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Abstract

In this paper we give I/O-optimal techniques for the extraction of
isosurfaces from volumetric data, by a novel application of the I/O-
optimal interval tree of Arge and Vitter. The main idea is to prepro-
cess the datasetonce and for allto build an efficient search struc-
ture indisk, and then each time we want to extract an isosurface, we
perform anoutput-sensitivequery on the search structure to retrieve
only thoseactivecells that are intersected by the isosurface. Dur-
ing the query operation, only two blocks of main memory space are
needed, and only those active cells are brought into the main mem-
ory, plus some negligible overhead of disk accesses. This implies
that we can efficiently visualize very large datasets on workstations
with just enough main memory to hold theisosurfaces themselves.
The implementation is delicate but not complicated. We give the
first implementation of the I/O-optimal interval tree, and also im-
plement our methods as anI/O filter for Vtk’s isosurface extrac-
tion for the case of unstructured grids. We show that, in practice,
our algorithms improve the performance of isosurface extraction by
speeding up the active-cell searching process so that it is no longer
a bottleneck. Moreover, this search time is independent of the main
memory available. The practical efficiency of our techniques re-
flects their theoretical optimality.

1 Introduction

Isosurface extraction represents one of the most effective and pow-
erful techniques for the investigation of volume datasets. In fact,
nearly all visualization packages include an isosurface extraction
component. Its widespread use makes efficient isosurface extrac-
tion a very important problem.

The problem of isosurface extraction can be stated as follows.
A scalar volume datasetconsists of tuples(x;F(x)), wherex is a
3D point andF is a scalar function defined over 3D points. Given
an isovalue (a scalar value)q, the extraction of the isosurface of
q is to compute and display isosurfaceC(q) = fxjF(x) = qg.
The computational process of isosurface extraction can be viewed
as consisting of two phases. First, in thesearch phase, one finds all
cells of the dataset that are intersected by the isosurface; such cells
are calledactive cells. Next, in thegeneration phase, depending on
the type of cells, one can apply an algorithm to actually generate
the isosurface from those active cells. LetN be the total number of
cells in the dataset, andK the number of active cells. It is estimated
that the average value ofK isO(N2=3) [9], therefore an exhaustive
scanning of all cells in the search phase is found to be inefficient,
spending a large portion of time traversing cells that are not active.
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A lot of research efforts have thus focused on developingoutput-
sensitivealgorithms to speed up the search phase by avoiding such
exhaustive scanning.

Most algorithms developed so far (except for the inefficient ex-
haustive scanning), however, require the time and main memory
space to read and keep the entire dataset in the main memory,
plus some additional preprocessing time and main memory space
if some structures are built to speed up the search phase. Unfortu-
nately, for really large volume datasets, these methods often suffer
the problem of not having enough main memory, which can cause
a major slow-down of the algorithms due to a large number of page
faults. On the other hand, when visualizing isosurfaces, as opposed
to volume rendering, only a small portion (K = O(N2=3) active
cells) of the dataset is ever needed. This seems to indicate that it
is not necessary to use time and main memory to load and store
the whole volume. If users never had to load a dataset completely
but rather only had to store the triangles that defined the isosurface,
effective visualization could be performed on low to middle range
workstations, or even on PCs in some cases.

In this paper, we present I/O-efficient techniques to resolve the
memory issue and to speed up the search phase of isosurface extrac-
tion, by a novel use of the I/O-optimal interval tree of [1]. After
preprocessing, we can query for isosurfaces using only two blocks
of main memory space, and onlyO(logB N + K=B) disk reads,
whereB is the number of cells that can fit into a disk block (and
thusdK=Be disk reads are necessary to report allK active cells).
The technique hence acts as anI/O-filter, performing only those
disk accesses to the dataset that are needed, plus a negligible over-
head. The search structure is in factI/O-optimalin space and query,
and nearly I/O-optimal in preprocessing.

Previous Related Work

As mentioned before, isosurface extraction has been the focus of
much research. Here we briefly review the results that focus on
speeding up the search phase of isosurface extraction by acting as a
filter, avoiding traversals of cells that are not active. (Please see [11]
for an excellent and thorough review.)

In Marching Cubes [12], all cells in the volume dataset are
searched for isosurface intersection. Essentially, each time a user
runs Marching Cubes,O(N) time is needed. Concerning the main
memory issue, this technique does not require the entire dataset to
fit into the main memory, butdN=Be disk reads are necessary. Wil-
hems and Van Gelder [20] propose a method of using an octree to
optimize isosurface extraction. This algorithm has worst-case time
of O(K + K log(N=K)) (this analysis is presented by Livnatet
al. [11]) for isosurface queries, once the octree has been built.

Itoh and Kayamada [9] propose a method based on identifying a
collection ofseed cellsfrom which isosurfaces can be propagated
by performing local search. Basically, once the seed cells have been
identified, they claim to have a nearlyO(N2=3) expected perfor-
mance. (Livnatet al. [11] estimate the worst-case running time
to beO(N), and the memory overhead to be quite high.) More re-
cently, Bajajet al.[2] propose another contour propagation scheme,
with expected performance ofO(K). Livnat et al. [11] propose



NOISE, anO(
p
N +K)-time algorithm. Shenet al. [17, 16] also

propose nearly optimal isosurface extraction methods.
The firstoptimal isosurface extraction algorithm was given by

Cignoni et al. [6], based on the use of an interval tree to store the
intervals induced by the dataset cells. After anO(N logN)-time
preprocessing, queries can be performed in optimalO(logN +K)
time. This achieves tight theoretical bounds.

