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Abstract A lot of research efforts have thus focused on develomingput-
sensitivealgorithms to speed up the search phase by avoiding such
In this paper we give I/O-optimal techniques for the extraction of exhaustive scanning.
isosurfaces from volumetric data, by a novel application of the I/O-  Most algorithms developed so far (except for the inefficient ex-
optimal interval tree of Arge and Vitter. The main idea is to prepro- haustive scanning), however, require the time and main memory
cess the datasence and for allto build an efficient search struc-  space to read and keep the entire dataset in the main memory,
ture indisk and then each time we want to extract an isosurface, we plus some additional preprocessing time and main memory space
perform aroutput-sensitivguery on the search structure to retrieve  if some structures are built to speed up the search phase. Unfortu-
only thoseactivecells that are intersected by the isosurface. Dur- nately, for really large volume datasets, these methods often suffer
ing the query operation, only two blocks of main memory space are the problem of not having enough main memory, which can cause
needed, and only those active cells are brought into the main mem-a major slow-down of the algorithms due to a large number of page
ory, plus some negligible overhead of disk accesses. This implies faults. On the other hand, when visualizing isosurfaces, as opposed
that we can efficiently visualize very large datasets on workstations to volume rendering, only a small portiok (= O(N2/3) active
with just enough main memory to hold tisosurfaces themselves  cells) of the dataset is ever needed. This seems to indicate that it
The implementation is delicate but not complicated. We give the is not necessary to use time and main memory to load and store
first implementation of the I/O-optimal interval tree, and also im-  the whole volume. If users never had to load a dataset completely
plement our methods as aO filter for Vitk's isosurface extrac-  but rather only had to store the triangles that defined the isosurface,
tion for the case of unstructured grids. We show that, in practice, effective visualization could be performed on low to middle range
our algorithms improve the performance of isosurface extraction by workstations, or even on PCs in some cases.
speeding up the active-cell searching process so that it is no longer |n this paper, we present I/O-efficient techniques to resolve the
a bottleneck. Moreover, this search time is independent of the main memory issue and to speed up the search phase of isosurface extrac-
memory available. The practical efficiency of our techniques re- tion, by a novel use of the I/O-optimal interval tree of [1]. After
flects their theoretical optimality. preprocessing, we can query for isosurfaces using only two blocks
of main memory space, and onfy(log z; N + K/B) disk reads,
) where B is the number of cells that can fit into a disk block (and
1 Introduction thus[ K/ B] disk reads are necessary to reportilactive cells).
The technique hence acts as l&D-filter, performing only those
Isosurface extraction represents one of the most effective and pow-disk accesses to the dataset that are needed, plus a negligible over-
erful techniques for the investigation of volume datasets. In fact, head. The search structure is in f#@-optimalin space and query,
nearly all visualization packages include an isosurface extraction and nearly I/O-optimal in preprocessing.
component. Its widespread use makes efficient isosurface extrac-
tion a very important problem. )
The problem of isosurface extraction can be stated as follows. Previous Related Work
A scalar volume datasetonsists of tuple$x, F(x)), wherex is a
3D point andF is a scalar function defined over 3D points. Given
an isovalue (a scalar valug) the extraction of the isosurface of
q is to compute and display isosurfac¢dq) = {x|F(x) = q}.
The computational process of isosurface extraction can be viewed .
as consisting of two phases. First, in 8garch phaseone finds all for an excell_ent and thorough review.) .
cells of the dataset that are intersected by the isosurface; such cells In Marching Cubes [12], all cells in the volume dataset are

: : : ; hed for isosurface intersection. Essentially, each time a user
are callechctive cells Next, in thegeneration phaselepending on ~ S€@rC . rsec : €8 .
the type of cells, one can apply an algorithm to actually generate runs Marching Cubeg) (V) time is needed. Concerning the main

the isosurface from those active cells. Débe the total number of ~ MEMOrY issue, this technique does not require the entire dataset to
cells in the dataset, arfd the number of active cells. Itis estimated fitinto the main memory, butiV/ 5] disk reads are necessary. Wil-
that the average value &f is O(N2/3) [9], therefore an exhaustive hems.a”‘?' Van Gelder [20] propose a met_hod of using an oclree to
scanning of all cells in the search phase is found to be inefficient, optimize isosurface extraction. This alg_orlthm has worst-case time
spending a large portion of time traversing cells that are not active. of O(K + Klog(N/K)) (this analysis is presented by Livnet
al. [11]) for isosurface queries, once the octree has been built.
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As mentioned before, isosurface extraction has been the focus of
much research. Here we briefly review the results that focus on
speeding up the search phase of isosurface extraction by acting as a
filter, avoiding traversals of cells that are not active. (Please see [11]




NOISE, anO(v/N + K)-time algorithm. Shert al.[17, 16] also datasets much larger than can fit into main memory, the run-

propose nearly optimal isosurface extraction methods. ning time is the same as performing a few external sortings,
The firstoptimal isosurface extraction algorithm was given by and is linear in the size of the datasets. Thus our preprocessing

Cignoni et al. [6], based on the use of an interval tree to store the method is both efficient and predictable.

intervals induced by the dataset cells. After@aN log N)-time

preprocessing, queries can be performed in optiiabg N + K) Our techniqgues have a wide range of applications. In addition to

time. This achieves tight theoretical bounds. improving the performance of isosurface extraction, there are some

All the techniques mentioned above are main-memory algo- other implications:
rithms, requiring the entire dataset to fit in the main memory

