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Abstract

We present a generic programming approach to the implementation of multiresolution spatial
decompositions. From a set of simple and necessary requirements, we arrive at the Binary Multitri-
angulation (BMT) concept. We also describe a data structure that models the BMT concept in its
full generality. Finally, we discuss applications of the BMT to visualization of volumetric datasets.

1 Introduction

Generic programming was born from the observation that most algorithms rely on a few basic semantic
assumptions about the data structures, and not on any particular implementation of these structures.
Given a problem, the generic programming basic task is to isolate these essential concepts, framing
them in a well defined interface where semantic requirements and computational complexity guarantees
are clearly posed. The algorithms that comply with that interface are free from idiosyncrasies of data
structures, which can be changed or even replaced by procedural schemes. The great sucess of C++
Standard Template Library is the main proof on behalf of that methodology [29].

The main contribution of this paper is to show how generic programming techniques can be used to
build a computational framework to deal with multiresolution spatial decompositions. We have studied
from combinatorial topology classics like [1] to modern works on multiresolution modeling [12] in order to
identify the meaningful concepts. As a result, we arrive at a new concept called Binary Multitriangulation
(BMT) that is a particular case of the Multiresolution Simplicial Model (MSM) described in [12], but
more manageable and closer in spirit to well stablished procedures of combinatorial topology. The BMT
concept can also be regarded as a 3-dimensional extension of variable resolution structures like [31].

Currently, generic programming methodology is being used as design philosophy of many libraries in
several areas: computational geometry (CGAL [10]), combinatorics (BGL [26]) and scientific computing
(MTL [27]), for instance. Concerning to the specific problem of spatial decompositions, our work re-
sembles the GrAL library [2], although we were unaware of that until just before the publication of this
paper. The similarities can be ascribed to the application of the same paradigm (generic programming)
to a same problem (spatial decompositions) with the same search for conceptual rigor. More impor-
tant, nonetheless, are the dissimilarities: while the GrAL library concentrates in fixed resolution cell
decompositions, we focus on multiresolution simplicial decompositions.

A common point of all those libraries is the omnipresence of C++ language, the most fitted language
to generic programming (specially after the recent ISO/ANSI standardization). This fact justifies the
extensive use of C++ code in this paper, but we must emphasize that there is no intrinsic dependence
to specific programming languages in the concepts we describe. In a sense, genericity can be achived in
almost any language, with more or less effort. We even can regard the pioneering work of Guibas and
Stolfi [14], Laszlo and Dobkin [7] and Mäntylä [18] as first attempts to attain genericity in surface and
solid modeling. The C++ language just provides a set of built in facilities to do it.
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The paper is organized as follows. In section 2, we set the context where multiresolution spatial
decompositions are needed and discuss informally some of their advantages. Section 3 is dedicated to
the detailed examination of the concepts we isolate, in increasing order of complexity. In section 4, we
describe data structures that models the previously defined concepts. Some applications are presented
in section 5. Finally, section 6 contains concluding remarks and indications of future works.

2 Background

If multiresolution methods are significant in the processing of triangle meshes [9, 8], they are indis-
pensable in the case of tetrahedra meshes, or spatial decompositions, as we prefer to call it, since the
complexity of the mesh increases with the power of its dimension. Therefore, most applications deal-
ing with three-dimensional data, like scientific visualization, medical imaging, geoprocessing etc., will
benefit of techniques that allow the user to extract from the original data an equivalent representation,
in a sense will be made precise subsequently, but in a resolution more adequate to the task at hand.
Because the user often doesn’t know a priori the desired resolution, the solution is to store a good set
of possible resolutions and to give him the ability of browsing between them. That is the essence of the
multiresolution methods.

A cost-benefit analysis of multiresolution methods with respect to the current technology is presented
in [4]. The main conclusion of this analysis is that, in the case of direct volume rendering applications
(DVR), the graphics constraints are stronger than memory constraints. In fact, one can store a mesh
three orders of magnitude larger than that one can visualize with DVR. It is reasonable to assume that
similar conclusions can be extended to other applications dealing with volume data. Thus, the extra cost
to store a multiresolution mesh structure is compensated by the flexibility to choose the most adequate
resolution.

It remains to define more precisely what is a tetrahedral mesh. Although the basic intuitive concept is
clear, it is not so clear that some properties of a mesh are independent of the geometry of its constituent
tetrahedra or, more specifically, of their spatial embedding. The area of mathematics that studies such
properties is called combinatorial topology. A manifold is a well known mathematical object and it is
very useful in combinatorial topology. A combinatorial manifold is characterized by a certain uniformity
in the way its parts are glued. Despite of the fact that in some applications it is necessary to consider
“non-manifold” structures, the concept of a manifold is sufficient for most applications.

