
A Type and Effect System for Atomicity – A Review

Hoang Thai Duong

ABSTRACT

In this report, we summarize and analyze the PLDI 2003 paper “A

Type and Effect System for Atomicity” by Flanagan and Qadeer

[1]. We show that while this paper is the first to use static analysis

to successfully verify a fundamental correctness property in

multithreaded programs that is atomicity, its approach has

limitations that should be, and indeed have been, addressed in

future work.

1. INTRODUCTION
There have been strong beliefs in recent years that parallel

computing is the future for computing. As a consequence,

multicore machines, and multithreaded software that can take

advantage of such machines, have becoming increasingly more

popular. Compared to serial programs, multithreaded programs

are harder to test and debug. The main reason is that the

interleaving of threads results in many complex execution

scenarios and makes synchronization bugs non-deterministic, thus

hard to reproduce and fix.

One common source of bugs in parallel programs is race

condition, where more than one threads try to access a shared

variable simultaneously, and at least one of the accesses is a write.

There have been works trying to detect race conditions using a

variety of techniques. However, Flanagan and Qadeer [1] argue

that the absence of race conditions is neither necessary nor

sufficient for a program to be correct. They advocate checking for

a stronger non-interference property called atomicity, where

atomic methods can be assumed to execute in “one step”, without

interferences of methods from other threads. To that end, the

authors propose a type system to specify and verify the atomicity

of methods in multithreaded Java programs. They show that their

approach successfully finds atomicity violations in the JDK’s

codebase that can lead to crashes.

This report elaborates more on the importance of atomicity, and

discusses race conditions and atomicity in a larger context. We

also give reasons to justify the use of a type system instead of

other static analysis techniques. In the same spirit, we states the

advantages and disadvantages of the static analysis approach

taken by [1] compared with other methods such as dynamic

analysis and model checking used in later papers. Finally, we

explain in detail and give examples to illustrate the limitations of

the proposed type system when verifying atomicity in practice.

2. SUMMARY

2.1 The Need for Atomicity
As mentioned, race conditions are a common source of

synchronization bugs. As an example, consider the Java program

fragment below.

class Account {
 int balance = 0;

 int deposit(int x) {
 balance = balance + x;
 }
}

The code above can behave unexpectedly when two or more calls

to deposit are interleaved. The final value of balance may only

reflect one of the many calls. That is because the program

contains a race condition on the variable balance. We can protect

that variable by putting the update statement into a

synchronized context, thus getting rid of the race condition.

int deposit(int x) {
 synchronized (this) {
 balance = balance + x;
 }
}

However, race-freedom does not imply a program is error-free.

Consider the code below where we extends the Account class

above to include two more methods.

int readBalance() {
 synchronized (this) { return balance; }
}

void withdraw(int amt) {
 int b = readBalance();
 synchronized (this) { balance = b - amt; }
}

There are no races in either method, but an execution like the one

below will cause an incorrect behavior of the method withdraw.

Thread 1: int b = readBalance();

Thread 2: deposit(10);
Thread 1: synchronized (this) {
 balance = b – amt;
 }

The reason the above execution can happen is because in the

withdraw method, its statements can interleave with those from

other threads and change the program’s behavior. We can rewrite

the method to make it atomic and at the same time rewrite

readBalance to get rid of the redundant synchronized context as

follows.

int readBalance() { return balance; }

void withdraw(int amt) {
 synchronized (this) {
 balance = balance – amt;
 }
}

Now there is a race condition on the variable balance, but it is

benign as it does not affect the correctness of the program. We

can conclude that a race condition does not necessarily mean a

program has bugs, and the absence of race conditions does not

imply a program is correct either.

The problems with race-conditions call for the need of another,

stronger non-interference property that is atomicity. A method is

atomic if for any execution of the program in which the method’s

statements are arbitrarily interleaved with statements from other

threads, there is an equivalent execution of the program in which

the method’s statements are executed serially without

interferences. In other words, if a method is atomic, the scheduler

can freely interleave the execution of that method with other

threads, the result of the program is the same regardless.

