data flow (equation-based) analysis, 

constraint-based analysis, and abstract interpretation. First of all, 

atomicity is inherently a property of a region of code. It is 

therefore naturally to express this property as types and/or effects 

(the type system in [1] is written as an effect system, the real type 

of an expression is its original Java type). The problem may very 

well be formulated as solving a set of equations/constraints, but it 

is just unintuitive and unproductive to think of it that way. As for 

abstract interpretation, it is not needed here since typing rules can 

be checked simply by following the syntax; there is no need to 

work in some abstract domain. 

Another unique advantage of using a type system is that the 

annotations required by the type checker can be meant for human 

to read as well. The programmer can use the annotations to 

document and communicate the intended atomicity type for each 

method. Annotations help programmers maintaining a code base 

understand and reason about the code better. 

Expressing atomicity as types also makes the analysis more 

modular and scalable. Type checking can be done for each class in 

isolation and growing the code base has little impact on the 

system’s complexity and performance. 

3.4 The Type System for Atomicity 
One nice thing about the type system proposed in [1] is that it is 

expectedly sound, which means if a well typed method is intended 

to be atomic, it is guaranteed to be atomic. On the other hand, the 

system is necessarily incomplete. It may give false alarms (i.e. it 

may deduce that some methods are not atomic while in fact they 

are). The reason is that the type system does not capture all 

synchronization mechanism and complex locking idioms used in 

practice. We will give a brief overview of some of them below 

and explain why the type system in [1] fails for such cases. 

The type system supports re-entrant locks but fails to detect dead-

locks. A re-entrant lock is a lock that can be acquired by a thread 

multiple times in a row without blocking on itself. This situation 

may arise from, for example, a method traversing a graph and 

accessing a protected node multiple times. Java has support for 

such lock, for example, in the JDK class 

java.util.concurrent.locks.ReentrantLock. This 

situation is not supported by Lipton’s theory of reduction but is 

supported by the atomicity type system in [1]. In Lipton’s theory 

of reduction, there is a key condition that requires the last 𝑘 –  1 

statements in a series of 𝑘 reducible statements be executable. A 

statement may not be executable if it tries to acquire a lock that is 

not yet released. So the following block of statements, which is 

atomic with the support of re-entrant lock, is not reducible 

according to the theory. 

acquire(l); acquire(l); release(l); release(l); 

However, the type system does not enforce the aforementioned 

condition in the theory, so it can reduce the code above. That 

means the type system assume all locks are re-entrant by default, 

which is understandable since the synchronized keywords in 

Java implicitly specifies a re-entrant lock. The problem is then, 

normal locks are not supported. If in the code above, l is a normal 

lock, a dead-lock will occur – the thread blocks itself and never 

progresses. The type system, however, are unaware of the dead-

lock and will (wrongfully) consider the four statements as an 

atomic operation. This issue is also raised in [10] but without 

explanations. 

The type system does not support protected locks. A protected 

lock is a lock that is protected by another lock. In other words, to 

acquire a lock l would require holding lock l’ first. There is no 

way to specify (and thus, check for) this discipline using the 

atomicity type system. Adding the support for protected locks, if 

possible, would make the type system significantly more complex, 

since there can be arbitrary number of protected levels. Another 

related mechanism where a field is protected by two or more locks 

is also not supported. 

Another drawback of the type system is that it does not support 

manual locking using mutexes or semaphores. Some intuitively 

atomic methods are not reducible. The code below is an example. 

1: while (mutex == 0) { }; // spin lock 
synchronized (this) { 
  if (mutex > 0)  mutex--; 
  else goto 1; 
} // acquire lock 
doSomething(); // atomic 
synchronized (this) { mutex++; } // release lock 

The doSomething call above is atomic since it is put inside a 

critical section guarded by manual locking using the variable 

mutex. However the type system cannot assign the correct 



atomicity type to the call because it is not inside any 

synchronized context. This defect of the type system is also 

stated (without discussion) in [11], among other defects such that 

the lack of support for the unique protection mechanism, classes 

cannot be parameterize by readonly and self, and the 

restriction that all instances of a class must use the same 

protection mechanism for a field. 

Some limitations of the type system are briefly stated in [1] but 

without sufficient discussion. Here we give a more detailed 

explanation of the issues. The first issue has to do with rep-

exposure [12]. A rep-exposure happens when an encapsulated 

field is exposed to the outside of the object containing it. In the 

paper, the println method in java.io.PrintWriter is used 

as an example. 

public void println(int x) { 
  synchronized (lock) { 
    print(x); println(); 
  } 
} 

The two inner calls to print and println write to a Writer 

object which is passed from outside to the PrintWriter 

constructor. Therefore, another thread could write to that Writer 

object at the same time as the println method above, causing a 

data race, even though all statements of println are inside a 

synchronized block. However, the println method is still atomic 

if the Writer object is never “leaked” to another thread. The type 

system cannot cater for such cases and thus can only type check 

successfully when println is declared cmpd (compound). The 

authors of [1] suggest using an ownership type system [13] or 

escape analysis [14] to reason about this case. An ownership type 

system can help locate where in the heap an object belongs to, 

while an escape analysis can give information as to which 

methods have access to a variable. Using those methods, the 

system can determine whether the Writer object can be accessed 

by other threads, thus give a more precise atomicity type for the 

println method. A similar issue caused by the fixed ownership 

relationship used by the type system in [1] is that it cannot deal 

with changing protection mechanisms such as the one used for 

Java’s arrays. An ownership type system can help in this case as 

well. 