In the next session, we will describe a series of concepts progressively more complex, until we arrive
at a definition of a combinatorial manifold. Each concept will be followed by an API which defines the
operations required to work with the concept. We will postpone the introduction of geometric concepts
as much as possible, in order to clearly isolate the topological properties.

However, geometric concepts, such as volume, area, aspect ratio, etc., are of fundamental importance
in applications and are deeply related with the mechanisms that are employed to select a particular
mesh resolution from a multiresolution structure. In general, we deal with functions whose domain is the
combinatorial manifold, and we would like to have a more refined mesh in regions where these functions
exhibit high variations. This property is called adaptivity. We intend to discuss techniques for generation
and processing of multiresolution adaptive tetrahedral meshes in a future paper.

3 Concepts

In this section, we adopt the following strategy in describing the concepts: we will define the mathematical
objects involved, the name and type signature of the requirements, and let the semantics be derived from
them and from hints in the text body. Auxiliary tables containing associated types and notations fulfill
the description. Concerning to type signatures, each concept has a trait class where all type information
is encoded. Trait classes are essentially a mechanism to ensure algorithm independence of data structure
implementation [30]. In order to clarify the programs presentation to the noninitiated in the C++
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technicalities, we will apply the notation defined in the auxiliary tables to the sample code and we will
omit the template clause (see program 1 and program 2).

Some definitions bellow differs from the usual (see [6], for instance), but this happens because we
have choosen equivalent definitions easily translatable to algorithm requirements.

3.1 Abstract Simplicial 3-Complex

Definition 1. Given a finite set V , called vertex set, an abstract simplicial complex on V is a set K
of subsets of V verifying the following properties:

1. For each ν ∈ V , {ν} ∈ K;

2. If σ ∈ K and φ ⊂ σ, them φ ∈ K. An element σ of K is called simplex and the subsets of σ are
called faces;

3. There is a total ordering on the vertices of each simplex of K such that the ordering on the vertices
on any face of a simplex σ is the ordering induced from the ordering on the vertices of σ.

If n + 1 is the cardinality of a simplex σ ∈ K, we say that σ is a n-simplex and K is an abstract
simplicial n-complex if the largest simplex of K is a n-simplex. We will use the same name simplex to
mean the subcomplex of K formed by the faces of a simplex σ, and we define ∂σ = {τ ∈ K : τ � σ},
that is, the boundary of σ.

We are interested here in abstract simplicial 3-complexes, AS3C for short. In this case, we adopt the
terminology vertex, edge, face and simplex for 0, 1, 2 and 3-simplex, respectively (Tables 1 and 2).

description type
Vertex descriptor as3c traits<T>::vertex descriptor
Edge descriptor as3c traits<T>::edge descriptor
Face descriptor as3c traits<T>::face descriptor
Simplex descriptor as3c traits<T>::simplex descriptor
Complex vertices iterator as3c traits<T>::vertex iterator
Complex edges iterator as3c traits<T>::edge iterator
Complex faces iterator as3c traits<T>::face iterator
Complex simplices iterator as3c traits<T>::simplex iterator

Table 1: Associated types of an AS3C. T is a type that models an AS3C. The * descriptor types are
intended to mean “small types”, that is, types which objects can be passed by value without overhead.
The * iterator types must be at least forward iterators.
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symbol definition
vertex typedef as3c traits<T>::vertex descriptor vertex;
v a object of type vertex
edge typedef as3c traits<T>::edge descriptor edge;
e a object of type edge
face typedef as3c traits<T>::face descriptor face;
f a object of type face
simplex typedef as3c traits<T>::simplex descriptor simplex;
s a object of type simplex
vi typedef as3c traits<T>::vertex iterator vi;
ei typedef as3c traits<T>::edge iterator ei;
fi typedef as3c traits<T>::face iterator fi;
si typedef as3c traits<T>::simplex iterator si;

Table 2: AS3C related notation.

Item 3 from definition 1 has a twofold propose: it provides a “canonical form” for each simplex and
enables us to define the face operator di, that assigns for each simplex σ the face of σ obtained by
removing the i-th vertex. The face operator satisfies

didj = dj−1di, if i < j. (1)

The existence of operators satisfying (1) is sufficient to recover all relations between the faces of a
simplex1. Figure 1 shows all those relations. We exploit this fact to define a minimum set of requirements
on an AS3C (see table 3).
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Figure 1: Face operator graph. The nodes are the simplex’s faces and the edges are the face operators
di.