(except for Marching Cubes). There is also a clasgxdérnal- e Datasets can be visualized very efficiently on workstations
memoryalgorithms (not particularly for isosurface extraction). For with just enough main memory to hold tieosurfaces them-
large-scale applications in which the problem is too large to fit in selves

the main memory, Input/Output (I/O) communication between fast . )

main memory and slower external memory (disk) becomes a ma-  ® Datasets can be kept in ren_10te f_lle servers. Only the necessary
jor bottleneck. Algorithms specifically designed to reduce the 1/0 parts are fetched during visualization, thus even at ethernet
bottleneck are calledxternal-memorglgorithms. Although most speeds, interactive isosurface extraction can be achieved.

of the results in this area of research are theoretical, the experi-

ments of Chiang [3] and of Vengroff and Vitter [19] on some of =~ QOrganization of the Paper

these techniques show that they result in significant improvements

over traditional algorithms in practice. Also, Tellet al. [18] de- The rest of the paper is organized as follows. In Section 2, we
scribe a system to compute radiosity solutions for polygonal en- present the I/O-optimal interval tree of [1], and our novel prepro-
vironments larger than main memory, and Funkhoteteal. [7] cessing algorithm. Next we present in Section 3 the implementation

present prefetching techniques for interactive walk-throughs in ar- details of ourl/O filter for Vtk’s isosurface extraction routine. In
chitectural virtual environments whose models are larger than main Section 4, we present the overall experimental performance of our
memory. methods, followed by conclusions in Section 5.
Because of limited space, our presentation is sometimes sketchy.
For full details, including the querying algorithm, we refer the in-
Our Results terested reader to [5].

We give I/O-optimal techniques for isosurface extraction, by a
novel use of the external-memory interval tree of Arge and Vit- 2 |/O Optima| Interval Tree
ter [1].
Following the ideas of Cignoret al. [6], we produce for each  As described in the previous section, we produce an intdrval

cell an intervalmin, max], wheremin andmax are the minimum  [min, max] for each cell of the dataset, and use the 1/O-optimal
and maximum values among the scalar values of the vertices of theinterval tree of [1] to find the active cells of an isosurface by per-

cell. Then given an isovalug the active cells are exactly those cells  forming stabbing queries.

whose intervalgontaing (i.e.,min < ¢ < max). This reduces the Since pointer references are very inefficient for disk accesses,
searching of active cells to the following problem calitdbbing  we store thedirect cell informationtogether with the correspond-
queries given a set of intervals and a query poinin 1D, find ing interval whenever that interval has to be stored in the interval

all intervals containing;. We then use the external-memory inter- tree. Thus each record of an interval includes the cell ID, the 3D
val tree of [1] to solve the stabbing queries in an I/O-optimal way. coordinates and the scalar values of the vertices of the cell, and the
We give the first implementation of the 1/O-optimal interval tree, |eft and right endpoints of the interval.
and also implement our methods asl#D filter for Vtk's isosur- If the input dataset is given in the format providing direct cell
face extraction routine [14] for the case of unstructured grids. Our information, then we can build the interval tree directly. Unfor-
experiments show that the search phase, originally the bottlenecktunately, the datasets are often given in the format that contains
of isosurface extraction, now neetiss timethan the generation indices to vertices. Thus we have to de-reference the indices be-
phase, i.e., the search phase is not a bottleneck any more! fore actually building the interval tree. We call this de-referencing
The advantages of our technigues can be summarized as follows processnormalization Using the technique of [4], we can effi-
ciently perform normalization as follows. We make one file (the
e Our query algorithm is output-sensitive and improves the per- vertex fil§ containing the direct information of the vertices (3D co-
formance of isosurface extraction by speeding up the searchordinates and scalar values), and another file ¢eilefile) of cell
phase so that it is no longer a bottleneck, and yet by build- records with vertex indices. In the first pass, we externally sort the
ing the search structure in disk, our preprocessing is per- cell file by the indices (pointers) to the first vertex, so that the first
formedonce and for all as opposed to other output-sensitive  group in the file contains cells whose first vertices are vertex 1, the
techniques which require preprocessing each time the processsecond group contains cells whose first vertices are vertex 2, and
starts to run. Our search structure can be duplicated by just so on. Then by scanning through the vertex file and the cell file
copying files, without ever running the preprocessing again.  simultaneously, we fill in the direct information of the first vertex
of each cell in the cell file. In the next pass, we sort the cell file by
e Our query algorithm only needs two blocks of main mem- the indices to the second vertices, and fill in the direct information
ory, and only brings to main memory tho$é active cells, of the second vertex of each cell in the same way. By repeating the
whereK is usuaIIyO(N2/3). Other techniques either have  process for each vertex of the cells, we obtain the direct information
to visit the whole dataset during queries, or have to use a large for each cell; this completes the normalization process.
amount of main memory to keep the entire dataset plus some
additional search structure. 21 Data Structure

e Our preprocessing algorithm needs only a fixed amount of Each node of the tree (for readers not acquainted with interval trees,
main memory space, which can be parameterized. For see [13, pages 360-361]) is one block in disk, capable of holding



