Subject-Specific Modeling of Cardiac Ischemia

Darrell Swenson PhD. Proposal Advisor Dr. Rob MacLeod Biomedical Engineering, University of Utah Scientific Computing and Imaging Institute

What is the leading cause of death among U.S. Presidents?

U

U

U

Cardiac Ischemia

- Hearts are electrical organs
 - Activation waves causes heart contraction
 - Most Heart failures are electrical
 - ECG's show the hearts electrical activity

Image provided by Dr. Tryanova, Johns Hopkins University

Cardiac Ischemia

- Hearts are electrical organs
 - Activation waves causes heart contraction
 - Most Heart failures are electrical
 - ECG's show the hearts electrical activity

Image provided by Dr. Tryanova, Johns Hopkins University

Action Potentials

Cardiac Ischemia

U

Inadequate blood flow

- Lack of nutrients (Oxygen)
- Changes electrical properties of tissue
- **Changes in Action Potential**
 - Decreased Amplitude
 - Increased resting potential
 - Decreased propagation velocity

Consequences

Blocked Artery

Decreased Nutrients

Cell Death

Reduced Cardiac Output

Pro-Arrhythmic Conditions

Ventricular Fibrillation

Death

U

Early Treatment

Drugs Stents Bypass

Healthy Heart

Decreased Nutrients

Cell Death

Pro-Arrhythmic Conditions

Ventricular Fibrillation

Friday, June 10, 2011

Death

U

Late Treatment

Drugs Stents Bypass

Arrhythmic Heart Defibrillators

Decreased Nutrients

Cell Death

Reduced Cardiac Output

Pro-Arrhythmic Conditions

Ventricular Fibrillation

Ŭ

Detection

Detection Methods

- Blood Tests
- Angiogram
- Echocardiography
 ECG

Take time Invasive Reliable

Fast Non-Invasive Portable Inconclusive

ECG Methods

U

Why ECG Methods are Limited

- Complex current loops
- Lead Locations

Research Group Aims

What do the currents in the heart look like during early stages of ischemia?

Can we simulate them?

Friday, June 10, 2011

-0

Research Group Aims

What do the currents in the heart look like during early stages of ischemia?

Can we simulate them?

We are not the first to try.

Modeling Ischemia

Bidomain Models Validate current loops Poor correlation to clinical data

Previous Models

Kalkulo

Kilpatrick

Poor correlation to clinical data due to

- Geometric accuracy
- Conductivity variability

Generic

Hopenfeld

Specific Aims

 Subject Specific modeling of ischemia
 Fiber Sensitivity study
 Reduce Model Complexity/Anisotropic Meshing

Specific Aim I

1. Propose, implement, and validate the effectiveness of a new geometric representation of the ischemic region and border zone.

- Derived from our experimental transmural electrode measurements
- A close correlation between simulated results and measured results

Subject-Specific Model

Experimental Data Subject Specific Model

Friday, June 10, 2011

Experimental Data

U

- Ischemia induced in canine LAD
- 247 electrode sock and 450 plunge needle electrodes used to record data
- Registered to landmarks on the heart for alignment with the MRI
- Linear and volumetric Laplacian interpolation for the sock and needle data

Model Creation

U

- MRI and DTI Scans
- Segmentation Seg3D software.sci.utah.edu
- Marching cubes isosurfacing and Tetgen meshing -SCIRun
- Mapped fiber orientations to mesh - SCIRun
- Ischemic zone from needle

Model Creation

U

- MRI and DTI Scans
- Segmentation Seg3D software.sci.utah.edu
- Marching cubes isosurfacing and Tetgen meshing -SCIRun
- Mapped fiber orientations to mesh - SCIRun

Ischemic zone from needle

U

 Bidomain equation we assume a transmembrane potential profile

$$\nabla \cdot (M_i + M_e) \nabla \phi_e = -\nabla \cdot M_i \nabla \phi_m$$

- Conductivity from Stinstra et al
- Gaussian blurring of the edge for traditional distribution
- Explicitly modeled transition region for new distribution

Friday, June 10, 2011

U

 Bidomain equation we assume a transmembrane potential profile

$$\nabla \cdot (M_i + M_e) \nabla \phi_e = -\nabla \cdot M_i \nabla \phi_m$$

- Conductivity from Stinstra et al
- Gaussian blurring of the edge for traditional distribution
- Explicitly modeled transition region for new distribution

Friday, June 10, 2011

U

 Bidomain equation we assume a transmembrane potential profile

$$\nabla \cdot (M_i + M_e) \nabla \phi_e = -\nabla \cdot M_i \nabla \phi_m$$

- Conductivity from Stinstra et al
- Gaussian blurring of the edge for traditional distribution
- Explicitly modeled transition region for new distribution