1Face operators appear in algebraic topology in the definition of simplicial sets [19].
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expression return type

empty vertex(t) vertex
empty edge(t) edge
empty face(t) face
empty simplex(t) simplex
face op(t, s, i) face
face op(t, f, i) edge
face op(t, e, i) vertex
vertices(t) pair<vi, vi>
edges(t) pair<ei, ei>
faces(t) pair<fi, fi>

simplices(t) pair<si, si>

Table 3: Requirements of an AS3C. Some remarks about the notation: t is a object which type models
an AS3C; empty vertex(t) returns a null vertex descriptor; vi is the type of a iterator which traverses the
vertex container; vertices(t) return a pair of iterators: the first points to the first vertex and the second
is a “past-the-end” iterator. The other operators work analogously.

As we mentioned previously, we are going to apply the definitions on the requirement tables above
to simplify the program’s code. Programs 1 and 2 show two versions of the same algorithm, with and
without this simplification. This simplified notation will be used in all subsequent programs in the paper.

Program 1 i-th vertex of a simplex. Note how the trait class as3c traits isolates the algorithm from the
data structure implementation.

template <typename T>
as3c traits<T>::vertex descriptor ith vertex(T t, as3c traits<T>::simplex descriptor s, int i) {

int table[ ][3]={ 1,1,1, 1,1,0, 1,0,0, 0,0,0 };
return face op(t, face op(t, face op(t, s, table[i][2]), table[i][1]), table[i][0]);

}

Program 2 Simplified version of program 1

vertex ith vertex(T t, simplex s, int i) {
int table[ ][3]={ 1,1,1, 1,1,0, 1,0,0, 0,0,0 };
return face op(t, face op(t, face op(t, s, table[i][2]), table[i][1]), table[i][0]);

}

Program 2 shows how to get the i-th vertex of a simplex and program 3, the i-th edge (with respect
to the lexicographic ordering over its vertices). The correctness can be verified by looking to figure 1.
Of course, we can specialize both programs if more information about the underlying data structure is
known.

Program 3 i-th edge of a simplex.

edge ith edge(T t, simplex s, int i) {
int table[ ][2]={2,2, 2,1, 1,1, 2,0, 1,0, 0,0};
return face op(t, face op(t, s, table[i][1]), table[i][0]);

}
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3.2 Abstract 3-Manifold

In principle, the requirements on an AS3C are enough to answer incidence queries like “get all faces
meeting an edge” or “get all edges meeting a vertex”. But, in many cases, we have more information
about the local structure of the complex in each vertex. That information can be used to speed-up those
queries. To describe precisely that local structure, we need some definitions.

Two simplices σ1, σ2 are independent if σ1 ∩ σ2 = ∅. The join σ1 � σ2 of independent simplices σ1, σ2

is the set σ1 ∪ σ2. The join of complexes K and L, written K � L, is {σ � τ : σ ∈ K, τ ∈ L}. The link of
simplex σ ∈ K, denoted link(σ, K), is defined by

link(σ, K) = {τ ∈ K : σ � τ ∈ K}.

And finally, the star of σ in K, star(σ, K), is the join σ � link(σ, K).
The link and star operators provides a combinatorial description of a neighborhood of a simplex.

We can use them also to define certain changes in a complex, but care must be taken to not modify
essentially (“topologically”) that neighborhood.

The stellar moves are a such change. Indeed, many concepts of combinatorial topology are founded
on stellar moves [17]. Let K be a complex on the vertex set V , K ′ a complex on V ′, σ a simplex in K
and ν a vertex in V ′. The operation that changes K into K ′ by removing star(σ, K) and replacing it
with ν � ∂σ � link(σ, K) is called a stellar subdivision and is written K′ = (σ, ν)K. The inverse operation
(σ, ν)−1 that changes K ′ into K is called a stellar weld. These operations are depicted in figure 2.

Figure 2: Stellar moves applied to edge, face and simplex, from top to bottom. (→) indicates subdivision
and (←) indicates welding.

Two complexes are stellar equivalent if they are related by a sequence of stellar moves. A (abstract)
n-ball is a complex stellar equivalent to a n-simplex and a (abstract) n-sphere is a complex stellar
equivalent to the boundary of a (n + 1)-simplex.