O(B) items. Thebranching factor b, is the maximum number of

children an internal node can have. Wellet O(v/B); the rea-
son will be clear later. Lef be the set of allV intervals, andE
be the set oR N endpoints of the intervals ii§. We denote by
n = [|E|/B] the number oblocksin E. First, we sortE from left
to right in the order of increasing values, assuming that all endpoints
have distinct values (we use cell ID to break ties). Bét nowfixed
and will be used to definglab boundarie$or each internal node of
the tree. The interval tree i and S is defined recursively as fol-
lows. The root is associated with the entire rangeffand with
all intervalsS. If S has no more tha® intervals, then node is a
leaf storing all intervals of. Otherwiseu is an internal node. We
then evenly divideF into b slabsEy, E1, - - -, E,—1, each contain-
ing the same numbér/b] blocksof endpoints inE. Theb—1 slab
boundariesare the first endpoints of slal#%; , - - - , E»—1. We store
the endpoint values of the slab boundaries in nodes keys. We
use these keys to consider each inteiva S (see Fig. 1). If both
endpoints off lie inside the same slab, say th#h slabFE;, thenl
belongs to the-th child »; of nodew, and is put into the interval set
Si; C S (e.g.,inFig. 1, intervaly is put inSp). Otherwise (the two
endpoints off belong to different slabs, i.el,crosses one or more
slab boundaries)] belongs to node.. The intervals belonging to
nodeu will be stored in the secondary lists @fpointed by pointers
in u. We adopt the convention that if an endpointfaé exactly the
slab boundary separating slabBs_; and E;, that endpoint is con-
sidered as lying in slaB;; this is consistent with our choice of slab
boundaries. We associate each chijdf nodeu with the range of
slab E; and with the interval se$;, and define the subtree rooted
at u; recursively as the interval tree on range and intervalsS;.
Notice that slal¥; is pre-definedvhenE is given (n/b] blocks of
endpoints in the first leveln/b*] blocks of endpoints in the next
level, and so on), but s&%; has to be decided by scanning through
the intervals inS and distribute them appropriately according to the
slab boundaries. Observe thfatmay be empty, in which case child
u; of w is null (it is also possible that all children afare null).

For each internal node, we use three kinds of secondary struc-
tures to store the intervals belongingitotheleft, right and multi
lists, described as follows.

e There aré left lists, each corresponding tostab of . For
eachi, the i-th left list stores the intervals belonging 0
whose left endpoints lie in theth slabE;. Each list is sorted
by increasing left endpoint valued the intervals (see Fig. 1).

There are alsd right lists, each corresponding tostab of
u. For eachi, thei-th right list stores the intervals belonging
to » whose right endpoints lie in theth slabE;. Each list
is sorted bydecreasing right endpoint valued the intervals
(see Fig. 1).

There argb — 1)(b — 2)/2 multilists, each corresponding to
amulti-slabof u. A multi-slab[i, ], 0 < i < j < b—1,

is defined to be the union of slal#g, - - -, E;. Themulti list
for multi-slab [i, 5] stores all intervals of. that completely
spanE; U --- U Ej, i.e., all intervals ofu whose left end-
points lie in slabE;_; and whose right endpoints lie in slab
E;41. Since themultilists [0, k] for any k and themulti lists
[¢,b— 1] for anyl are always empty by the definition, we only
care about multi-slabg, 1],---,[1,b6 —2],[2,2],--,[2,b—
2], 14,4, -, [5,b—2],- -, [b—2,b — 2]. Thus there are
(b — 1)(b — 2)/2 such multi-slabs and the associatedilti
lists (see Fig. 1).

For eacHetft, right, or multilist, we store the entire listin consec-
utive blocks in disk, and in node we store a pointer to the starting
position of the list in disk. Observe that there areft andb right
lists, andO(b?) = O(B) multi lists. Thus we need to keep(B)
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Figure 1: A schematic example of the 1/0-optimal interval tree for
branching factob = 5. Note that this is not a complete example
and some intervals are not shown (in a complete example, each slab
boundary is an interval endpoint, and each diagthas same blocks
of endpoints). Consider only the intervals shown here and anode
The interval sets for its children ar€y = {Ip}, andS; = S> =

S3 = S4 = 0. Itsleftlists are:left(0) = {I, I7}, left(1l) =
{11,13}, left(2) = {I4,I5,Is}, andleft(3) = left(4) = 0 (the
intervals in each list are sorted in the order as they appear)glts
lists are: right(0) = right(l) = 0, right(2) = {I1, I, Is},
right(3) = {Is, Iz}, andright(4) = {I4, Is} (again the intervals

in each list are sorted in the order as they appear)miiHi lists
are:multi([1,1]) = {L>}, multi([1, 2]) = {Ir}, multi([1, 3]) =
multi([2,2]) = multi([2, 3]) = 0, andmulti([3, 3]) = {14, Is}.

items of information in node, which is one disk block capable of
holding O(B) items. This explains why the branching factois
taken ag) (v B).

Now let us analyze some properties of the interval tree. First, the
height of the tree i®©)(log, N) = O(logz N), because each time
we go down one level of the tree, the range of slalassociated
with a node is reduced by a factor bf Secondly, each interval
belongs to exactly one node, and is stored at most three times: if
it belongs to a leaf node, then it is stored only once; if it belongs
to an internal node, then it is stored once in sdefelist, once
in someright list, and possibly one more time in sommulti list.
Therefore we neetbughly O(N/B) disk blocks to store the entire
data structure.