Atomicity as a concept is useful since once a method is known to

be atomic, it can be further analyzed and reasoned about using

sequential reasoning techniques. Atomicity is a fundamental

correctness property since atomic operation is a common way for

ensuring thread safety. In practice, a lot of interface methods are

intended to be atomic (or thread-safe). Therefore, it is useful to

provide programmers with a methodology to specify and verify

the desired atomicity of methods. To achieve that goal, Flanagan

and Qadeer [1] propose a type system for specifying and checking

atomicity properties of methods. We will give an overview and

assess this type system for atomicity in subsequent Subsections.

2.2 Lipton’s Theory of Reduction
The type system presented in [1] is based on Lipton’s theory of

right and left movers [2]. An action is a right mover if it can

always be swapped with its immediately following action from

another thread without changing the resulting state. A left mover

is defined similarly. In a multithreaded programming context, a

lock acquiring action is a right mover, while a lock releasing

action is a left mover. A variable access while holding the

corresponding lock is both a right and left mover. The following

example illustrates the use of this theory to verify atomicity.

void deposit(int x) {
 synchronized (this) { b = b + x; }
}

Below are two different executions of the code above. In the first

execution, the operations of method deposit are interleaved with

other operations from another thread. Then, the operations that are

movers are swapped with their neighbors resulting in the second,

non-interleaving, execution of deposit. By swapping operations

according to the rules of Lipton’s theory, method deposit can be

proven atomic.

→ 𝑎𝑞𝑢𝑖𝑟𝑒 → 𝑥 → 𝑟 = 𝑏 → 𝑦 → 𝑏 = 𝑟 + 𝑥 → 𝑧 → 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 →
→ 𝑥 → 𝑎𝑞𝑢𝑖𝑟𝑒 → 𝑟 = 𝑏 → 𝑏 = 𝑟 + 𝑥 → 𝑟𝑒𝑙𝑒𝑎𝑠𝑒 → 𝑦 → 𝑧 →

In general, the theory states that any sequence of actions

consisting of a sequence of right movers, followed by at most one

atomic action, followed by a sequence of left movers, can be

considered atomic.

2.3 Atomicity Types
The proposed type system assigns to each expression an atomicity

type. At the fundamental level, there are five basic atomicities

described below.

• 𝑐𝑜𝑛𝑠𝑡: An expression 𝑒 has type 𝑐𝑜𝑛𝑠𝑡 if valuating 𝑒

does not depend or change any mutable state.

• 𝑚𝑜𝑣𝑒𝑟: An expression 𝑒 is a 𝑚𝑜𝑣𝑒𝑟 if it can be

swapped with its immediate neighboring operations of

other threads.

• 𝑎𝑡𝑜𝑚𝑖𝑐: An expression 𝑒 is 𝑎𝑡𝑜𝑚𝑖𝑐 if its execution can

safely be considered a non-interleaved one.

• 𝑐𝑚𝑝𝑑: An expression 𝑒 has atomicity type 𝑐𝑚𝑝𝑑 if it

does not belong to one of the above categories.

• 𝑒𝑟𝑟𝑜𝑟: An expression 𝑒 has atomicity type 𝑒𝑟𝑟𝑜𝑟 if it

violates the locking rules used by the program.

In an intuitive way, iterative closure (where an expression is

executed a number of times) and sequential composition (when

two expressions are executed one after another) of the five basic

atomicity types are defined. We give some examples below.

𝑚𝑜𝑣𝑒𝑟∗ = 𝑚𝑜𝑣𝑒𝑟
𝑎𝑡𝑜𝑚𝑖𝑐∗ = 𝑐𝑚𝑝𝑑

𝑐𝑚𝑝𝑑∗ = 𝑐𝑚𝑝𝑑
𝑚𝑜𝑣𝑒𝑟; 𝑎𝑡𝑜𝑚𝑖𝑐 = 𝑎𝑡𝑜𝑚𝑖𝑐

𝑎𝑡𝑜𝑚𝑖𝑐; 𝑎𝑡𝑜𝑚𝑖𝑐 = 𝑐𝑚𝑝𝑑
𝑐𝑚𝑝𝑑; 𝑐𝑚𝑝𝑑 = 𝑐𝑚𝑝𝑑

Two atomicities can also be joined together by the joint operator

(⊔). This joint type (𝛼1 ⊔ 𝛼2 where 𝛼1 and 𝛼2 are basic

atomicities) reflects the atomicity type of an if statement.