We can now define a special kind of abstract simplicial complex that has nice local properties.

Definition 2. An abstract n-manifold M is an abstract simplicial n-complex such that for each vertex
ν ∈M , link(ν, M) is a (n− 1)-ball or a (n− 1)-sphere.

The boundary of M , denoted by ∂M , is the subcomplex ∂M = {σ ∈ M : link(σ, M) is a ball}. One
can proof that ∂M is a (n− 1)-manifold.
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Many properties follows from definition 2. In our particular case, we want properties that help us to
speed-up local queries over abstract 3-manifolds (A3M). Each boundary face of a 3-manifold, for example,
is incident to a unique simplex and internal faces (faces not on boundary) are shared by exactly two
simplices. Therefore, we can require operators that, in constant time, retrieve all simplices meeting at a
face.

Tables 4, 5 and 6 list a set of additional requirements to the AS3M ones that are sufficient to
formalize the A3M concept. With that additional requirements, we can implement program 4 which,
given an internal face f and an incident simplex s, returns the simplex that shares f with s.

description type
Incident faces iterator a3m traits<T>::radial face iterator
Incident simplices iterator a3m traits<T>::radial simplex iterator

Table 4: Associated types of an A3M.

symbol definition
rfi typedef a3m traits<T>::radial face iterator rfi;
rsi typedef a3m traits<T>::radial simplex iterator rsi;

Table 5: A3M related notation.

Refinement of abstract simplicial 3-complex

expression return type

on boundary(t, v) bool
on boundary(t, e) bool
on boundary(t, f) bool
incident simplex(t, f) simplex
incident simplices(t, f) pair<simplex, simplex>

a incident face(t, e) face
boundary faces(t, e) pair<face, face>

a incident edge(t, v) edge
radial simplices(t, e) pair<rsi, rsi>
radial faces(t, e) pair<rfi, rfi>

Table 6: Requirements of an A3M. Type t models an A3M. Types rsi and rfi model a radial simplex
iterator and radial face iterator, respectively. Some pre-conditions must hold: boundary faces(t, e) can
be used only if on boundary(t, e)==true, for instance.

Program 4 Opposite simplex. The tie function is just a compact way of assign a pair of values to two
variables.

simplex opposite simplex(T t, simplex s, face f) {
simplex s1, s2;
tie(s1, s2)=incident simplices(t, f);
if(s1==s) return s2 else return s1;

}
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That modest operation is the key component of a radial iterator, that is, an iterator that traverses
all faces or simplices meeting an edge. Radial iterators are used in algorithms that compute the star
of vertices and edges, for instance, and are reminiscent of the Weiler’s radial edge structure (RED)
[32]. Again, nothing prevents users from implementing ad hoc iterators, perhaps based on some reliable
implementation of the facet-edge structure of Dobkin and Laszlo [7].

3.3 Oriented Abstract 3-Manifold

Orientation is another notion we want capture. Since orientation can be defined in a purely combinatorial
way, without reference to geometrical concepts, we choose to place the oriented abstract 3-manifold
concept as a refinement of abstract 3-manifold.

An orientation on a n-manifold M is a function s that assigns for each n-simplex σ ∈M , an integer
in the set {+1,−1}. The choice of orientation in σ induces an orientation in its faces in the following
way:

s(di(σ)) = (−1)is(σ), i = 0, . . . , n. (2)

An orientation is coherent if contiguous n-simplices, i.e., simplices sharing an (n − 1)-simplex, induces
opposites orientations in its common face, that is,

di(σ1) = dj(σ2)⇒ s(di(σ1)) = −s(dj(σ2)),

where σ1 and σ2 are n-simplices in M . Now, we can define another basic object.

Definition 3. An oriented abstract n-manifold is an abstract n-manifold plus a coherent orientation.

In the 3-dimensional case, the additional requirement on an A3M is just the operator simplex orientation
that takes a manifold and a simplex and returns an int in the set {−1, 1} (Table 7). Program 5 is the
obvious implementation of the equation 2.

Refinement of abstract 3-manifold
expression return type

simplex orientation(t, s) int

Table 7: Requirements of an OA3M.

Program 5 Induced orientation of the faces.

int face orientation(T t, simplex s, face f) {
int o=simplex orientation(t, s);
for(int i=0; i<4; ++i, o*=−1)

if(face op(t, s, i)==f) return o;
}

3.4 3-Polyhedron and Combinatorial 3-Manifold

Until now, we discussed only combinatorial concepts. Let’s introduce the geometrical counterpart of the
previously defined concepts.