In theory, however, we may need more blocks. The problem is
because of thenulti lists: in the worst case, aulti list may have
only very few (< B) intervals in it, but still requires one disk
block for storage. The same situation may occur alsddftrand
right lists, but since each internal node Hagft/right lists and the
same number of children, thesaderflowblocks can be charged
to the children nodes. But since there &réh®) multi lists for an
internal node, this charging argument does not work formtioti
lists. In [1], the problem is solved by using tleerner structure
of [10]. Corner structure is an I/O-optimal data structure for per-
forming stabbing queries when the intervals can entirely fit into the
main memory (but we want to perfor@(k/B + 1) I/O operations
to reportk intervals, rather than read in all intervals to the main
memory). Although corner structure is very elegant, itis more com-
plex; we thus only treat it as a black box. More details can be found
in [10].

The usage of the corner structure in interval tree is as follows.
For each of the)(b*) multi lists of an internal node, if there are at



leastB/2 intervals, we directly store the list in disk as before; oth- 3 Implementation
erwise, the € B/2) intervals are maintained in a corner structure

associated with the internal node. Since there@®) = O(B) We implemented our methods as i#0 filter for Vtk's isosurface

multi lists, and only those with less thd®/2 intervals are main- extraction for the case of unstructured grids. FirsBuild is
tained in the corner structure, the number of intervals in the corner used to preprocess the dataset to build the interval tree, and then
structure of an internal node is less th&3/2, satisfying the re- ioQuery isused to report the active cells of a given isosurface. We

striction of corner structure. In summary, the height of the interval first describe how to implement the interval tree, and then describe
tree isO(log z V), and using the corner structure, the space needed the interface with Vtk.
by the interval tree i€)(IN/B) blocks in disk, which is worst-case

optimal.
3.1 External Memory Interval Tree
We describe the organization of the data structure. We use files
. . dataset.intTree , dataset.left , dataset.right ,
Preprocessing Algorithm and dataset.multi to hold the interval tree nodes, dbft

) _ _ o _ lists, all right lists, and all multi lists, respectively. Every
We give a new preprocessing algorithm achieving nearly optimal time we create a new tree node, we allocate the next avail-

O(& logg N) 1/O operations. It is based on a paradigm we call able block from filedataset.intTree and store the node
scan and distributeinspired by thedistribution sweeg/O tech- there. (The root of the tree always starts from position 0 of file
nique [3, 8]. dataset.intTree .) Similarly, every time we create a ndeft

The algorithm follows the definition of the interval tree given in ~ (resp.right/multi) list, we allocate the next available consecutive
Section 2.1. We start by duplicating each interval record, one with Plocks just enough to hold the list, from fildataset.left
the left endpoint as the key and the other with the right endpoint as (resp. datasetright ~  /datasetmulti ) and store the list
the key. We then sort (using external sorting) all these endpoints there. Notice that we always allocate disk space of sizénan
by the keys from left to right in increasing order (breaking ties by tegral number of blocks. Each block in fildataset.left
cell ID's). This gives the sorted set of endpoirfts This setis ~ datasetright and dataset.multi stores up toB inter-
used to decide the range and the slab boundaries of the current nod¥als. Each interval contains a cell ID, four vertices of the cel| (
throughout the process. Again, we usgo denote the number of Y- 2- value_s and the _scalar value c_Jf each_vertex), and t_he left and
blocks in E. The setS of intervals sorted by increasing left end- right endpoints of the interval associated with the cell, whlch_are the
point values is initially created by copying and filtering out the right min andmax values of the four scalar values. In our case with one
endpoints fromE. Now we use a recursive procedure to build the disk block being 4,096 bytes, a block can store up to 53 intervals,
tree, as follows. The roat of the tree is associated with the entire  1-€, B = 53.

range ofE and the entire interval s&. If S has no more thai3 Now we describe the layout of the interval tree nodes, each of
intervals, then we make nodea leaf, store those intervalsin and size one disk block. It has a flag to indicate whether it is a leaf
stop. Otherwise, we makean internal node. We extract the- 1 or an internal node. If it is a leaf, the rest of the node contains
endpoints fromE as slab boundaries which evenly diviéikinto b the following: (1) number £ B) of intervals stored in the node,

slabsEy, - - -, E,_, of [n/b] blocks each. We then scan through and (2) actual intervals stored. If it is an internal node, the rest

the setS; for each intervall being examined, we perform a binary ~ Of the node contains the following: (1) numbet ¢ — 1) of keys
search for each of the two endpoints on the slab boundaries, and(i-€., slab boundaries) stored, (2) the actual slab boundaries stored,
decide whethef lies entirely inside some slab; (in which case  (3) b pointers to the starting positions of the children nodes in

we have to putl into setS;), or crosses some slab boundary (in file dataset.intTree (-1 if that child is null), (4) information
which casdl belongs to node and we want to puf into appropri- about itsb left lists, (5) information about ité right lists, and (6)
ateleft, right and/ormulti lists). We use a temporary list for each ~ information about itgb — 1)(b — 2)/2 multi lists. The informa-
S;, and similarly for each liste f£(i), right (i), andmulti([¢, r]) tion about eackeftlist include: (a) a pointer to the starting position
of nodeu. Each temporary list is kept in consecutive blocks in disk, ©f the list in file dataset.left » (b) number of intervals in the
and is also associated with obeffer, which is of one disk block list, and (c) the minimum left endpoint value among all intervals of
size, in the main memory. Notice that we only ne2€B) blocks the list (which is just the left endpoint value of the first interval in