All the techniques mentioned above are main-memory algo-
rithms, requiring the entire dataset to fit in the main memory
(except for Marching Cubes). There is also a class ofexternal-
memoryalgorithms (not particularly for isosurface extraction). For
large-scale applications in which the problem is too large to fit in
the main memory, Input/Output (I/O) communication between fast
main memory and slower external memory (disk) becomes a ma-
jor bottleneck. Algorithms specifically designed to reduce the I/O
bottleneck are calledexternal-memoryalgorithms. Although most
of the results in this area of research are theoretical, the experi-
ments of Chiang [3] and of Vengroff and Vitter [19] on some of
these techniques show that they result in significant improvements
over traditional algorithms in practice. Also, Telleret al. [18] de-
scribe a system to compute radiosity solutions for polygonal en-
vironments larger than main memory, and Funkhouseret al. [7]
present prefetching techniques for interactive walk-throughs in ar-
chitectural virtual environments whose models are larger than main
memory.

Our Results

We give I/O-optimal techniques for isosurface extraction, by a
novel use of the external-memory interval tree of Arge and Vit-
ter [1].

Following the ideas of Cignoniet al. [6], we produce for each
cell an interval[min;max], wheremin andmax are the minimum
and maximum values among the scalar values of the vertices of the
cell. Then given an isovalueq, the active cells are exactly those cells
whose intervalscontainq (i.e.,min � q � max). This reduces the
searching of active cells to the following problem calledstabbing
queries: given a set of intervals and a query pointq in 1D, find
all intervals containingq. We then use the external-memory inter-
val tree of [1] to solve the stabbing queries in an I/O-optimal way.
We give the first implementation of the I/O-optimal interval tree,
and also implement our methods as anI/O filter for Vtk’s isosur-
face extraction routine [14] for the case of unstructured grids. Our
experiments show that the search phase, originally the bottleneck
of isosurface extraction, now needsless timethan the generation
phase, i.e., the search phase is not a bottleneck any more!

The advantages of our techniques can be summarized as follows.

� Our query algorithm is output-sensitive and improves the per-
formance of isosurface extraction by speeding up the search
phase so that it is no longer a bottleneck, and yet by build-
ing the search structure in disk, our preprocessing is per-
formedonce and for all, as opposed to other output-sensitive
techniques which require preprocessing each time the process
starts to run. Our search structure can be duplicated by just
copying files, without ever running the preprocessing again.

� Our query algorithm only needs two blocks of main mem-
ory, and only brings to main memory thoseK active cells,
whereK is usuallyO(N2=3). Other techniques either have
to visit the whole dataset during queries, or have to use a large
amount of main memory to keep the entire dataset plus some
additional search structure.

� Our preprocessing algorithm needs only a fixed amount of
main memory space, which can be parameterized. For

datasets much larger than can fit into main memory, the run-
ning time is the same as performing a few external sortings,
and is linear in the size of the datasets. Thus our preprocessing
method is both efficient and predictable.

Our techniques have a wide range of applications. In addition to
improving the performance of isosurface extraction, there are some
other implications:

� Datasets can be visualized very efficiently on workstations
with just enough main memory to hold theisosurfaces them-
selves.

� Datasets can be kept in remote file servers. Only the necessary
parts are fetched during visualization, thus even at ethernet
speeds, interactive isosurface extraction can be achieved.

Organization of the Paper

The rest of the paper is organized as follows. In Section 2, we
present the I/O-optimal interval tree of [1], and our novel prepro-
cessing algorithm. Next we present in Section 3 the implementation
details of ourI/O filter for Vtk’s isosurface extraction routine. In
Section 4, we present the overall experimental performance of our
methods, followed by conclusions in Section 5.

Because of limited space, our presentation is sometimes sketchy.
For full details, including the querying algorithm, we refer the in-
terested reader to [5].

2 I/O Optimal Interval Tree

As described in the previous section, we produce an intervalI =
[min;max] for each cell of the dataset, and use the I/O-optimal
interval tree of [1] to find the active cells of an isosurface by per-
forming stabbing queries.

Since pointer references are very inefficient for disk accesses,
we store thedirect cell informationtogether with the correspond-
ing interval whenever that interval has to be stored in the interval
tree. Thus each record of an interval includes the cell ID, the 3D
coordinates and the scalar values of the vertices of the cell, and the
left and right endpoints of the interval.

If the input dataset is given in the format providing direct cell
information, then we can build the interval tree directly. Unfor-
tunately, the datasets are often given in the format that contains
indices to vertices. Thus we have to de-reference the indices be-
fore actually building the interval tree. We call this de-referencing
processnormalization. Using the technique of [4], we can effi-
ciently perform normalization as follows. We make one file (the
vertex file) containing the direct information of the vertices (3D co-
ordinates and scalar values), and another file (thecell file) of cell
records with vertex indices. In the first pass, we externally sort the
cell file by the indices (pointers) to the first vertex, so that the first
group in the file contains cells whose first vertices are vertex 1, the
second group contains cells whose first vertices are vertex 2, and
so on. Then by scanning through the vertex file and the cell file
simultaneously, we fill in the direct information of the first vertex
of each cell in the cell file. In the next pass, we sort the cell file by
the indices to the second vertices, and fill in the direct information
of the second vertex of each cell in the same way. By repeating the
process for each vertex of the cells, we obtain the direct information
for each cell; this completes the normalization process.