We call an euclidean embedding of an abstract simplicial complex K a function g from the vertex set
V to an euclidean space Em that maps a vertex ν ∈ V to a euclidean point g(ν) ∈ Em, such that g(σ) is
a set in general position in Em, for all σ ∈ K. A subset P of Em is a geometric realization of K if there
is an embedding g satisfying

x ∈ P ⇔ x ∈ ConvHull(g(σ)), for some σ ∈ K.
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Below, we define the geometrical objects corresponding to abstract simplicial n-complex and abstract
n-manifold.

Definition 4. A n-polyhedron is a set P ⊂ Em for which exists an abstract simplicial n-complex K and
an euclidean embedding g such that P = |K|g.

Definition 5. A combinatorial n-manifold is a setM⊂ Em for which exists an abstract n-manifold M
and an euclidean embedding g such that M = |M |g.

From the computational side, a polyhedrom concept (Poly3) is just a refinement of AS3C with an
additional requirement euclidean point that takes a manifold and a vertex and return an euclidean point,
see tables (8, 9 and 10). A combinatorial 3-manifold (C3M) is a Poly3 plus the requirements of an A3M
and an oriented combinatorial 3-manifold (OC3M) is a Poly3 plus the requirements of an OA3M.

description type
Point type poly3 traits<T>::point type

Table 8: Associated types of a Poly3.

symbol definition
point typedef poly3 traits<T>::point type point;

Table 9: Poly3 related notation.

Refinement of abstract simplicial 3-complex
expression return type

euclidean point(t, v) point

Table 10: Requirements of a Poly3.

3.5 Binary Multitriangulation

Now, we’ll investigate the interplay between combinatorial and geometrical concepts related to subdivi-
sion process and how this leads naturaly to the concept of binary multitriangulations.

A polyhedron P ′ = |K ′|g is a subdivision of the polyhedron P = |K|h, denoted by P ′ < P , if P ′ = P
and for each σ′ ∈ K ′ exists a σ ∈ K such that

ConvHull(g(σ′)) ⊂ ConvHull(h(σ)).

The above definition uses geometrical concepts like euclidean embeddings. Therefore, we can not
assert a priori anything about how the complexes K and K ′ are related. However, a theorem of Newman,
presented in modern form in [17], shows that P ′ < P if, and only if, K ′ is stellar equivalent to K.
Moreover, the stellar equivalence can be choosed in such a way that only stellar moves on 1-simplices
(“edges”) are used.

There is a good reason to restrict the stellar moves to moves on edges. Whenever a stellar subdivision
happens in an edge ε, all simplices containing ε are splitted in two. Accordingly, a sequence of stellar
subdivision induces a binary tree structure in the simplices. And binary trees often leads to simpler
algorithms.
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In order to define the binary multitriangulation concept (BMT), we need some auxiliary definitions.
We follow closely the definitions in [12]. A partially ordered set (poset) (C, <) is a set C with an
antisymmetric and transitive relation < defined on its elements. Given c, c′ ∈ C, notation c ≺ c′ means
c < c′ and there in no c′′ ∈ C such that c < c′′ < c′. An element c ∈ C, such that for all c′ ∈ C, c ≤ c′, is
called a minimal element in C. If there is a unique minimal element c ∈ C, then c is called the minimum
of C. Analogously are defined maximal and maximum elements.

Definition 6. A binary multitriangulation is a poset (T , <), where T is a finite set of abstract 3-
manifolds (named triangulations) and the order < satisfies:

1. M ′ ≺M if, and only if, M ′ = (ε, ν)M , for some edge ε ∈M .

2. There is maximum and minimum abstract 3-manifolds in T , called base triangulation and full
triangulation, respectively 2;

Property 2 says, in fact, that a BMT is a lattice. Other fact which follows from the definition is
that every two triangulations in T are stellar equivalent. As usual, a BMT can be thought as a directed
acyclic graph (DAG), with one drain and one source, whose arrows are labeled with stellar subdivisions
on edges. From an algorithimic perspective, the key idea is to use the above mentioned binary tree
structure in the simplices to encode the DAG.

To describe the requirements on a BMT, we need to do a little digression about state changes in
a data structure. The formerly defined requirements, like incident simplices, are deterministic functions
without side effects, at least from the user viewpoint. In other words, incident simplices must return the
same value in sucessive invocations. The situation changes in the BMT case, because we want to be
able to move from a triangulation in T to another. We can regard this move as a state change in the
underlying data structure modeling a BMT. The point is that, between state changes, the functions like
incident simplices behave deterministically.