in the main memory for the buffers. In our actual implementation, the list, according to the sorted order of the list). Item (c) is used
we only needtb buffers instead; see Section 3. Each time we want t0 speed up the query: when we need to check the query point
to put the current interval into some ses; or somdeft/right/multi against thideft list, if ¢ is smaller than the value stored here, then
list, we just insertl into the buffer of the corresponding temporary ~ no interval in the list will contairy and thus we can avoid reading
list. When the buffer is full, we write the buffer out to the corre- ~any block of the list. The information about eagght list are sim-
sponding temporary list in disk, and the buffer is again available ilar. The information about eadulti list are also similar, but do

for use. After scanning through the entire interval Seeach in- not contain item (c) since during queriesnallti list is reported as a
terval in S is distributed to its appropriate temporary lists. Observe Whole with no checking necessary. From the size of each data type
that originally S is sorted by increasing left endpoint values of the 0f each field and the fact that a node holds at most 4,096 bytes, we
intervals, thus after thiscan and distributgrocess is done, each ~ can compute the branching factoof the tree, which in our case is
temporary list is automatically sorted by increasing left endpoint 29 (observe tha > /B here). For the simplicity of the coding,
values as well. We then sort (using external sorting) eagttt list we currently do not implement the corner structure.

by decreasing right endpoint values of the intervals, so that alltem-  There are some interesting issues involved in the implementation
porary lists are in the desired sorted orders. After this, we copy of the preprocessing algorithm. Recall from Section 2.1 that during
each temporary list back to its corresponding list in disk, set up ap- the scan and distributg@rocess for the current node(associated
propriate information (e.g., the number of intervals and a pointer with endpoint seF and interval sef), we use a temporary list for

to the starting position in disk of each list, etc) in nadeFinally, each of the leftlists, b right lists, (b — 1) (b — 2) /2 multi lists, and

we write nodeu to the disk, and recursively perform the same pro- b interval setsS;. A first attempt would be to use a file for each
cedure on each child; (of nodeu) with the range of slalf; and temporary list. This would require us to op&H (b—1)(b—2)/2
interval setS; (if S; is empty then noda; is null). files at the same timesince no temporary list is completed until



one pass of thecan and distribut@rocess is done. Unfortunately, ioQuery
there is a hard limitimposed by the operating system on the number dataset.* ~ vtkUnstructuredGrid

of files a process can open simultaneously (given by the system - - — + isoSurface
paramete©PENMAX older version of Unix allowed up to 20 open isoValue vtkContourFilter
files and this was increased to 64 by many systems). vtkPolyM apper

Our solution to this problem is to use a scratch file as a collec-
tion of the temporary lists of the same type. For example, we use

file dataset.left _temp to collect all temporary lists for the Figure 2: Isosurface extraction phase. Given the four files of the in-
b left lists. Observe that all intervals belonging feft(i) (and terval tree and an isovalugQuery filters the dataset and passes

thus belonging to the temporary list &ff¢(i)) must have their to Vtk only those active cells of the isosurface. Several Vtk methods
left endpoints lying in slak¥;, but there are no more thdm/b] are used to generate the isosurface, in particular, vtkUnstructured-

blocks of endpoints in slaii;, wheren is the number of blocks ~ Grid, vtkContourFilter, and vtkPolyMapper.
in E. Therefore, each temporary list has at mstb] blocks of
intervals, and thus we let thieth temporary list start from block

i- [n/b] of file dataset.left _temp,fori =0,---,b—1. No- all other children in between can only contain intervals whose two
tice that the size of fildataset.left _temp is no more than the endpoint values are the same (same)ashe corresponding cells
size of E. After the construction of all temporary left lists is com-  of such intervals are thus lying in theterior of the isosurface and
plete, we copy them to the fildataset.left , and the scratch therefore are not interesting cells to be reported.

file dataset.left _temp is again available for use in the next

recursion. We handle the temporary lists for tight lists in the . .
same way, except that before copying to filetaset.right , 3.2 Interfacing with Vtk

each temporary right list has to be sorted first (in the order of de- Extracting isosurfaces wittoBuild ~ andioQuery is relatively
creasing right endpoint values). In the same way, each interval setsimple. The input téoBuild  is a Toff file*, which unfortunately

S; for child u; of nodew has at mosfn/b] blocks. We scanthe  contains indices to vertices. Therefore, the first paioBlild  is
entire file forS (file dataset.intvls ) and distribute the inter- o normalize the Toff file, de-referencing these indices as described
vals to the appropriate temporary lists for edtHi.e., appropriate  in the beginning of Section 2, before the actual construction of the
portions of the scratch file holding a collection of all temporary lists interval tree can begin. Since there are four vertices in each cell
for eachS;), and then copy the temporary lists back to the corre- (tetrahedron), four passes over the input are necessary. If the files

sponding portions of filelataset.intvls - Now each sef5; are already given in de-referenced form, the first paroBtiild
is just the portion of filedataset.intvls starting from block would not be necessary.
i - [n/b] with no more thann/b] blocks. Each sef;, together Afull isosurface extraction pipeline should include several steps

with slab E;, are then used as input for the next level of recursion. jn addition to finding active cells. In particular, (1) intersection
Flna”y, ConSIder the construction Of th'eul“ |IS'[S fOI’ the current points and triang|es have to be Computed; (2) triang|es need to
nodeu. By the same argument, each list has at njegb| blocks. be decimated [15]; and (3) triangle strips have to be generated.
Unfortunately, there argh — 1)(b—2)/2 such lists. If we collected  steps (1)—(3) can be carried out by the existing code in Vtk [14],
all temporary lists into a single scratch file by the above method, \which makes it a perfect match for a proof-of-concept implementa-

then this scratch file would have si@nb) blocks, which is defi-  tion of our I/0 techniques. Our current code only implements the
nitely undesirable. To solve the problem, observe thatti([i, j]) actual triangle generation. Using Vtk's simple pipeline scheme, itis
consists of all intervals with left endpoints in the same siab, . a simple programming exercise to further process the triangulation,
Therefore, we construct athulti lists multi([z, j]) for a fixed: decimate it and create the strips.