Since some expressions have different atomicity types depending

on which locks are held at the time of executing the expression,

the set of atomicities is also extended with conditional atomicities.

For example, accessing a protected field with the corresponding

lock held is a 𝑚𝑜𝑣𝑒𝑟, but without the lock held it is an 𝑒𝑟𝑟𝑜𝑟. If

an expression 𝑒 has a conditional atomicity type of the form

𝑙? 𝑎: 𝑏, it means the atomicity type of 𝑒 is 𝑎 when lock 𝑙 is held,

otherwise it is 𝑏.

Iterative closure (∗), sequential composition (;), and joint operator

(⊔) are intuitively extended to conditional atomicities as well.

Some of the rules are provided below.

(𝑙? 𝑎: 𝑏)∗ = 𝑙? 𝑎∗: 𝑏∗
(𝑙? 𝑎1: 𝑎2); 𝑏 = 𝑙? (𝑎1; 𝑏): (𝑎2; 𝑏)

(𝑙? 𝑎1: 𝑎2) ⊔ 𝑏 = 𝑙? (𝑎1 ⊔ 𝑏): (𝑎2 ⊔ 𝑏)

For subtyping to work and thus the type system can be more

precise, an order is defined over the set of atomicity types. The

ordering rules can be summarized as follows.

𝑐𝑜𝑛𝑠𝑡 ⊏ 𝑚𝑜𝑣𝑒𝑟 ⊏ 𝑎𝑡𝑜𝑚𝑖𝑐 ⊏ 𝑐𝑚𝑝𝑑 ⊏ 𝑒𝑟𝑟𝑜𝑟

𝑎 ⊑ 𝑎∗
𝑎 ⊑ 𝑎; 𝑏

𝑙? 𝑎1: 𝑎2 ⊑ 𝑏 if 𝑎1 ⊑ 𝑏 and 𝑙 is held, or 𝑎2 ⊑ 𝑏 and 𝑙 is not held.

Finally, a set of rules are defined so that atomicity types can be

easily manipulated and simplified. Some of them are reproduced

below.

(𝑎∗)∗ ≡ 𝑎∗
(𝑎; 𝑏); 𝑐 ≡ 𝑎; (𝑏; 𝑐)
𝑎; 𝑐𝑜𝑛𝑠𝑡 ≡ 𝑎

𝑎; (𝑏 ⊔ 𝑐) ≡ 𝑎; 𝑏 ⊔ 𝑎; 𝑐
(𝑎 ⊔ 𝑏)∗ ≡ 𝑎∗ ⊔ 𝑏∗

2.4 Type Annotations
A subset of the Java language is extended with type annotations

so that the programmer can specify the intended atomicity type of

each method and other synchronization information needed to

type-check the program. In particular, each field can be protected

by a lock with the guarded_by annotation. A method declaration

can specify a set of locks that are supposed to be held when the

execution of the method begins using the requires annotation.

An example is provided below.

class Account {
 int balance write_guarded_by this = 0;
 atomic int withdraw(int x) requires this { … }
}

In practice, the annotations are implemented as special forms of

Java comments.

2.5 Type Checking Rules
The core of the type system is a set of rules to verify the atomicity

of expression given the atomicity types of its components. The

system takes as input a fully annotated program and verifies the

intended atomicity of each method. A type judgment has the form

𝑃; 𝐸 ⊢ 𝑒: 𝑡 & 𝑎 and it means for program 𝑃, under type

environment 𝐸, expression 𝑒 has type 𝑡 and atomicity 𝑎. Note that

even though the authors of [1] use the term “atomicity types”, the

atomicities are actually specified as an effects; the type of each

expression is just its ordinary type in Java. We reproduce four

rather simple rules below and briefly explain their meaning. The

rest of the rules and more detailed explanations can be found in

[1] or [3].