2.1 Data Structure

Each node of the tree (for readers not acquainted with interval trees,
see [13, pages 360–361]) is one block in disk, capable of holding



O(B) items. Thebranching factor, b, is the maximum number of
children an internal node can have. We letb = O(

p
B); the rea-

son will be clear later. LetS be the set of allN intervals, andE
be the set of2N endpoints of the intervals inS. We denote by
n = djEj=Be the number ofblocksin E. First, we sortE from left
to right in the order of increasing values, assuming that all endpoints
have distinct values (we use cell ID to break ties). SetE is nowfixed
and will be used to defineslab boundariesfor each internal node of
the tree. The interval tree onE andS is defined recursively as fol-
lows. The rootu is associated with the entire range ofE and with
all intervalsS. If S has no more thanB intervals, then nodeu is a
leaf storing all intervals ofS. Otherwiseu is an internal node. We
then evenly divideE into b slabsE0; E1; � � � ; Eb�1, each contain-
ing the same numberdn=be blocksof endpoints inE. Theb�1 slab
boundariesare the first endpoints of slabsE1; � � � ; Eb�1. We store
the endpoint values of the slab boundaries in nodeu as keys. We
use these keys to consider each intervalI 2 S (see Fig. 1). If both
endpoints ofI lie inside the same slab, say thei-th slabEi, thenI
belongs to thei-th childui of nodeu, and is put into the interval set
Si � S (e.g., in Fig. 1, intervalI0 is put inS0). Otherwise (the two
endpoints ofI belong to different slabs, i.e.,I crosses one or more
slab boundaries),I belongs to nodeu. The intervals belonging to
nodeu will be stored in the secondary lists ofu pointed by pointers
in u. We adopt the convention that if an endpoint ofI is exactly the
slab boundary separating slabsEi�1 andEi, that endpoint is con-
sidered as lying in slabEi; this is consistent with our choice of slab
boundaries. We associate each childui of nodeu with the range of
slabEi and with the interval setSi, and define the subtree rooted
at ui recursively as the interval tree on rangeEi and intervalsSi.
Notice that slabEi is pre-definedwhenE is given (dn=be blocks of
endpoints in the first level,dn=b2e blocks of endpoints in the next
level, and so on), but setSi has to be decided by scanning through
the intervals inS and distribute them appropriately according to the
slab boundaries. Observe thatSi may be empty, in which case child
ui of u is null (it is also possible that all children ofu are null).

For each internal nodeu, we use three kinds of secondary struc-
tures to store the intervals belonging tou: the left, right andmulti
lists, described as follows.

� There areb left lists, each corresponding to aslab of u. For
eachi, the i-th left list stores the intervals belonging tou
whose left endpoints lie in thei-th slabEi. Each list is sorted
by increasing left endpoint valuesof the intervals (see Fig. 1).

� There are alsob right lists, each corresponding to aslab of
u. For eachi, thei-th right list stores the intervals belonging
to u whose right endpoints lie in thei-th slabEi. Each list
is sorted bydecreasing right endpoint valuesof the intervals
(see Fig. 1).

� There are(b� 1)(b� 2)=2 multi lists, each corresponding to
a multi-slabof u. A multi-slab [i; j], 0 � i � j � b � 1,
is defined to be the union of slabsEi; � � � ; Ej . Themulti list
for multi-slab [i; j] stores all intervals ofu that completely
spanEi [ � � � [ Ej , i.e., all intervals ofu whose left end-
points lie in slabEi�1 and whose right endpoints lie in slab
Ej+1. Since themulti lists [0; k] for anyk and themulti lists
[`; b�1] for anyl are always empty by the definition, we only
care about multi-slabs[1; 1]; � � � ; [1; b� 2]; [2; 2]; � � � ; [2; b�
2]; � � � ; [i; i]; � � � ; [i; b� 2]; � � � ; [b� 2; b� 2]. Thus there are
(b � 1)(b � 2)=2 such multi-slabs and the associatedmulti
lists (see Fig. 1).

For eachleft, right, ormulti list, we store the entire list in consec-
utive blocks in disk, and in nodeu we store a pointer to the starting
position of the list in disk. Observe that there areb left andb right
lists, andO(b2) = O(B) multi lists. Thus we need to keepO(B)

E0 E1 E2 E3 E4

S0 S1 S2 S3 S4

I4
I5

I0 I1
I2

I3 I6
I7

u0 u1 u2 u3 u4

u

slabs:

multi-slabs:
[1, 1]
[1, 2]
[1, 3]
[2, 2]
[2, 3]
[3, 3]

E0 ~ E4

Figure 1: A schematic example of the I/O-optimal interval tree for
branching factorb = 5. Note that this is not a complete example
and some intervals are not shown (in a complete example, each slab
boundary is an interval endpoint, and each slabEi has same blocks
of endpoints). Consider only the intervals shown here and nodeu.
The interval sets for its children are:S0 = fI0g, andS1 = S2 =
S3 = S4 = ;. Its left lists are: left(0) = fI2; I7g, left(1) =
fI1; I3g, left(2) = fI4; I5; I6g, andleft(3) = left(4) = ; (the
intervals in each list are sorted in the order as they appear). Itsright
lists are: right(0) = right(1) = ;, right(2) = fI1; I2; I3g,
right(3) = fI5; I7g, andright(4) = fI4; I6g (again the intervals
in each list are sorted in the order as they appear). Itsmulti lists
are:multi([1; 1]) = fI2g, multi([1; 2]) = fI7g, multi([1; 3]) =
multi([2; 2]) = multi([2; 3]) = ;, andmulti([3; 3]) = fI4; I6g.

items of information in nodeu, which is one disk block capable of
holdingO(B) items. This explains why the branching factorb is
taken asO(

p
B).