from theleft list le ft(i — 1) (again by ascan and distributgro- TheioQuery code is implemented by linking our 1/O querying
cess), and repeat the procéss 2 times for all possible values of  code with Vitk's isosurface generation, as shown in Fig. 2. Given
i. Then during each iteration, there are at mipstulti lists being an isovalue, (1) all the active cells are collected from disk; (2) a

constructed, and thus our scratch file only neediocks of space.  ytkunstructuredGrid is generated; (3) the isosurface is extracted
The number of buffers in main memory needed for constructing the \yith vtkContourFilter; and (4) the isosurface is saved in a file with

multi lists is also reduced frorfb — 1)(b —2)/2 tob. Insummary,  ytkpolyMapper. At this point, memory is deallocated. If multi-

to construct théeft, right, andmultilists and the interval sets; for ple isosurfaces are needed, this process is repeated. Note that this

children, we use four scratch files, each with siaglocks, and also  approach requires double buffering of the active cells during the

4b blocks of main memory as buffers. creation of the vtkUnstructuredGrid data structure. A more sophis-
ticated implementation would be to incorporate the functionality of

Handling Degeneracies ioQuery inside the Vtk data structures and make the methods 1/0

. . . ware. This should be possible due to Vtk's pipeline evaluation
The issue of degenerate cases arises when the endpoint values cheme (see Chapter 4 of [14]).

the intervals are not distinct. We use cell ID’s to break ties. We also

adopt the convention that if an endpoint is exactly the slab bound-

ary separating slabB;_; and E;, then this endpoint is considered 4 Experimental Results
as lying in slab®;; this is consistent with our choice of slab bound-

aries (see Section 2.1). In the internal node of the interval tree, we |, thjs section we present experimental results of actively using our
only store the endpoint values as slab boundaries (keys), without ;o filtering techniques on real datasets. We have run our exper-
storing the corresponding cell ID's. During query operations, if the jments on four different datasets shown in Table 2. All of these
query valueg has the same value as some slab boundary, we con-gatasets are tetrahedralized versions of well-known datasets. Our

sider all slabs that can possibly contain the valug,@ind perform  himary interest in this initial implementation was to quantify the
the query operation on all such slabs accordingly. This ensures that

allanswers are correctly reported. Notice that if several slab bound- = A Toff file is analogous to the Geomview “off” file. It has the number
aries have the same value as thaj,ofe only need to gotothe two  of vertices and tetrahedra, followed by a list of the vertices and a list of the
children respectively to the left of the leftmost such slab boundary tetrahedra, each of which is specified using the vertex locations in the file as
and to the right of the rightmost such boundary. This is because an index.




I/0 overhead, if any, both in terms of memory and time, and to | Blunt | Chamber| Post | Delta |

compare with Vtk’s native isosurface implementation. intTree 303K 147K 237K | 750K
Our benchmark machine was an off-the-shelf PC: a Pentium Pro, Teft 15M 17M A41IM 30M
200MHz with 128M of RAM, and two EIDE Western Digital 2.5Gb right 15M 17M A41IM 80M
hard disk (5400 RPM, 128Kb cache, 12ms seek time). Each disk [mufi 18M 20M 35M S0M
block size is 4,096 bytes. We ran Linux (kernel 2.0.27) on this Total Size Z9M S54M T17M | 240M
machine. One interesting property of Linux is that it allows during Original Size 5.8M 6.8M 16.4M | 33.8M

booting the specification of the exact amount of main memory to
use. This allows us ttakefor the isosurface code a given amount
of main memory to use (after this memory is completely used, the
system will start to use disk swap space and have page faults).

Ratio of Increase | 8.4 7.9 7.1 7.1

Normalization 348s 465s 920s | 1798s
Tree Construction| 361s 391s 928s | 1982s

Total Time 709s 856s 1848s | 3780s
S Page Ins 103K | 115K [ 270K | 570K
Preprocessing with  ioBuild Page Outs 109K | 123K 286K | 605K