• [WHILE]

𝑃; 𝐸 ⊢ 𝑒1: 𝑖𝑛𝑡 ⅋ 𝑎1

𝑃; 𝐸 ⊢ 𝑒2: 𝑡 & 𝑎2

𝑃; 𝐸 ⊢ 𝑤ℎ𝑖𝑙𝑒 𝑒1 𝑒2: 𝑖𝑛𝑡 & (𝑎1; (𝑎2; 𝑎1)∗)

• [REF GUARD]

𝑃; 𝐸 ⊢ 𝑒: 𝑐 ⅋ 𝑎
𝑃; 𝐸 ⊢ (𝑡 𝑓𝑑 𝑔𝑢𝑎𝑟𝑑𝑒𝑑_𝑏𝑦 𝑙 = 𝑒′) ∈ 𝑐

𝑏 ≡ (𝑙[𝑡ℎ𝑖𝑠 ≔ 𝑒] ? 𝑚𝑜𝑣𝑒𝑟)

𝑃; 𝐸 ⊢ 𝑏
𝑃; 𝐸 ⊢ 𝑒. 𝑓𝑑: 𝑡 & (𝑎; 𝑏)

• [CALL]

𝑃; 𝐸 ⊢ 𝑒𝑖: 𝑡𝑖 ⅋ 𝑎𝑖

𝑡0 = 𝑐

𝑃; 𝐸 ⊢ 𝑏[𝑡ℎ𝑖𝑠 ≔ 𝑒0]

𝑃; 𝐸 ⊢ (𝑏 𝑠 𝑚𝑛(𝑡1 𝑦1, … , 𝑡𝑛 𝑦𝑛) { 𝑒 }) ∈ 𝑐

𝑃; 𝐸 ⊢ 𝑒0. 𝑚𝑛(𝑒1, . . , 𝑒𝑛): 𝑠 & (𝑎0; … ; 𝑎𝑛; 𝑏[𝑡ℎ𝑖𝑠 ≔ 𝑒0])

• [SUB]

𝑃; 𝐸 ⊢ 𝑒: 𝑠 ⅋ 𝑎
𝑃 ⊢ 𝑠 <: 𝑡

𝑃; 𝐸 ⊢ 𝑎 ⊑ 𝑏
𝑃; 𝐸 ⊢ 𝑒: 𝑡 & 𝑏

The [WHILE] rule says that if 𝑒1 has atomicity 𝑎1, 𝑒2 has

atomicity 𝑎2, the expression 𝑤ℎ𝑖𝑙𝑒 𝑒1 𝑒2 has atomicity

(𝑎1; (𝑎2; 𝑎1)∗). The [REF GUARD] rule is used when 𝑒 is an

expression accessing a variable 𝑓𝑑 guarded by lock 𝑙. Expression

𝑒 has atomicity type 𝑚𝑜𝑣𝑒𝑟 provided 𝑙 is held, otherwise it is an

𝑒𝑟𝑟𝑜𝑟. The [CALL] rule says that the atomicity type of a call

expression is the sequential composition of the atomicities of its

arguments followed by the annotated atomicity of the callee. The

[SUB] rule allows for subeffecting, making the system more

precise. One important point to note is that in practice, the type

system relies on a race condition checker called rccjava [4] to

obtain the set of locks held at each program point. rccjava is the

checker for another type system developed by the same authors to

detect race conditions.

2.6 Evaluation
The authors of [1] manually annotate several classes in the JDK

and show that their type system successfully discovers atomicity

violations which are not race conditions in the JDK’s

java.util.StringBuffer and java.lang.String classes.

They also provide the exact number of annotations needed and the

number of lines of code for each class to convince that their type

system requires a reasonable amount of annotations. On average,

23.3 annotations are needed per KLOC.

The authors are also aware the limitations of their approach. The

type system does not capture all synchronization mechanisms in

practice, so it relies on ad-hoc relaxing techniques such as the

no_warn and holds annotations and the –
constructor_holds_lock command line tag. The authors also

report problems with changing protection mechanism (arrays) and

rep-exposure (java.io.PrintWriter). They also note a case in

java.net.URL where it is unclear whether the warnings the type

system gives is benign.

3. ANALYSIS AND DISCUSSION

3.1 Atomicity and Race Condition
The authors of [1] state a number of advantages of atomicity to

convince it is a more meaningful concept than race condition. It is

more accurate, however, to view atomicity and race condition as

just two correctness properties at two different levels of

abstraction. Race condition is at the lower level, where the

concern is about guarded variable being accessed by more than

one threads. Atomicity is at a higher level, where the effect of

interleaving executions is concerned. There are certainly other

correctness properties at higher level of abstraction. Consider the

class Account example above; one can, for example, require

that the first call must be a deposit call instead of a withdraw

call, since in the beginning there is nothing to withdraw. In

general, multithreaded methods may not only need to be atomic,

they may also need to be executed in certain order for the program

to work correctly.