Now let us analyze some properties of the interval tree. First, the
height of the tree isO(logbN) = O(logB N), because each time
we go down one level of the tree, the range of slabE associated
with a node is reduced by a factor ofb. Secondly, each interval
belongs to exactly one node, and is stored at most three times: if
it belongs to a leaf node, then it is stored only once; if it belongs
to an internal node, then it is stored once in someleft list, once
in someright list, and possibly one more time in somemulti list.
Therefore we needroughlyO(N=B) disk blocks to store the entire
data structure.

In theory, however, we may need more blocks. The problem is
because of themulti lists: in the worst case, amulti list may have
only very few (<< B) intervals in it, but still requires one disk
block for storage. The same situation may occur also forleft and
right lists, but since each internal node hasb left/right lists and the
same number of children, theseunderflowblocks can be charged
to the children nodes. But since there areO(b2) multi lists for an
internal node, this charging argument does not work for themulti
lists. In [1], the problem is solved by using thecorner structure
of [10]. Corner structure is an I/O-optimal data structure for per-
forming stabbing queries when the intervals can entirely fit into the
main memory (but we want to performO(k=B+1) I/O operations
to reportk intervals, rather than read in all intervals to the main
memory). Although corner structure is very elegant, it is more com-
plex; we thus only treat it as a black box. More details can be found
in [10].

The usage of the corner structure in interval tree is as follows.
For each of theO(b2) multi lists of an internal node, if there are at



leastB=2 intervals, we directly store the list in disk as before; oth-
erwise, the (< B=2) intervals are maintained in a corner structure
associated with the internal node. Since there areO(b2) = O(B)
multi lists, and only those with less thanB=2 intervals are main-
tained in the corner structure, the number of intervals in the corner
structure of an internal node is less thanB2=2, satisfying the re-
striction of corner structure. In summary, the height of the interval
tree isO(logB N), and using the corner structure, the space needed
by the interval tree isO(N=B) blocks in disk, which is worst-case
optimal.

Preprocessing Algorithm

We give a new preprocessing algorithm achieving nearly optimal
O(N

B
logB N) I/O operations. It is based on a paradigm we call

scan and distribute, inspired by thedistribution sweepI/O tech-
nique [3, 8].

The algorithm follows the definition of the interval tree given in
Section 2.1. We start by duplicating each interval record, one with
the left endpoint as the key and the other with the right endpoint as
the key. We then sort (using external sorting) all these endpoints
by the keys from left to right in increasing order (breaking ties by
cell ID’s). This gives the sorted set of endpointsE. This set is
used to decide the range and the slab boundaries of the current node
throughout the process. Again, we usen to denote the number of
blocks inE. The setS of intervals sorted by increasing left end-
point values is initially created by copying and filtering out the right
endpoints fromE. Now we use a recursive procedure to build the
tree, as follows. The rootu of the tree is associated with the entire
range ofE and the entire interval setS. If S has no more thanB
intervals, then we make nodeu a leaf, store those intervals inu, and
stop. Otherwise, we makeu an internal node. We extract theb� 1
endpoints fromE as slab boundaries which evenly divideE into b
slabsE0; � � � ; Eb�1 of dn=be blocks each. We then scan through
the setS; for each intervalI being examined, we perform a binary
search for each of the two endpoints on the slab boundaries, and
decide whetherI lies entirely inside some slabEi (in which case
we have to putI into setSi), or crosses some slab boundary (in
which caseI belongs to nodeu and we want to putI into appropri-
ate left, right and/ormulti lists). We use a temporary list for each
Si, and similarly for each listleft(i), right(i), andmulti([`; r])
of nodeu. Each temporary list is kept in consecutive blocks in disk,
and is also associated with onebuffer, which is of one disk block
size, in the main memory. Notice that we only needO(B) blocks
in the main memory for the buffers. In our actual implementation,
we only need4b buffers instead; see Section 3. Each time we want
to put the current intervalI into some setSi or someleft/right/multi
list, we just insertI into the buffer of the corresponding temporary
list. When the buffer is full, we write the buffer out to the corre-
sponding temporary list in disk, and the buffer is again available
for use. After scanning through the entire interval setS, each in-
terval inS is distributed to its appropriate temporary lists. Observe
that originallyS is sorted by increasing left endpoint values of the
intervals, thus after thisscan and distributeprocess is done, each
temporary list is automatically sorted by increasing left endpoint
values as well. We then sort (using external sorting) eachright list
by decreasing right endpoint values of the intervals, so that all tem-
porary lists are in the desired sorted orders. After this, we copy
each temporary list back to its corresponding list in disk, set up ap-
propriate information (e.g., the number of intervals and a pointer
to the starting position in disk of each list, etc) in nodeu. Finally,
we write nodeu to the disk, and recursively perform the same pro-
cedure on each childui (of nodeu) with the range of slabEi and
interval setSi (if Si is empty then nodeui is null).