The BMT requirements in table 11 are divided in two groups: operators that changes the state
(subdivide, weld and base triangulation) and the others. The operator base triangulation set the current
triangulation in T to the base triangulation, while subdivide(t, e) applies a stellar subdivision to the edge
e and weld(t, v) applies a stellar weld “removing” the vertex v. The predicate is current is usefull to check
if a simplex belongs to the current triangulation.

Refinement of abstract 3-manifold

expression return type

was subdivided(t, e) bool
subdivide(t, e) void
in base triangulation(t, v) bool
weld(t, v) void
base triangulation(t) void
has children(t, s) bool
children(t, s) pair<simplex, simplex>

has parent(t, s) bool
parent(t, s) simplex
subdivided edge(t, s) edge
welded vertex(t, s) vertex
is current(t, {v, e, f, s}) bool

Table 11: Requirements of a BMT. Type t models a BMT. The binary tree structure in the simplices
can be traversed with children and parent.

2One can replace M′ ≺ M by M ≺ M ′ in property 1. In this case, we must interchange base triangulation and
full triangulation. This is a transformation from an increasing to a decreasing BMT. In [22], Puppo demonstrates that
increasing and decreasing multitriangulations are equivalent.
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We must remark that operators subdivide and weld implements just “local” transitions in the DAG,
that is, if T and T ′ are the triangulations before and after subdivide be called, respectively, then T ′ ≺ T .
Program 6 illustrates how subdivide can be used to achieve non-local transitions. Note that the order of
subdivision of the incident simplices to the subdivision edge is relevant: they are subdivided from the
lowest to the highest level, where the level function is defined in program 7.

Program 6 Non-local subdivide. This program also ilustrates how the encoding of traversal capabilities
in radial iterators makes the algorithm more generic and readable at no extra cost.

void non local subdivide(T t, edge e) {
typedef set<pair<int, edge> > edge set;
edge set sub edges;
if((e==empty edge(t))| |(!was subdivided(t, e))) return;
do {

sub edges.clear(); rsi i, end;
for(tie(i, end)=radial simplices(t, e); i!=end; ++i) {

edge se=subdivided edge(t, *i);
if(se!=e) sub edges.insert(make pair(level(t, *i), se));

}
for(edge set::iterator j=sub edges.begin(); j!=sub edges.end(); ++j)

non local subdivide(t, j−>second);
} while(!sub edges.empty());
subdivide(t, e);

}

Program 7 The simplex level.

int level(T t, simplex s) {
if(!has parent(t, s)) return 0; else return level(t, parent(t, s))+1;

}

4 Models

In this section, we present data structures which are models of the concepts defined above, in the sense
that they fill all necessary requirements. We have absolutely no pretension of describing “the best” data
structure, because we think that data structures are somehow application dependent. But, if we did a
good analysis in section 3, most algorithms can be used in different applications without change.

Figure 3 resumes the prototypical data structure which models a BMT. Most operators are easily
inferred by inspection. Stripping out some data, we obtain models to simpler concepts like AS3C and
A3M. It remains to clarify certain points:

• Each element has sufficient information to recover its incident elements (incident * fields) and its
star (star fields);

• The subdivided edge of a simplex s is given by ith edge(t, s, s.subdivided edge);

• The array edge.star stores the boundary faces incident to a boundary edge, or stores a face incident
to an internal edge;

• A face f is on boundary if, and only if, f.star[1]==0, and a edge e is on boundary if, and only if,
e.star[0]!=e.star[1].

• A face f is current if, and only if, f.star[0].current==true. And a edge e is current if, and only if,
is current(t, e.star[0])==true.

• A ordering in adopted in the vertices of the simplex in such a way that the welded vertex is always
the last vertex.
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Actually, the data structure exhibited in figure 3 it’s not quite the same we use in our implementation.
The main difference is that the struct bmt is parametrized by an attribute class, which enables that new
attributes be added to any element. One can, for instance, add the plane equation to each face or a
scalar value to each vertex. This is done in compile time and causes no storage overhead. A similar
technique is described in [3].

