
Approximate Nearest Neighbor

Duong Hoang and Trang Tran

1 Problem

Given a set of n points P in X = Rd, the nearest-neighbor
(NN) problem is to find a point p in P that is closest
to a query point q. This problem is of importance to
many applications involving similarity searching such as
data compression, databases and data mining, informa-
tion retrieval, image and video databases, machine learn-
ing, pattern recognition, and statistics and data analysis.
Suffering from the curse of dimensionality, existing algo-
rithms either have query time linear in n and d, or have
query time sub-linear in n and polynomial in d but expo-
nential preprocessing cost nd, making them infeasible for
a large d (e.g., d ≥ 100) which is common in practice.

It is observed that insisting on the absolute nearest
neighbor is often an overkill, due to the heuristical nature
of the use of distance metric and the selection of features
in practice. Therefore the paper in discussion [2] aims to
solve an approximate relaxation to nearest neighbor prob-
lem, namely the ϵ-nearest neighbor problem (ϵ-NN): to
find a point p ∈ P that is an ϵ-approximate nearest neigh-
bor of the query q, in that ∀p′ ∈ P, d(p, q) ≤ (1+ϵ)d(p′, q).

2 Main results
The current paper proposes three algorithms for the ϵ-NN
problem, which work with different conditions on ϵ and
different norms lp. They are summarized in the following
table.

Conditions Preprocessing/Space Query

ϵ > 1, p ∈ [1, 2] Õ(n1+1/ϵ + dn) Õ(dn1/ϵ)

0 < ϵ < 1, any p Õ(n)× Õ(1/ϵ)d Õ(d)

ϵ > 0,p ∈ [1, 2] (nd)O(1) Õ(d)
Our summary only covers proposition 1 in detail.
In this report we use P to denote the set of all points

that we search in, n = |P |, B(p, r) for the ball of radius r
centered at point p, |B(p, r)| for the number of points in
B(p, r), d(p, q) for the distance between two points p and
q, and ∆(S) for the maximum distance between any two
points in some set S.

3 Algorithm outline and proofs
ϵ-NNS is solved by first reducing to approximate point
location in equal balls (ϵ-PLEB), using the ring-cover
tree data structure. ϵ-PLEB is then solved by using ei-
ther bucketing method or locality-sensitive hashing (LSH).
Combined with this reduction, LSH-based solution for ϵ-
PLEB in Hamming metric gives rise to proposition 1, while
bucketing-based solution and the application of the dimen-
sional reduction technique in addition to bucketing give
rise to proposition 2 and 3, respectively.

3.1 Reduction of ϵ-NNS to ϵ-PLEB
This reduction is based on the idea that in any point set
P one can find either a ring-separator or a cover. Ei-
ther construct allows decomposing P into strictly smaller
sets S1, . . . , Sl such that |Si| ≤ c|P | for some c < 1 and∑

i |Si| ≤ b|P | for b < 1+1/ log2 n. Therefore while search-
ing in P one can restrict the search to one of the Si.

Ring separator and cluster (Definition 4,5 and
Theorem 1) Consider two balls centered at a point p:
B(p, r) and B(p, 2(1 + 1/ϵ)r). They partition space into
three non-overlapping regions: B(p, r), the ring between
the two balls, and the rest of space P \B(p, 2(1+1/ϵ)r). If
the first and the last regions each has at least α|P | points in
P , P is said to contain a ring-separator R(p, r, 2(1+1/ϵ)r),
else it contains a cluster S with |S| ≥ (1− 2α|P |) (S con-
sists of the points in the ring between the two balls). The
idea of a ring-separator is that if q ∈ B(p, (1 + 1/ϵ)r)
then q cannot be much closer to any other point in
P \B(p, 2(1+1/ϵ)r), hence the search can be restricted to
B(p, 2(1 + 1/ϵ)r). Otherwise if q /∈ B(p, (1 + 1/ϵ)r) then
p is no worse than any other point in B(p, r) as a candi-
date for an ϵ-NN of q, so the search can be restricted to
P \B(p, r).