3 Implementation

We implemented our methods as anI/O filter for Vtk’s isosurface
extraction for the case of unstructured grids. First,ioBuild is
used to preprocess the dataset to build the interval tree, and then
ioQuery is used to report the active cells of a given isosurface. We
first describe how to implement the interval tree, and then describe
the interface with Vtk.

3.1 External Memory Interval Tree

We describe the organization of the data structure. We use files
dataset.intTree , dataset.left , dataset.right ,
and dataset.multi to hold the interval tree nodes, allleft
lists, all right lists, and all multi lists, respectively. Every
time we create a new tree node, we allocate the next avail-
able block from filedataset.intTree and store the node
there. (The root of the tree always starts from position 0 of file
dataset.intTree .) Similarly, every time we create a newleft
(resp.right/multi) list, we allocate the next available consecutive
blocks just enough to hold the list, from filedataset.left
(resp. dataset.right /dataset.multi ) and store the list
there. Notice that we always allocate disk space of size anin-
tegral number of blocks. Each block in filedataset.left ,
dataset.right and dataset.multi stores up toB inter-
vals. Each interval contains a cell ID, four vertices of the cell (x-,
y-, z- values and the scalar value of each vertex), and the left and
right endpoints of the interval associated with the cell, which are the
min andmax values of the four scalar values. In our case with one
disk block being 4,096 bytes, a block can store up to 53 intervals,
i.e.,B = 53.

Now we describe the layout of the interval tree nodes, each of
size one disk block. It has a flag to indicate whether it is a leaf
or an internal node. If it is a leaf, the rest of the node contains
the following: (1) number (� B) of intervals stored in the node,
and (2) actual intervals stored. If it is an internal node, the rest
of the node contains the following: (1) number (� b � 1) of keys
(i.e., slab boundaries) stored, (2) the actual slab boundaries stored,
(3) b pointers to the starting positions of the children nodes in
file dataset.intTree (-1 if that child is null), (4) information
about itsb left lists, (5) information about itsb right lists, and (6)
information about its(b � 1)(b � 2)=2 multi lists. The informa-
tion about eachleft list include: (a) a pointer to the starting position
of the list in filedataset.left , (b) number of intervals in the
list, and (c) the minimum left endpoint value among all intervals of
the list (which is just the left endpoint value of the first interval in
the list, according to the sorted order of the list). Item (c) is used
to speed up the query: when we need to check the query pointq
against thisleft list, if q is smaller than the value stored here, then
no interval in the list will containq and thus we can avoid reading
any block of the list. The information about eachright list are sim-
ilar. The information about eachmulti list are also similar, but do
not contain item (c) since during queries amulti list is reported as a
whole with no checking necessary. From the size of each data type
of each field and the fact that a node holds at most 4,096 bytes, we
can compute the branching factorb of the tree, which in our case is
29 (observe thatb >

p
B here). For the simplicity of the coding,

we currently do not implement the corner structure.
There are some interesting issues involved in the implementation

of the preprocessing algorithm. Recall from Section 2.1 that during
the scan and distributeprocess for the current nodeu (associated
with endpoint setE and interval setS), we use a temporary list for
each of theb left lists,b right lists,(b� 1)(b� 2)=2 multi lists, and
b interval setsSi. A first attempt would be to use a file for each
temporary list. This would require us to open3b+(b�1)(b�2)=2
files at the same time, since no temporary list is completed until



one pass of thescan and distributeprocess is done. Unfortunately,
there is a hard limit imposed by the operating system on the number
of files a process can open simultaneously (given by the system
parameterOPENMAX; older version of Unix allowed up to 20 open
files and this was increased to 64 by many systems).

Our solution to this problem is to use a scratch file as a collec-
tion of the temporary lists of the same type. For example, we use
file dataset.left temp to collect all temporary lists for the
b left lists. Observe that all intervals belonging toleft(i) (and
thus belonging to the temporary list ofleft(i)) must have their
left endpoints lying in slabEi, but there are no more thandn=be
blocks of endpoints in slabEi, wheren is the number of blocks
in E. Therefore, each temporary list has at mostdn=be blocks of
intervals, and thus we let thei-th temporary list start from block
i � dn=be of file dataset.left temp , for i = 0; � � � ; b� 1. No-
tice that the size of filedataset.left temp is no more than the
size ofE. After the construction of all temporary left lists is com-
plete, we copy them to the filedataset.left , and the scratch
file dataset.left temp is again available for use in the next
recursion. We handle the temporary lists for theright lists in the
same way, except that before copying to filedataset.right ,
each temporary right list has to be sorted first (in the order of de-
creasing right endpoint values). In the same way, each interval set
Si for child ui of nodeu has at mostdn=be blocks. We scan the
entire file forS (file dataset.intvls ) and distribute the inter-
vals to the appropriate temporary lists for eachSi (i.e., appropriate
portions of the scratch file holding a collection of all temporary lists
for eachSi), and then copy the temporary lists back to the corre-
sponding portions of filedataset.intvls . Now each setSi
is just the portion of filedataset.intvls starting from block
i � dn=be with no more thandn=be blocks. Each setSi, together
with slabEi, are then used as input for the next level of recursion.
Finally, consider the construction of themulti lists for the current
nodeu. By the same argument, each list has at mostdn=be blocks.
Unfortunately, there are(b�1)(b�2)=2 such lists. If we collected
all temporary lists into a single scratch file by the above method,
then this scratch file would have size�(nb) blocks, which is defi-
nitely undesirable. To solve the problem, observe thatmulti([i; j])
consists of all intervals with left endpoints in the same slabEi�1.
Therefore, we construct allmulti lists multi([i; j]) for a fixed i
from the left list left(i � 1) (again by ascan and distributepro-
cess), and repeat the processb � 2 times for all possible values of
i. Then during each iteration, there are at mostb multi lists being
constructed, and thus our scratch file only needsn blocks of space.
The number of buffers in main memory needed for constructing the
multi lists is also reduced from(b� 1)(b� 2)=2 to b. In summary,
to construct theleft, right, andmulti lists and the interval setsSi for
children, we use four scratch files, each with sizen blocks, and also
4b blocks of main memory as buffers.