Friday, June 10, 2011

U

 Bidomain equation we assume a transmembrane potential profile

$$\nabla \cdot (M_i + M_e) \nabla \phi_e = -\nabla \cdot M_i \nabla \phi_m$$

- Conductivity from Stinstra et al
- Gaussian blurring of the edge for traditional distribution
- Explicitly modeled transition region for new distribution

Friday, June 10, 2011

U

 Bidomain equation we assume a transmembrane potential profile

$$\nabla \cdot (M_i + M_e) \nabla \phi_e = -\nabla \cdot M_i \nabla \phi_m$$

- Conductivity from Stinstra et al
- Gaussian blurring of the edge for traditional distribution
- Explicitly modeled transition region for new distribution

Friday, June 10, 2011

Border Zone Sensitivity

- Adjusted the variance of the Gaussian distribution
- Highly sensitive for border zones less then a variance of 2 ~ 3mm ->

Sharper transitions produced more localized depressions

-5.5

-6

0

Border Zone Sensitivity

U

- Adjusted the variance of the Gaussian distribution
- Highly sensitive for border zones less then a variance of 2 ~ 3mm -3

Sharper transitions produced more localized depressions

-5.5

-6

0

Border Zone Sensitivity

Friday, June 10, 2011

Gradient Magnitude

- Unable to match the field gradients using the traditional model of a border zone
- Absence of a distinct ischemic border in the needle data
- The transition region created field gradient and magnitudes similar to those in the recorded

Α.

sci INSTITUTE Recorded

Conclusions

- Border zone profile plays a significant role in the epicardial potentials distribution
- The border zone requires complex modeling
- Improved geometric representations of the border zone, adding a transition region, improves the simulation results

Future Work

- Use transmural needles to quantify border zone profile
- Extend model to multiple species, including the role of fiber structure
- Improve registration techniques

Specific Aim 2

2. Identify the sensitivity of computational models of ischemia to variations in myocardial fiber orientation as they occur between systole and diastole, as well as from subject to subject.

DTI Mapped Fibers

Helical Angle

U

Fiber Sensitivity

Ū

- Helical angles from literature
- Vary the helical angle
 - Ischemia model from Aim I
 - Propagation model of ischemia

Membrane Currents

$$\nabla \cdot M_e \nabla \Phi_e = -I_m$$

$$\nabla \cdot M_i \nabla \Phi_i = I_m$$

Hund-Rudy dynamic model

Model of Activation

Model of Activation

Validation

$$\begin{split} RMSE &= \sqrt{\frac{1}{n}\sum_{i=1}^{n}{(V_i^{sim} - V_i^m)^2}}\\ CC &= \frac{\sum_{i=1}^{n}{(V_i^{sim} - \bar{V}_i^{sim})(V_i^m - \bar{V}_i^m)}}{\sqrt{\sum_{i=1}^{n}{(V_i^{sim} - \bar{V}_i^{sim})^2}}\sqrt{\sum_{i=1}^{n}{(V_i^m - \bar{V}_i^m)^2}}}\\ MaxGradRE &= MAX\left(\frac{\nabla V_i^{sim} - \nabla V_i^m}{\nabla V_i^m}\right) \end{split}$$

U

Conclusions

Can we use heart atlases? Do we need full tensor fields or just a subset? What is the error assosiated with these inaccuracies?

Specific Aim 3

3. Based on the results from the first two specific aims, investigate approaches to model simplification that maintain suitable accuracy while reducing computational cost.

Two methods of simplification

Geometric simplification

• Which structures are important

Two methods of simplification

Geometric simplification

Which structures are important
 Mesh size reduction

Friday, June 10, 2011

U

Particle System

Sizing field based on Medial Axis

Friday, June 10, 2011

U

Particle System

Sizing field based on fiber anisotropy

Anisotropic Meshes Complications

Quadtree-based methods- No diagonal stretching

Delaunay triangulations lose optimality properties. No "empty circumellipse"

François Labelle and Jonathan Richard Shewchuk University of California at Berkeley

U

Possible Solutions

Anisotropic Voronoi Diagrams - Distance field calculations Morph then Delaunay and then invert Non-Delaunay meshing Mixed element type meshing

Summary

Ultimate goal: Bring patient specific models (engineering solutions) into a clinical setting.

- Computational resources are available
- Physiology is making great progress
- The need exists
- Technology exists

Pres. William McKinley

Shot a few yards from an x-ray machine (American Exposition in Buffalo, NY)

Doctors could not locate the bullet

Did not occur to them to utilizes available engineering resources

Thanks!