The creation process of binary multitriangulations in our implementation is straightforward. There
is a add simplex function that takes a triangulation t and four vertices v0, v1, v2 and v3 as arguments
and adds to t all faces and edges not yet in t, updating the incidence and star data. Thus, all simplices
of the base triangulation are entered. Afterward, according to applications needs, a sequence of calls to
edge split is dispatched. The edge split function takes a triangulation t, an edge e and a visitor object vis
as arguments. It applies a stellar move on t that splits the edge e. Each time a new element is created,
a internal face of a incident simplex for example, a corresponding function in vis is called. This allows
that user attributes, as the above mentioned face plane equation, be updated. The Visitor concept is
explained in [26].

We note that this data structure is too general. Once more, the application guides the real im-
plementation. In dealing with regular spatial decompositions, for example, most of work can be done
procedurally (see, for example, [16]). Even out-of-core techniques (e.g., [8, 11]) can be implemented
without changing the interface.

struct vertex;
struct edge;
struct face;
struct simplex;
typedef vertex * vertex descriptor;
typedef edge * edge descriptor;
typedef face * face descriptor;
typedef vertex * simplex descriptor;

struct vertex {
edge descriptor star;
bool current;
bool boundary;
bool in base triangulation;

};

struct edge {
vertex descriptor incident vertices[2];
face descriptor star[2];
bool was subdivided;

};

struct face {
edge descriptor incident edges[3];
simplex descriptor star[2];

};

struct simplex {
face descriptor incident faces[4];
simplex descriptor child[2];
simplex descriptor parent;
int subdivided edge;
bool current;

};

struct bmt {
list<simplex descriptor> simplex list;
list<face descriptor> face list;
list<edge descriptor> edge list;
list<vertex descriptor> vertex list;

};

Figure 3: Modeling a BMT.

5 Applications

The development of multi-resolution techniques for volume visualization is one of our driving applications.
Although multi-resolution techniques for 3D surfaces is a well-developed research area [13], the same is
not true for multi-resolution techniques for 3D volumes. This is particularly true for multi-resolution
techniques for unstructured volumetric grids (see [5] for a recent survey). In fact, compared to the surface
case, it is possible to argue that multi-resolution work in volumetric grids is still at its infancy.

The data structures presented in this paper are aimed at providing a more formal and disciplined
way of handling unstructured volumetric grids, which we hope will aid the further development of this
area. To prove the usefulness of our concepts, we have implemented two simple applications: a simple
unstructured grids volume renderer based on the ideas presented in [33, 25]; and a progressive volume
approximation system similar in some respects to the one described by Roxborough and Nielson [24].
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Direct Volume Rendering. An efficient technique for exploring graphics hardware for volume render-
ing is the Projected Tetrahedra (PT) algorithm of Shirley and Tuchman [25], which uses the traditional
3D polygon-rendering pipeline. This technique renders a volumetric grid by breaking the volumetric grid
into a collection of tetrahedra. Then, each tetrahedra is rendered by splatting its faces on the screen. A
key idea of the PT algorithm is exploit the fact that the aspect graph [21] of a tetrahedron consists of a
few simple cases which can be encoded in a small table which depends completely on the dot products of
the normal of the faces of the tetrahedron with the viewing direction. On average, one needs to render
3.4 triangles per tetrahedron [34].

In order to apply PT, one needs to compute a visibility-ordering of the cells. Williams’ Meshed
Polyhedra Visibility Ordering (MPVO) algorithm [33] developed in the early 1990s provides a very fast
visibility-ordering algorithm. The MPVO algorithm explores the topological adjacencies of a convex
model to produce a visibility ordering of the cells with respect to a given viewpoint. Given a tetrahedral
mesh S, it produces an adjacency graph G of the mesh S, with vertices v of the graph corresponding to
each tetrahedral cell c of the mesh, and edges e representing a common face between cells. A directed
version of this graph is obtained when a viewpoint or viewing direction is specified, which is then used to
define the direction of each edge by a simple dot product with the face normals (see Figure 4). For every
new viewpoint, a directed graph as described is formed, and a topological sorting procedure outputs cells
in visibility ordering. MPVO, which runs in linear time, works well for well-behaved meshes (acyclic and
convex). General acyclic meshes can be handled with more complex algorithms as shown in [28].
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Figure 4: Depiction of the MPVO algorithm [33]. MPVO works by first determining pairwise ordering
relations between cells that share a face (a). Then, in a second phase, the ordering is determined by a
topological sort of the induced visibility graph (b).