Handling Degeneracies

The issue of degenerate cases arises when the endpoint values of
the intervals are not distinct. We use cell ID’s to break ties. We also
adopt the convention that if an endpoint is exactly the slab bound-
ary separating slabsEi�1 andEi, then this endpoint is considered
as lying in slabEi; this is consistent with our choice of slab bound-
aries (see Section 2.1). In the internal node of the interval tree, we
only store the endpoint values as slab boundaries (keys), without
storing the corresponding cell ID’s. During query operations, if the
query valueq has the same value as some slab boundary, we con-
sider all slabs that can possibly contain the value ofq, and perform
the query operation on all such slabs accordingly. This ensures that
all answers are correctly reported. Notice that if several slab bound-
aries have the same value as that ofq, we only need to go to the two
children respectively to the left of the leftmost such slab boundary
and to the right of the rightmost such boundary. This is because

vtkUnstructuredGrid

vtkPolyMapper

isoSurface
isoValue

dataset.*
ioQuery

vtkContourFilter

Figure 2: Isosurface extraction phase. Given the four files of the in-
terval tree and an isovalue,ioQuery filters the dataset and passes
to Vtk only those active cells of the isosurface. Several Vtk methods
are used to generate the isosurface, in particular, vtkUnstructured-
Grid, vtkContourFilter, and vtkPolyMapper.

all other children in between can only contain intervals whose two
endpoint values are the same (same asq); the corresponding cells
of such intervals are thus lying in theinterior of the isosurface and
therefore are not interesting cells to be reported.

3.2 Interfacing with Vtk

Extracting isosurfaces withioBuild and ioQuery is relatively
simple. The input toioBuild is a Toff file�, which unfortunately
contains indices to vertices. Therefore, the first part ofioBuild is
to normalize the Toff file, de-referencing these indices as described
in the beginning of Section 2, before the actual construction of the
interval tree can begin. Since there are four vertices in each cell
(tetrahedron), four passes over the input are necessary. If the files
are already given in de-referenced form, the first part ofioBuild
would not be necessary.

A full isosurface extraction pipeline should include several steps
in addition to finding active cells. In particular, (1) intersection
points and triangles have to be computed; (2) triangles need to
be decimated [15]; and (3) triangle strips have to be generated.
Steps (1)–(3) can be carried out by the existing code in Vtk [14],
which makes it a perfect match for a proof-of-concept implementa-
tion of our I/O techniques. Our current code only implements the
actual triangle generation. Using Vtk’s simple pipeline scheme, it is
a simple programming exercise to further process the triangulation,
decimate it and create the strips.

TheioQuery code is implemented by linking our I/O querying
code with Vtk’s isosurface generation, as shown in Fig. 2. Given
an isovalue, (1) all the active cells are collected from disk; (2) a
vtkUnstructuredGrid is generated; (3) the isosurface is extracted
with vtkContourFilter; and (4) the isosurface is saved in a file with
vtkPolyMapper. At this point, memory is deallocated. If multi-
ple isosurfaces are needed, this process is repeated. Note that this
approach requires double buffering of the active cells during the
creation of the vtkUnstructuredGrid data structure. A more sophis-
ticated implementation would be to incorporate the functionality of
ioQuery inside the Vtk data structures and make the methods I/O
aware. This should be possible due to Vtk’s pipeline evaluation
scheme (see Chapter 4 of [14]).

4 Experimental Results

In this section we present experimental results of actively using our
I/O filtering techniques on real datasets. We have run our exper-
iments on four different datasets shown in Table 2. All of these
datasets are tetrahedralized versions of well-known datasets. Our
primary interest in this initial implementation was to quantify the

�A Toff file is analogous to the Geomview “off” file. It has the number
of vertices and tetrahedra, followed by a list of the vertices and a list of the
tetrahedra, each of which is specified using the vertex locations in the file as
an index.



I/O overhead, if any, both in terms of memory and time, and to
compare with Vtk’s native isosurface implementation.

Our benchmark machine was an off-the-shelf PC: a Pentium Pro,
200MHz with 128M of RAM, and two EIDE Western Digital 2.5Gb
hard disk (5400 RPM, 128Kb cache, 12ms seek time). Each disk
block size is 4,096 bytes. We ran Linux (kernel 2.0.27) on this
machine. One interesting property of Linux is that it allows during
booting the specification of the exact amount of main memory to
use. This allows us tofakefor the isosurface code a given amount
of main memory to use (after this memory is completely used, the
system will start to use disk swap space and have page faults).