UsingioBuild s a fully automatic process. The only argument
is the name of the input file containing tetrahedral cells. During its
execution,ioBuild  creates and writes multiple files, but in the
end only the four files are kept. In analyzing the behavior of ex-
ternal memory algorithms, it is very important to take into account
the amount of main memory used by the algorithm. In general, the
more memory it is given, the less I/O operations it needs. For in-
stance, when sorting a file that can be kept entirely in main memory,
we just need to touch the file twice, once for reading, and once for
writing. As the available main memory is smaller, we need to per-
form more 1/O operations. The scalability of an external memory
algorithm is best seen when the main memory is smaller than the
dataset. In order to simulate this, we only all@®Build to al-
locate a 1024K blocks (4 Mb) of RAM. This is a parameter in the
prcglgk::r;:r.st time we raoBuild , it just seemed to beo fastfor the original Toff file to generate the inte_rval _tree. Notice, however,
the number of I/O reads and writeBuild ~ was issuing. Itturned that t.h's extra disk space f_or scratch files 1S needgcb and for
out that the operating system was able to optimize (by caching) a &ll: since after runningoBuild  once to build the interval tree
lot of those 1/0 requests, and the CPU was running at nearly 95% of flles,_thgse tree files can be duplicated by just copying, without ever
usage. In order to avoid these side effects of the operating systemunningioBuild - again. _
we lowered the amount of main memory of our system by start-  Because it might be necessary to use as much as 16 times the
ing Linux with a “linux mem=16M" command line at kernel boot ~ Original disk space for preprocessing a given dataset, we believe
time. Basically, about 14M of main memory can actually be used that |n'Iarge production environments, Iar_ge scratc_h areas should
by applications, and during the time of our benchmarks, our sys- be avallabl_e for preprocessing. We see this as a minor cost for the
tem was fully functional (i.e., it was not in single user mode; all ©verall savings in both time and space later on. One should also
system-related daemons were active). That is, we ran our exper-Note, that disk prices are on the order of 35-40 times lower than
iments in a “normal” environment on the datasets with size equal Main memory prices. So the overall cost of a four to eight factor
to or larger than the main memory. (Remember that only 4M of Increase in disk Sfpace_overhead is negligible when compared toa
RAM were actually used bjoBuild .) The actual CPU usage twofold increase in main memory costs. (In [17], a twofold main
percentage during this preprocessing was in the range of low teensMemory overhead is reported for improved, although not optimal,
In Table 1 we show all relevant experimental data obtained from isosurface generation “me$-) Again, we WO.UId I_|ke to stress _the
runningioBuild  with a 16M/4M configuration. Recall from Sec- overall speed advantage in isosurface extraction time our technique
tion 3.2 that the first part ofoBuild  is to normalize (i.e., de- provides, since it only performs the preprocessing once.
reference) the input Toff file (which in turn amounts to several ex-
ternal sor_ting operations), and_ the secpnq part is to actually con- |ggsurface Extraction with ioQuery
struct the interval tree. The basic operationgo®uild  are hence
external sorting and scanning (teean and distributgprocess de- The true performance of an isosurface extraction technique is the
scribed in Section 2.1). It should be clear from Table 1 that the actual time it takes to generate a given isosurface. As explained be-
overall running time ofoBuild  is the same as performing exter-  fore, our code is coupled with Vtk (see Fig. 2). Basically, during
nal sorting several times, andligear in the size of the datasets. isosurface extraction, we find the active cells, and use Vik’s iso-
ThereforeioBuild  is both efficient and predictable — for a given  surface capabilities to actually generate the isosurface. In the fol-
system configuration, one can estimate (or extrapolate) the overalllowing, we uséoQuery to denote the entire isosurface extraction
running time based on a linear behavior. This preprocessing can becode.
made much faster by using faster disks, and optimized to use more We ran three batteries of tests, each with different amount of core
memory. For instance, in an SGI Power Challenge, it only takes 10 memory (128M, 64M, and 32M). Each test consists of calculating
minutes to preprocess the Delta Wing dataset. 10 isosurfaces with isovalues in the range of the scalar values of
The interval tree data structure requires more disk space than theeach dataset, by using our code and also the Vtk-only isosurface
normalized tetrahedron file, which is also larger than the original code (denoted bytkiso ). We did not run X-windows during the
Toff file. The average increase in disk space is about 7.6 times, andisosurface extraction time, and the output of vtkPolyMapper was
the maximum increase is 8.4 times (see Table 1). During the pre- saved in a file instead.
processing time, scratch files used for computation are necessary. We found that our approach has several advantages. Initially
In general, one needs about 16 times the amount of disk space ofwe thought that our method would only be useful for really large

Table 1: Statistics for the running @Build  in a machine with
16M of main memory and 4M of buffer memory, for the datasets
in Table 2. The first four values are the sizes of the four files kept
after the preprocessing. “Total size” is the total amount of disk
space used after preprocessing. “Normalization” is the time used to
convert the input Toff file to a normalized (i.e., de-referenced) file.
“Tree Construction” is the actual time used to create the interval
tree data files from the normalized file. “Total Time” is the overall
running time of the whole preprocessing. “Page Ins” and “Outs”
are the numbers of disk block reads and writes requested to the
operating system.



| Name | #of Cells | Original Size | Size after Normalizationj
Blunt Fin 187K 5.8M 12M
Combustion Chambe| 215K 6.8M 13M
Liquid Oxygen Post 513K 16.4M 33M
Delta Wing 1,005K 33.8M 64M

Table 2: A list of the datasets used for testing. After normalization, each cell is 64 bytes long (data is represented as floats).