Our implementation of the PT part of the algorithm is quite simple, and it is completely driven by a
set of tables for classifying the different cases (including degenerate cases). Figure 5 shows the six cases
of projected tetrahedra.
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Figure 5: Cases of the Projected Tetrahedra (PT) algorithm [25]. Depending on the particular case,
between one to four triangles are rendered.
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Implementing the sorting is more interesting, since we are able to completely avoid building a separate
graph or actually writing any sorting code. Our implementation for computing the visibility orders works
by developing a visibility graph concept that is an adaptor over the C3M concept, i.e., it provides the
appropriate graph interface to a combinatorial manifold. So, we can use all graph machinery built in the
Boost Graph Library [26], for example, to solve the visibility problem. More specifically, in the simpler
regular convex case, the visibility is computed by a single call to the BGL function topological sort.

Figure 6 gives an example of direct volume rendering using the algorithm described above. Figure 6
(a) shows the underlying space decomposition and the tetrahedral mesh. Figure 6 (b) shows the volume
visualization of a lung tumor dataset.

Progressive Tetrahedral Approximation of 3D Functions. A more interesting example of the
use of our framework is our system for the hierarchical approximation and rendering of 3D scalar func-
tions (see [20] for a survey). We use a simple approximation algorithm which recursively refines the
triangulation until a user-defined error bound has been achieved. The exact procedure we implemented
works by generating a collection of random points inside a given tetrahedron [23]. Then finding the best
linear least-squares fit for the scalar function inside the simplex. If the error bound of the approximation
is above the user-defined threshold, we continue to subdivide.

The approximation algorithm we implemented is somewhat similar to the described in [24] for com-
puting a progressive tetrahedral approximation of ultrasound data, and it could potentially be used for
the same purpose. In their system, a global least-squares fit is used, while in our system we handle
each tetrahedron separately. Note that for a given vertex of the triangulation, each incident simplex
determines one (possibly different) scalar value. We set the value at the vertex as the average value.
Alternatively, we could perform an analysis of the discontinuities in the scalar function and represent
this information as radial wedges [15].

For rendering purposes, we use a very simple sorting procedure shown in Program 8. The basic idea is
the same used for traversing a BSP in back-to-front order. We always traverse the space region that does
not contain the viewpoint (i.e., the “back”), before traversing the region that contains the viewpoint.
This leads to a very efficient rendering algorithm.

Program 8 Hierarchical splatting.

void hier splat(T t, simplex s) {
if(is current(t, s))

splat(t, s);
else {

face f=internal face(t, s);
simplex s0, s1;
tie(s0, s1)=children(t, s);
if(visibility test(t, f)) {

hier splat(t, s1);
hier splat(t, s0);

} else {
hier splat(t, s0);
hier splat(t, s1);

}
}

}

Figure 7 demonstrates the BMT adaptation capabilities. These adapted decompositions were com-
puted using least-squares fitting described above. Figure 7 (a) shows the mesh corresponding to a
function that varies linearly in one direction and has a sharp discontinuity. Figure 7 (b) shows the mesh
corresponding to the characteristic function of a sphere. Observe that we compute the full hierarchical
decomposition, where the top level is a subdivision of a cube into six tetrahedra. In these images, we
have removed one of the top level tetrahedra to reveal the internal structure of the mesh.
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6 Conclusion

We have presented a generic programming framework for multiresolution spatial decompositions which
was formulated through a rigorous mathematical analysis of the concepts involved. Indeed, our cur-
rent implementation contains numerous generic algorithms for the extraction of topological information,
as well non-generic functions to build a multiresolution mesh and execute other operations such as
input/output. It is certainly possible to employ generic programming techniques in the creation of mul-
tiresolution meshes. Nonetheless, the problem is more involved and we plan to consider it in a future
paper.

Concerning to future works, there are essentially two lines to follow. The first line is theoretical
and consists in to investigate the BMT properties, its n-dimensional extension, its applicability in non-
manifold settings and the incorporation of all stellar moves, not only moves on edges. The second line
is to prove, by means of applications, mainly in the context of visualization of large datasets and finite
element analysis, the advantages of our approach.

We think that our work can be classified in the confluence of two new trends in graphics. On one
hand, our concern to clearly separate geometric and topological concepts, emphasizing the later ones,
brings us closer to Computational Topology as posed in [6]. This new branch is as promising today as
Computational Geometry was thirty years ago. On the other hand, generic programming is a powerful
methodology for computer programming, which holds the promise to complete, specially in relation to
algorithm abstraction, the revolution started twenty years ago by object-oriented programming. Our
hope is that this work will become the basis of a library called CTAL, that is, Computational Topology
Algorithm Library.
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Figure 6: Volume visualization of tumor dataset.
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Figure 7: Adapted decompositions of two different scalar functions.
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