Preprocessing with ioBuild

Using ioBuild is a fully automatic process. The only argument
is the name of the input file containing tetrahedral cells. During its
execution,ioBuild creates and writes multiple files, but in the
end only the four files are kept. In analyzing the behavior of ex-
ternal memory algorithms, it is very important to take into account
the amount of main memory used by the algorithm. In general, the
more memory it is given, the less I/O operations it needs. For in-
stance, when sorting a file that can be kept entirely in main memory,
we just need to touch the file twice, once for reading, and once for
writing. As the available main memory is smaller, we need to per-
form more I/O operations. The scalability of an external memory
algorithm is best seen when the main memory is smaller than the
dataset. In order to simulate this, we only allowioBuild to al-
locate a 1024K blocks (4 Mb) of RAM. This is a parameter in the
program.

The first time we ranioBuild , it just seemed to betoo fastfor
the number of I/O reads and writesioBuild was issuing. It turned
out that the operating system was able to optimize (by caching) a
lot of those I/O requests, and the CPU was running at nearly 95% of
usage. In order to avoid these side effects of the operating system,
we lowered the amount of main memory of our system by start-
ing Linux with a “linux mem=16M” command line at kernel boot
time. Basically, about 14M of main memory can actually be used
by applications, and during the time of our benchmarks, our sys-
tem was fully functional (i.e., it was not in single user mode; all
system-related daemons were active). That is, we ran our exper-
iments in a “normal” environment on the datasets with size equal
to or larger than the main memory. (Remember that only 4M of
RAM were actually used byioBuild .) The actual CPU usage
percentage during this preprocessing was in the range of low teens.

In Table 1 we show all relevant experimental data obtained from
runningioBuild with a 16M/4M configuration. Recall from Sec-
tion 3.2 that the first part ofioBuild is to normalize (i.e., de-
reference) the input Toff file (which in turn amounts to several ex-
ternal sorting operations), and the second part is to actually con-
struct the interval tree. The basic operations ofioBuild are hence
external sorting and scanning (thescan and distributeprocess de-
scribed in Section 2.1). It should be clear from Table 1 that the
overall running time ofioBuild is the same as performing exter-
nal sorting several times, and islinear in the size of the datasets.
ThereforeioBuild is both efficient and predictable — for a given
system configuration, one can estimate (or extrapolate) the overall
running time based on a linear behavior. This preprocessing can be
made much faster by using faster disks, and optimized to use more
memory. For instance, in an SGI Power Challenge, it only takes 10
minutes to preprocess the Delta Wing dataset.

The interval tree data structure requires more disk space than the
normalized tetrahedron file, which is also larger than the original
Toff file. The average increase in disk space is about 7.6 times, and
the maximum increase is 8.4 times (see Table 1). During the pre-
processing time, scratch files used for computation are necessary.
In general, one needs about 16 times the amount of disk space of

Blunt Chamber Post Delta

intTree 303K 147K 237K 750K
left 15M 17M 41M 80M
right 15M 17M 41M 80M
multi 18M 20M 35M 80M
Total Size 49M 54M 117M 240M
Original Size 5.8M 6.8M 16.4M 33.8M
Ratio of Increase 8.4 7.9 7.1 7.1
Normalization 348s 465s 920s 1798s
Tree Construction 361s 391s 928s 1982s
Total Time 709s 856s 1848s 3780s
Page Ins 103K 115K 270K 570K
Page Outs 109K 123K 286K 605K

Table 1: Statistics for the running ofioBuild in a machine with
16M of main memory and 4M of buffer memory, for the datasets
in Table 2. The first four values are the sizes of the four files kept
after the preprocessing. “Total size” is the total amount of disk
space used after preprocessing. “Normalization” is the time used to
convert the input Toff file to a normalized (i.e., de-referenced) file.
“Tree Construction” is the actual time used to create the interval
tree data files from the normalized file. “Total Time” is the overall
running time of the whole preprocessing. “Page Ins” and “Outs”
are the numbers of disk block reads and writes requested to the
operating system.

the original Toff file to generate the interval tree. Notice, however,
that this extra disk space for scratch files is neededonce and for
all, since after runningioBuild once to build the interval tree
files, these tree files can be duplicated by just copying, without ever
runningioBuild again.

Because it might be necessary to use as much as 16 times the
original disk space for preprocessing a given dataset, we believe
that in large production environments, large scratch areas should
be available for preprocessing. We see this as a minor cost for the
overall savings in both time and space later on. One should also
note, that disk prices are on the order of 35-40 times lower than
main memory prices. So the overall cost of a four to eight factor
increase in disk space overhead is negligible when compared to a
twofold increase in main memory costs. (In [17], a twofold main
memory overhead is reported for improved, although not optimal,
isosurface generation times.) Again, we would like to stress the
overall speed advantage in isosurface extraction time our technique
provides, since it only performs the preprocessing once.

Isosurface Extraction with ioQuery

The true performance of an isosurface extraction technique is the
actual time it takes to generate a given isosurface. As explained be-
fore, our code is coupled with Vtk (see Fig. 2). Basically, during
isosurface extraction, we find the active cells, and use Vtk’s iso-
surface capabilities to actually generate the isosurface. In the fol-
lowing, we useioQuery to denote the entire isosurface extraction
code.