Another limitation mentioned in [1] is when other threads have 

access to this object before a constructor returns. This situation 

is rare but definitely possible, for example, when a constructor 

forks another thread and pass the this pointer to that thread. This 

may cause the constructor to become not atomic even though most 

of the case it does (since leaking the this pointer in constructor 

to other threads is rare). The paper deals with this case by using 

the –constructor_holds_lock flag to force the system to 

assume that the lock this is held in constructors, but also suggests 

that an escape analysis may be used instead. Using the flag above 

is more practical in most cases because it is almost always correct 

and it gives a more precise results than using a sound escape 

analysis, which can be too approximate. 

The –constructor_holds_lock above is just one of a few 

relaxation techniques the paper uses in practice. From the 

examples above and the fact that the system in [1] needs 

unchecked annotations and assumptions about the synchronization 

disciplines of programs, we can clearly see that the type system is 

not expressive enough. It is because not all synchronization 

disciplines can be captured by the theory of reduction or 

expressed using types. Some of them can be captured by 

combining the atomicity type system with other static analyses, 

others by using ad-hoc annotations and assumptions. Extending 

the type system itself, if possible, seems risky since one may 

violate the soundness property of the type system in exchange for 

more expressiveness. 

3.5 Annotations 
One aspect of the type system in [1] that receives little treatment 

is the annotations. In some sense, this is the major weakness of the 

method. In order to type check a program, the programmer must 

fully annotate the code with expected locks, expected atomicity 

types, and special annotations and flags. The density of 

annotations is not high as shown in Table 1 in [1]. The problem is 

this atomicity type system relies on another type system for race 

condition to reasons about locks. The second type system itself 

needs annotations, thus the true density of annotations is higher 

than the one shown in [1]. Unfortunately, this point is not raised in 

the paper and no number is provided. It is, however, noted in a 

future work that solves the same problem using dynamic analysis 

[15]. 

The need for heavy annotations also means the type system is less 

helpful for legacy code bases. To understand the intended 

atomicity types of each method for existing code takes time and 

the programmer writing annotations can easily make mistakes as 

well. An example supporting this case can be found in [1], where 

the authors mention they cannot determine the intended atomicity 

type of the method checkSpecifyHandler in the JDK class 

java.net.URL.specifyHandlerPerm. 

For newly written code, one can also argue that the type system 

provides little benefit in actually writing multithreaded code, since 

the programmer must still insert locking calls manually without 

any help from the system. Also, the authors of [6] note that if a 

programmer can easily specify atomic regions, he or she can also 

properly synchronize them without much effort. 

3.6 Value and Future Work 
As heavy annotations are a major weakness of the type system, 

future work has been trying to help the programmer more by 

inferring atomicity types from original programs [3, 17]. Another 

feature that can be helpful to programmers is the system’s ability 

to add locking calls automatically based on the programmer’s 

specifications, described in [10]. Another way to avoid 

annotations is not to use type system or static analysis at all. Other 

methods to verify atomicity include dynamic analysis [7, 15], 

hybrid analysis [21], model checking [8], and theorem proving 

[9]. Using dynamic analysis, for example, is good for legacy code 

as well, since it is more or less automatic. 

Another weakness of the type system in [1] is its limited 

expressiveness. There has been future work by the same author 

addressing this issue using effect system [18], which extends the 

notion of atomicity beyond reducible methods. Of course, the 

other approaches mentioned above (e.g. dynamic analysis) often 

can verify more precise specifications too. 

It is worth to note that even though the paper [1] is not the first to 

define the well-known concept of atomicity (it actually uses a 

more restricted meaning of the term), it is the first to use a static 

program analysis method to solve the problem of atomicity 

verification. It also succeeds in finding true atomicity violations in 

the JDK libraries, thereby proves its usefulness. With the rise of 

software transactional memory (STM) where programmer gets 

small-scale atomicity for free, the type system in [1] is still useful 



but it becomes less valuable. However, it can work together with a 

transactional memory system/library to guarantee atomicity and 

hence reduce the workload on the STM system [21]. 

4. CONCLUSION 
In this report we have summarized and analyzed the paper “A 

Type and Effect System for Atomicity” by Flanagan and Qadeer 

[1]. We have justified the motivations behind the work and the 

choice of method, verified their claims, gave more contexts to 

their discussions, provided more explanations for some of the 

points briefly stated in the paper, analyzed in depth some of the 

paper’s shortcomings, and noted future work that extended the 

paper. We can conclude that the paper is influential in the sense 

that it spawns a large body of future work focusing on the same or 

related problems. The method used in the paper which is the 

atomicity type system, although an extension from previous work, 

is proven useful and will remain useful (though less so) in the 

foreseeable future. However, the type system is not without its 

inherent shortcomings, some of which not given sufficient 

discussions in the paper. The shortcomings are not trivial to 

overcome by just extending the type system, thus somehow limit 

the usefulness of the method in practice. 
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