It is mentioned in [1] that race freedom is neither necessary nor

sufficient to ensure the absence of synchronization bugs (actually

[16] points out that the data races allowed in [1] is not benign in

the Java or C# memory models, only for sequentially consistent

systems). Another reason why it makes more sense to say that

atomicity and race condition are just two concepts at different

levels of abstraction is that the same thing can be said about

atomicity. First of all, the lack of atomicity does not mean there

are bugs. There are synchronization mechanisms that may not rely

on atomic operations, such as barriers, or any

synchronization mechanism that does not used share variables.

Then obviously there are programs that fail even though all of its

methods are atomic. For an example, consider the class
Account again, a call to withdraw when the balance is 0 may

cause unexpected behaviors.

It is also worth noting that atomicity does not “encompass” or

“replace” race condition. Methods that check for race conditions

are still useful, since an atomicity checker must rely on a race

condition checker to reason about the set of locks held at each

program point, thereby showing certain expressions are mover.

The type system described in [1] uses rccjava, a type system for

race condition, in practice. Also, arguably, many atomicity

violations are also race conditions [5], thus most of the time one

can uncover the majority of atomicity violations using a more

lightweight type system for race condition. The authors of [1]

should have done experiments with some code base that has both

types of violations and provided some statistics to convince the

reader that the number of atomicity violations (that are not race

conditions) is indeed significant.

Having said the above, it is still true that atomicity is a very

important concept and all the advantages of it mentioned in [1] are

significant. There are also other reasons why atomicity is a

fundamental correctness property that are not mentioned in [1].

For example, data race can be automatically taken care of in a

transactional programming model (where memory write and read

operations can be made atomic by hardware or software), but

atomicity is still a problem [6]. Transactional memory, however,

does make ensuring atomicity easier for the programmer, so a

type system to verify atomicity for high level code becomes less

important. For low level synchronization libraries (e.g. software

transactional memory libraries), it’s still very valuable.

3.2 Static Analysis
There are a number of ways to verify a method’s atomicity, static

analysis one of them. The other methods include dynamic analysis

[7], model checking [8], and theorem proving [9]. Among the

approaches, static analysis is usually conservative (less precise)

but sound. Dynamic analysis is often unsound and has small

coverage, but it is often automatic and its results are more precise

(less approximation). Model checking has the problem of

exponential number of states, thus its coverage is often small.

Atomicity verification as a problem does not clearly favor any

particular approach. In fact, a combination of approaches or a

hybrid approach usually works better than any of them alone [20].

The static analysis approach used by [1], however, is the first

work to propose the atomicity verification problem and solve it

using a program analysis method. It is also not surprising that a

type system is used since the authors already developed a type

system for race condition checking. The new type system is

understandably a natural extension of previous work.

3.3 Type System
As said above, the type system in [1] is naturally extended from

another type system developed previously [4]. There may be other

reasons as to why a type system is used instead of other static

analysis techniques such as data flow (equation-based) analysis,

constraint-based analysis, and abstract interpretation. First of all,

atomicity is inherently a property of a region of code. It is

therefore naturally to express this property as types and/or effects

(the type system in [1] is written as an effect system, the real type

of an expression is its original Java type). The problem may very

well be formulated as solving a set of equations/constraints, but it

is just unintuitive and unproductive to think of it that way. As for

abstract interpretation, it is not needed here since typing rules can

be checked simply by following the syntax; there is no need to

work in some abstract domain.

Another unique advantage of using a type system is that the

annotations required by the type checker can be meant for human

to read as well. The programmer can use the annotations to

document and communicate the intended atomicity type for each

method. Annotations help programmers maintaining a code base

understand and reason about the code better.

Expressing atomicity as types also makes the analysis more

modular and scalable. Type checking can be done for each class in

isolation and growing the code base has little impact on the

system’s complexity and performance.

3.4 The Type System for Atomicity
One nice thing about the type system proposed in [1] is that it is

expectedly sound, which means if a well typed method is intended

to be atomic, it is guaranteed to be atomic. On the other hand, the

system is necessarily incomplete. It may give false alarms (i.e. it

may deduce that some methods are not atomic while in fact they

are). The reason is that the type system does not capture all

synchronization mechanism and complex locking idioms used in

practice. We will give a brief overview of some of them below

and explain why the type system in [1] fails for such cases.