Cover (Definition 6 and Theorem 2) From a set
Ai containing only one point p, we can add to Ai all the
points in B(p, r), and keep repeating the process for all the
newly added points, while making sure 1

b |
⋃

p∈Ai
B(p, r)| ≤

|Ai| ≤ c|P |. If we keep growing these ”connected compo-
nents” Ai’s for all the points in a cluster S while maintain-
ing r ≥ d∆(A) for A =

⋃
i Ai, the resulting Ai’s constitute

a cover for S.

The main result that the reduction is based on is
Corollary 1, which states that for any P , 0 < α < 1,
β > 1, b > 1, P contains either an (α, α, β)-ring separator
R(p, r, βr), or a (b, α, 1

(2β+1) logb n)-cover. A cover, like a

ring separator, helps reducing the search space. The idea
is that one can define three values rk < r < r0 such that
r = γ∆(A)

logb n , r0 = (1 + 1
ϵ)∆(A) and rk = r

1+ϵ so that one of

the following three cases happen.

Searching in a cover Case 1 : if q /∈ B(a, r0)∀a ∈ A
(this can be answered by invoking PLEB), then all the
points in A have relatively similar distances to q and we
can pick any point in A as an ϵ-NN candidate then re-
strict the search to P − A. Case 2 : if ∃a ∈ Ai such
that q ∈ B(a, rk)q (again, using PLEB), any point out-
side of

⋃
p∈Ai

B(p, r) cannot be much closer to q than a
is, so the search can be restricted to Si =

⋃
p∈Ai

B(p, r).
Case 3 : if ∃a ∈ A such that q ∈ B(a, r0) (using PLEB)
but q /∈ B(a′, rk)∀a′ ∈ A (using PLEB), then we have to
search in both A and P −A. The search in P −A is done
recursively, while A is searched as follows. Generate a se-
quence of shrinking radii ri = r0/(1 + ϵ)i and for each ri
generate an instance of PLEB. Use binary search to find
the smallest ri for which ∃p ∈ A such that q ∈ B(p, ri). p
is thus an ϵ-NN for q in A.

Ring-cover tree Given any point set P and an ϵ > 0,

β = 2(1 + 1
e), b = 1

log2 n
and α = 1−1/ logn

2 , we can build

a ring-cover tree recursively, where each node is either a
ring node or a cover node according to Corollary 1. The
paper provides gives a proof for the claim that the search
procedure discussed above produces an ϵ-NN for q. We
have, however, found holes in this proof, which we discuss
in Section 4.

1

Space complexity Lemma 4 shows that a ring-cover
tree requires space at most O(npolylogn). This leads to
the following claim (Corollary 2): given an algorithm
for PLEB which uses f(n) space on an instance of size n
where f(n) is convex, a ring-cover tree for an n-point set
P requires total space O(f(npoly log n)). This is also the
link between the ϵ-NN to PLEB reduction and the PLEB
subroutine, needed to prove the space and time complexity
of the three algorithms that the paper introduces.

3.2 Solving ϵ-PLEB with locality-sensitive
hashing

A hash family H = {h : S → U} is (r1, r2, p1, p2)-sensitive
if for any 2 points u, v ∈ S

� if d(u, v) ≤ r1 then PrH[h(u) = h(v)] ≥ p1

� if d(u, v) ≤ r2 then PrH[h(u) = h(v)] ≤ p2

The LSH-based solution to ϵ-PLEB involves 2 parts:
during preprocessing, store the points in P into buckets;
upon querying with q, answer the query by searching the
appropriate buckets.

Algorithm:

1 proc preprocessing(P):

2 for each p ∈ P :

3 for j = 1 to ℓ
4 draw k random hash function h ∈ H
5 gj(p) = (h1(p), h2(p), . . . , hk(p))
6 put p into bucket gj(p)
7

8 proc isNearNeighbor(q,P,r):

9 r2 ← (1 + ϵ)r
10 for i=1. . . ℓ:
11 bucket_to_search ← gi(q)
12 for pj ∈ the bucket above

13 if pj ∈ B(q, r2) return pj
14 return null

The following claims are critical in analyzing this algo-
rithm.