datasets, but our experiments show that even for smaller datasets| | Blunt | Chamber| Post | Delta ]

the I/O querying time is negligible when compared to the overall ioQuery —128M 16s 37s 35s 43s
isosurface extraction time. vtkiso —128M 15s 22s 44s 182s
Another advantage is that, for large isosurfaces, the memory re- | vtkiso /O —128M 3s 2s 12s 40s
quirements of the triangle mesh is very large. If the entire volume oQuery — 64M 17s 305 355 73s
dataset is kept in the main memory, then even if the dataset itself can 5o~ —6am 18s 273 112s | 31295
fit, adding the triangle mesh might make thg main memory notlarge [ ~iiso 170 — 64M B S 675 5545
enough and cause system swap. The factit@tiery only uses =
two blocks of main memory during active-cell searching makes our |0Query — 32M 16s 23S b2s 59s
approach very favorable: the main memory space can be saved for | ViSO —32M 21s o4s 1563s | 3188s
the triangle mesh of the isosurface, so that system swap is much _Vkiso_1/0 —32M 8s 28s 123s | 249s

less likely to occur.
We summarize in Table 3 thetal running times for the extrac-
tion of the 10 isosurfaces usingQuery andvtkiso  with dif- Table 3: Overall running times for the extraction of the 10 isosur-
ferent amount of main memory. It should be clear that for larger faces usingoQuery andvtkiso with different amount of main
datasets (e.g., Post and DeltaQuery is much faster, and the =~ memory. These include all the time to read the datasets and write
margins increase significantly as the main memory size goes down.the isosurfaces to filesvtkiso  1/O is the fractional amount of
Figures 3 to 5 summarize detailed benchmarks, with top rows time of vtkiso ~ for reading the dataset and generating a vtkUn-
presenting the performance of runnimuery , and the bottom structuredGrid.
rows for the performance oftkiso . For each isosurface calcu-
lated usingoQuery , we break the time into four categories:

e ForioQuery , the I/O times almost do not change with the
amount of main memory (see the top rows of Figs. 3-5). This
shows that our technique for finding active cells only needs a
very small amount of main memory, and the performance is
independent of the size of the main memory available.

(1) I/Otime (shown inred)— This is the time to identify and bring
in from disk the active cells of the isosurface in question.

(2) Copy Time (shown in yellow) — In order to use Vtk’s isosur-
face capabilities, we need to generate a vtkUnstructuredGrid
object that contains the active cells we just obtained. We refer

to the time for this process as “Copy Time”. e For ioQuery , the overall running times almost do not
change with the amount of main memory. Only in the case
of using 32M of RAM with really large isosurfaces does our
running time increase (see the top rows of Figs. 3-5). But
this time increase is due to the fact that Vtk needs more main
memory than available to store the actual polygons generated

(3) Isosurface (shown in blue) — This is the time for Vtk’s isosur-
face code to actually generate the isosurface from the active
cells.

(4) File Output (shown in green) — In the end we write to disk a

file containing the actual isosurface in Vtk format.

As for the performance oftkiso , only items (3) and (4) are
shown in Figs. 3-5, and there are two additional castsshown
the reading of the dataset, and the generation of the vtkUnstruc-
turedGrid. These two operations are performed only once when
vikiso  starts to run (i.e., at the beginning of each batch of the
10 isosurface extractions), and thus it is not possible to spread the
costs over each individual isosurface extraction. Therefore we do
not show them in Figs. 3-5, but only show the sum of the two costs
asvtkiso 1/Oin Table 3.

Regarding Figs. 3-5, we make the following observations:

e ForioQuery ,ingeneral the I/O time is only a small fraction
of the overall isosurface extraction time (see the top rows of
Figs. 3-5). In particular, for most of the time (1) is smaller

(which causes page faults).

Even without taking into account the two costsvikiso
(reading the dataset and generating a vtkUnstructuredGrid),
comparing the times oftkiso  and ofioQuery as shown

in Figs. 3-5 (which is thus not fair faoQuery ), ioQuery

is already much faster for large datasets. For example, for the
8th isosurface of Delta Wing using 128M of RAM, it takes
ioQuery 12 seconds, whiletkiso takes almost 35 sec-
onds. As for small datasets, the overheadofuery is
negligible. But the advantages really start to show as the main
memory size goes down. For instance, with 64M, for the 8th
isosurface of Delta Wing, it takésQuery the same 12 sec-
onds, whilevtkiso  takes 300 seconds!

than (3), especially as the datasets get larger. This means that In some charts, there seem to be some anomalies we currently do
the active-cell searching process is not a bottleneck any more; not understand. For instance, it is not clear why for Chamber, cost
the effect is even more significant for larger datasets. One can (2) is not directly correlated to (1). Chamber is the only dataset that
see the output-sensitive behavior by noting that when small ioQuery takes more time thamtkiso to extract the 10 isosur-
isosurfaces (or no isosurfaces) are generaté€dljery takes faces; even for this dataset, when main memory is ioQuery
negligible time. is still faster.



5 Conclusions

We have presented an I/O-optimal technique for isosurface extrac-
tion from volumetric data. Our method is to preprocess the dataset
to build an 1/0-optimal interval tree in disk, and then to extract iso-

surfaces by querying the interval tree for active cells and generating

(6]

(7]

the isosurfaces from those cells. We discussed the theoretical as-

pects of the method. Itis I/O-optimal in space and query, and nearly
1/0-optimal in preprocessing. We also established its practical effi-
ciency through experimental results, based on our implementation

of an|/O filter for Vik’s isosurface extraction for the case of un-

structured grids. We show that the time for searching active cells is
less than the time for generating the isosurfaces from active cells,
and this search time is independent of the main memory available.
Also, with the interval tree built in disk, there is no need to load

the entire dataset into main memory. In addition, the preprocess-
ing is performed once and for all; its running time is the same as
running external sorting a few times, and is linear in the size of the

(8]

9]

datasets. All these features make our technique especially suitableg10]

for use with very large datasets, or for the case where there is only
a small amount of main memory. In fact, even for smaller datasets
with enough main memory, our method introduces only a negligible

overhead.
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Figure 3: Running times for extracting isosurfaces usi@uery
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