The type system supports re-entrant locks but fails to detect dead-

locks. A re-entrant lock is a lock that can be acquired by a thread

multiple times in a row without blocking on itself. This situation

may arise from, for example, a method traversing a graph and

accessing a protected node multiple times. Java has support for

such lock, for example, in the JDK class

java.util.concurrent.locks.ReentrantLock. This

situation is not supported by Lipton’s theory of reduction but is

supported by the atomicity type system in [1]. In Lipton’s theory

of reduction, there is a key condition that requires the last 𝑘 – 1

statements in a series of 𝑘 reducible statements be executable. A

statement may not be executable if it tries to acquire a lock that is

not yet released. So the following block of statements, which is

atomic with the support of re-entrant lock, is not reducible

according to the theory.

acquire(l); acquire(l); release(l); release(l);

However, the type system does not enforce the aforementioned

condition in the theory, so it can reduce the code above. That

means the type system assume all locks are re-entrant by default,

which is understandable since the synchronized keywords in

Java implicitly specifies a re-entrant lock. The problem is then,

normal locks are not supported. If in the code above, l is a normal

lock, a dead-lock will occur – the thread blocks itself and never

progresses. The type system, however, are unaware of the dead-

lock and will (wrongfully) consider the four statements as an

atomic operation. This issue is also raised in [10] but without

explanations.

The type system does not support protected locks. A protected

lock is a lock that is protected by another lock. In other words, to

acquire a lock l would require holding lock l’ first. There is no

way to specify (and thus, check for) this discipline using the

atomicity type system. Adding the support for protected locks, if

possible, would make the type system significantly more complex,

since there can be arbitrary number of protected levels. Another

related mechanism where a field is protected by two or more locks

is also not supported.

Another drawback of the type system is that it does not support

manual locking using mutexes or semaphores. Some intuitively

atomic methods are not reducible. The code below is an example.

1: while (mutex == 0) { }; // spin lock
synchronized (this) {
 if (mutex > 0) mutex--;
 else goto 1;
} // acquire lock
doSomething(); // atomic
synchronized (this) { mutex++; } // release lock

The doSomething call above is atomic since it is put inside a

critical section guarded by manual locking using the variable

mutex. However the type system cannot assign the correct

atomicity type to the call because it is not inside any

synchronized context. This defect of the type system is also

stated (without discussion) in [11], among other defects such that

the lack of support for the unique protection mechanism, classes

cannot be parameterize by readonly and self, and the

restriction that all instances of a class must use the same

protection mechanism for a field.

Some limitations of the type system are briefly stated in [1] but

without sufficient discussion. Here we give a more detailed

explanation of the issues. The first issue has to do with rep-

exposure [12]. A rep-exposure happens when an encapsulated

field is exposed to the outside of the object containing it. In the

paper, the println method in java.io.PrintWriter is used

as an example.

public void println(int x) {
 synchronized (lock) {
 print(x); println();
 }
}

The two inner calls to print and println write to a Writer

object which is passed from outside to the PrintWriter

constructor. Therefore, another thread could write to that Writer

object at the same time as the println method above, causing a

data race, even though all statements of println are inside a

synchronized block. However, the println method is still atomic

if the Writer object is never “leaked” to another thread. The type

system cannot cater for such cases and thus can only type check

successfully when println is declared cmpd (compound). The

authors of [1] suggest using an ownership type system [13] or

escape analysis [14] to reason about this case. An ownership type

system can help locate where in the heap an object belongs to,

while an escape analysis can give information as to which

methods have access to a variable. Using those methods, the

system can determine whether the Writer object can be accessed

by other threads, thus give a more precise atomicity type for the

println method. A similar issue caused by the fixed ownership

relationship used by the type system in [1] is that it cannot deal

with changing protection mechanisms such as the one used for

Java’s arrays. An ownership type system can help in this case as

well.