Theorem 1. If there exists a hash family H that is
(r1, r2, p1, p2)-sensitive, then there exists an algorithm for
ϵ-PLEB (r1 = r, r2 = (1 + ϵ)r) which uses O(dn + n1+ρ)
space and O(nρ) evaluations of hash function for each
query.

Proof sketch: The algorithm above would give correct
answer with high probability, if the two events below hap-
pen with high probability

(1) Collision of hash on q and its near neighbors: E1 ≡
gj(p

∗) = gj(q) if p
∗ ∈ B(q, r1)

(2) No-collision of hash on q and any of the point far-
ther than r2 from q: E2 ≡ gj(p

′) ̸= gj(q) for all
p′ ∈ P −Br2(q), ∀j = 1 . . . ℓ

By locality-sensitivity of H, one can choose k, ℓ to en-
sure the above events happen with high probability. In
particular, the authors chose k = log p1

p2 2n
, ℓ = nρ, in which

ρ = − ln p1

ln p1/p2
.

Proposition 1. Let D(p, q) be the Hamming metric for
p, q ∈ Σd, where Σ is a finite alphabet. Then for any
r, ϵ > 0, the family H of d hash functions, each mapping
the point (p1, p2, . . . , pd) in d-dimension to the coordinate
in the corresponding dimension, i.e.

H = {hi : hi((p1, p2 . . . pd)) = pi, i = 1, . . . d}

is (r, (1 + ϵ)r, 1− r
d , 1−

r(1+ϵ)
d)-sensitive.

Using the hash family proposed by Proposition 1 and
applying Theorem 1, we have an algorithm for solving ϵ-
PLEB using O(dn + n1/ϵ) space and O(n1/ϵ), as claimed
and proved in Corollary 4 .

3.3 Solution to ϵ-NNS
Given the cost of reduction stated by Corollary 2 ,
and the cost of solving the reduced problem ϵ-PLEB as
stated above, we obtain an algorithm for ϵ-NNS that uses
Õ(dn + n1/ϵ) space and Õ(n1/ϵ) query time, which is the
main result stated in Proposition 1 .

4 Discussion
We found that a more accurate analysis of the algorithm
is available in a later version of this paper [1]. The cost
of LSH-based solution to ϵ-PLEB also differ slightly de-
pending on arbitrary choices in the algorithm, such as the
number of points to explore before declaring no neighbor
is found. To account for different choices of k and ℓ in
the LSH-based ϵ-NNS, the costs of LSH-based solution to
ϵ-PLEB can be re-written in terms of k and ℓ as following

� Preprocessing: O(nℓk) hash function evaluations
� Space: at most O(ℓn+ dn) of storage is required
� Query: at most O(ℓk + ℓtD), with t being the aver-
age number of points per bucket, and D is the time
for each distance calculation.

We have found the reduction arguments presented in
this paper to have problems. In particular, in the Con-
structing Ring-Cover Trees section the paper assumes

r = γ∆(A)
logb n , while r was shown to be r = γ∆(S)

logb n in previous

sections. This is not merely a change of notation because
letting A play the role of S leads to other irreconcilable
problems. Moreover, part (2c) of the proof of Lemma 1
is unclear: we have been able to prove the same result (i.e.,

for any p ∈ P − Si, d(q, a) ≤ d(p,q)
1+ϵ), but only for ϵ ≥ 1.

References
[1] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani.

Approximate Nearest Neighbor: Towards Removing
the Curse of Dimensionality. Theory of computing,
8(1):321–350, 2012.

[2] Piotr Indyk and Rajeev Motwani. Approximate Near-
est Neighbors: Towards Removing the Curse of Dimen-
sionality. In Proceedings of the Thirtieth Annual ACM
Symposium on Theory of Computing, STOC ’98, pages
604–613, New York, NY, USA, 1998. ACM.

2