Another limitation mentioned in [1] is when other threads have

access to this object before a constructor returns. This situation

is rare but definitely possible, for example, when a constructor

forks another thread and pass the this pointer to that thread. This

may cause the constructor to become not atomic even though most

of the case it does (since leaking the this pointer in constructor

to other threads is rare). The paper deals with this case by using

the –constructor_holds_lock flag to force the system to

assume that the lock this is held in constructors, but also suggests

that an escape analysis may be used instead. Using the flag above

is more practical in most cases because it is almost always correct

and it gives a more precise results than using a sound escape

analysis, which can be too approximate.

The –constructor_holds_lock above is just one of a few

relaxation techniques the paper uses in practice. From the

examples above and the fact that the system in [1] needs

unchecked annotations and assumptions about the synchronization

disciplines of programs, we can clearly see that the type system is

not expressive enough. It is because not all synchronization

disciplines can be captured by the theory of reduction or

expressed using types. Some of them can be captured by

combining the atomicity type system with other static analyses,

others by using ad-hoc annotations and assumptions. Extending

the type system itself, if possible, seems risky since one may

violate the soundness property of the type system in exchange for

more expressiveness.

3.5 Annotations
One aspect of the type system in [1] that receives little treatment

is the annotations. In some sense, this is the major weakness of the

method. In order to type check a program, the programmer must

fully annotate the code with expected locks, expected atomicity

types, and special annotations and flags. The density of

annotations is not high as shown in Table 1 in [1]. The problem is

this atomicity type system relies on another type system for race

condition to reasons about locks. The second type system itself

needs annotations, thus the true density of annotations is higher

than the one shown in [1]. Unfortunately, this point is not raised in

the paper and no number is provided. It is, however, noted in a

future work that solves the same problem using dynamic analysis

[15].

The need for heavy annotations also means the type system is less

helpful for legacy code bases. To understand the intended

atomicity types of each method for existing code takes time and

the programmer writing annotations can easily make mistakes as

well. An example supporting this case can be found in [1], where

the authors mention they cannot determine the intended atomicity

type of the method checkSpecifyHandler in the JDK class

java.net.URL.specifyHandlerPerm.

For newly written code, one can also argue that the type system

provides little benefit in actually writing multithreaded code, since

the programmer must still insert locking calls manually without

any help from the system. Also, the authors of [6] note that if a

programmer can easily specify atomic regions, he or she can also

properly synchronize them without much effort.

3.6 Value and Future Work
As heavy annotations are a major weakness of the type system,

future work has been trying to help the programmer more by

inferring atomicity types from original programs [3, 17]. Another

feature that can be helpful to programmers is the system’s ability

to add locking calls automatically based on the programmer’s

specifications, described in [10]. Another way to avoid

annotations is not to use type system or static analysis at all. Other

methods to verify atomicity include dynamic analysis [7, 15],

hybrid analysis [21], model checking [8], and theorem proving

[9]. Using dynamic analysis, for example, is good for legacy code

as well, since it is more or less automatic.

Another weakness of the type system in [1] is its limited

expressiveness. There has been future work by the same author

addressing this issue using effect system [18], which extends the

notion of atomicity beyond reducible methods. Of course, the

other approaches mentioned above (e.g. dynamic analysis) often

can verify more precise specifications too.

It is worth to note that even though the paper [1] is not the first to

define the well-known concept of atomicity (it actually uses a

more restricted meaning of the term), it is the first to use a static

program analysis method to solve the problem of atomicity

verification. It also succeeds in finding true atomicity violations in

the JDK libraries, thereby proves its usefulness. With the rise of

software transactional memory (STM) where programmer gets

small-scale atomicity for free, the type system in [1] is still useful

but it becomes less valuable. However, it can work together with a

transactional memory system/library to guarantee atomicity and

hence reduce the workload on the STM system [21].

4. CONCLUSION
In this report we have summarized and analyzed the paper “A

Type and Effect System for Atomicity” by Flanagan and Qadeer

[1]. We have justified the motivations behind the work and the

choice of method, verified their claims, gave more contexts to

their discussions, provided more explanations for some of the

points briefly stated in the paper, analyzed in depth some of the

paper’s shortcomings, and noted future work that extended the

paper. We can conclude that the paper is influential in the sense

that it spawns a large body of future work focusing on the same or

related problems. The method used in the paper which is the

atomicity type system, although an extension from previous work,

is proven useful and will remain useful (though less so) in the

foreseeable future. However, the type system is not without its

inherent shortcomings, some of which not given sufficient

discussions in the paper. The shortcomings are not trivial to

overcome by just extending the type system, thus somehow limit

the usefulness of the method in practice.

5. REFERENCES
[1] C. Flanagan and S. Qadeer. A type and effect system for

atomicity. In Proceedings of the ACM Conference on

Programming Language Design and Implementation, pages

338—349, 2003.

[2] R. Lipton. Reduction: A method of proving properties of

parallel programs. In Communications of the ACM, volume

18:12, pages 717—721, 1975.

[3] C. Flanagan, S. N. Freud, M. Lifshin, and S. Qadeer. Types

for atomicity static checking and inference for Java.

TOPLAS, 30(4):1—53, 2008.

[4] C. Flanagan and S. N. Freund. Type-based race detection for

Java. In PLDI 00: Programing Language Design and

Implementation, pages 219—232. ACM Press, 2002.

[5] M. Naik, A. Aiken, and J. Whaley. Effective static race

detection for Java. In PLDI ’06, pages 308—319, New York,

NY, USA, 2006.

[6] Shan Lu, Joe Tucek, Feng Qin, and Yuanyuan Zhou. Avio:

Detecting atomicity violations via access-interleaving

invariants. In proceedings of the International Conference on

Architecture Support for Programming Languages and

Operating Systems, October 2006.

[7] C. Flanagan and S. N. Freund. Atomizer: a dynamic

atomicity checker for multithreaded programs. In POPL ’04:

Proceedings of the 31st ACM SIGPLAN-SIGACT symposium

on Principles of programming languages, pages 256—267,

New York, NY, USA, 2004.

[8] J. Hatcliff, Robby, and M. B. Dwyer. Verifying atomicity

specifications for concurrent object-oriented software using

model-checking. In International Conference on

Verification, Model Checking and Abstract Interpretation,

pages 175—190, 2004.

[9] S. N. Freund and S. Qadeer. Checking concise specifications

for multithreaded software. In Workshop on Formal

Techniques for Java-like Programs, 2003.

[10] Bill McCloskey, Feng Zhou, David Gay, and Eric Brewer.

Autolocker: synchronization inference for atomic sections. In

POPL, pages 346—358, 2006.

[11] A. Sasturkar, R. Agarwal, L. Wang, and S. D. Stoller.

Automated type-based analysis of data races and atomicity.

In Proc. ACM SIGPLAN 2005 Symposium on Principles and

Practice of Parallel Programming (PPoPP), Hune 2005.

[12] D. L. Detlefs, K. R. M. Leino, and C. G. Nelson. Wrestling

with rep exposure. Research Report 156, DEC Systems

Research Center, July 1998.

[13] C. Boyapati, R. Lee, and M. Rinard. Ownership types for

safe programming: preventing data races and deadlocks. In

OOPSLA 02: Object-Oriented Programming, Systems,

Lanaguages, and Applications, pages 211—230. ACM Press,

2002.

[14] A. Salcianu and M. Rinard. Pointer and escape analysis for

multithreaded programs. ACM SIGPLAN Notices, 36(7):12—

23, 2001.

[15] L. Wang and S. D. Stoller. Run-time analysis for atomicity.

In Third Workshop on Runtime Verification (RV03), volume

89(2), 2003.

[16] Bart Jacobs, Frank Piessens, K. Rustan M. Leino, and

Wolfram Schulte. Safe concurrency for aggregate objects

with invariants. In Software Engineering and Formal

Methods (SEFM), 2005.

[17] C. Flanagan, S. N. Freund, and M. Lifshin. Type inference

for atomicity. In Workshop on Types in Language Design

and Implementation, pages 47—58, 2005.

[18] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity

for atomicity. IEEE Transactions on Software Engineering,

31(3):275—291,2005.

[19] Colin Blundell, E Christopher Lewis, and Milo M. K. Martin.

Deconstructing Transactional Semantics: The Subtleties of

Atomicity. In Workshop on Duplicating, Deconstructing, and

Debunking (WDDD), Jun. 2005.

[20] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. HAVE:

Integrated dynamic and static analysis for atomicity

violations. In International Conference on Fundamental

Approaches to Software Engineering (FASE), 2009.