We ran three batteries of tests, each with different amount of core
memory (128M, 64M, and 32M). Each test consists of calculating
10 isosurfaces with isovalues in the range of the scalar values of
each dataset, by using our code and also the Vtk-only isosurface
code (denoted byvtkiso ). We did not run X-windows during the
isosurface extraction time, and the output of vtkPolyMapper was
saved in a file instead.

We found that our approach has several advantages. Initially
we thought that our method would only be useful for really large



Name # of Cells Original Size Size after Normalization
Blunt Fin 187K 5.8M 12M

Combustion Chamber 215K 6.8M 13M
Liquid Oxygen Post 513K 16.4M 33M

Delta Wing 1,005K 33.8M 64M

Table 2: A list of the datasets used for testing. After normalization, each cell is 64 bytes long (data is represented as floats).

datasets, but our experiments show that even for smaller datasets
the I/O querying time is negligible when compared to the overall
isosurface extraction time.

Another advantage is that, for large isosurfaces, the memory re-
quirements of the triangle mesh is very large. If the entire volume
dataset is kept in the main memory, then even if the dataset itself can
fit, adding the triangle mesh might make the main memory not large
enough and cause system swap. The fact thatioQuery only uses
two blocks of main memory during active-cell searching makes our
approach very favorable: the main memory space can be saved for
the triangle mesh of the isosurface, so that system swap is much
less likely to occur.

We summarize in Table 3 thetotal running times for the extrac-
tion of the 10 isosurfaces usingioQuery andvtkiso with dif-
ferent amount of main memory. It should be clear that for larger
datasets (e.g., Post and Delta)ioQuery is much faster, and the
margins increase significantly as the main memory size goes down.

Figures 3 to 5 summarize detailed benchmarks, with top rows
presenting the performance of runningioQuery , and the bottom
rows for the performance ofvtkiso . For each isosurface calcu-
lated usingioQuery , we break the time into four categories:

(1) I/O time (shown in red) – This is the time to identify and bring
in from disk the active cells of the isosurface in question.

(2) Copy Time (shown in yellow) – In order to use Vtk’s isosur-
face capabilities, we need to generate a vtkUnstructuredGrid
object that contains the active cells we just obtained. We refer
to the time for this process as “Copy Time”.

(3) Isosurface (shown in blue) – This is the time for Vtk’s isosur-
face code to actually generate the isosurface from the active
cells.

(4) File Output (shown in green) – In the end we write to disk a
file containing the actual isosurface in Vtk format.

As for the performance ofvtkiso , only items (3) and (4) are
shown in Figs. 3–5, and there are two additional costsnot shown:
the reading of the dataset, and the generation of the vtkUnstruc-
turedGrid. These two operations are performed only once when
vtkiso starts to run (i.e., at the beginning of each batch of the
10 isosurface extractions), and thus it is not possible to spread the
costs over each individual isosurface extraction. Therefore we do
not show them in Figs. 3–5, but only show the sum of the two costs
asvtkiso I/O in Table 3.

Regarding Figs. 3–5, we make the following observations:

� For ioQuery , in general the I/O time is only a small fraction
of the overall isosurface extraction time (see the top rows of
Figs. 3–5). In particular, for most of the time (1) is smaller
than (3), especially as the datasets get larger. This means that
the active-cell searching process is not a bottleneck any more;
the effect is even more significant for larger datasets. One can
see the output-sensitive behavior by noting that when small
isosurfaces (or no isosurfaces) are generated,ioQuery takes
negligible time.

Blunt Chamber Post Delta
ioQuery – 128M 16s 37s 35s 43s
vtkiso – 128M 15s 22s 44s 182s
vtkiso I/O – 128M 3s 2s 12s 40s
ioQuery – 64M 17s 32s 35s 43s
vtkiso – 64M 18s 27s 112s 3122s
vtkiso I/O – 64M 5s 6s 67s 224s
ioQuery – 32M 16s 53s 62s 59s
vtkiso – 32M 21s 54s 1563s 3188s
vtkiso I/O – 32M 8s 28s 123s 249s

Table 3: Overall running times for the extraction of the 10 isosur-
faces usingioQuery andvtkiso with different amount of main
memory. These include all the time to read the datasets and write
the isosurfaces to files.vtkiso I/O is the fractional amount of
time of vtkiso for reading the dataset and generating a vtkUn-
structuredGrid.

� For ioQuery , the I/O times almost do not change with the
amount of main memory (see the top rows of Figs. 3–5). This
shows that our technique for finding active cells only needs a
very small amount of main memory, and the performance is
independent of the size of the main memory available.

� For ioQuery , the overall running times almost do not
change with the amount of main memory. Only in the case
of using 32M of RAM with really large isosurfaces does our
running time increase (see the top rows of Figs. 3–5). But
this time increase is due to the fact that Vtk needs more main
memory than available to store the actual polygons generated
(which causes page faults).

� Even without taking into account the two costs ofvtkiso
(reading the dataset and generating a vtkUnstructuredGrid),
comparing the times ofvtkiso and ofioQuery as shown
in Figs. 3–5 (which is thus not fair forioQuery ), ioQuery
is already much faster for large datasets. For example, for the
8th isosurface of Delta Wing using 128M of RAM, it takes
ioQuery 12 seconds, whilevtkiso takes almost 35 sec-
onds. As for small datasets, the overhead ofioQuery is
negligible. But the advantages really start to show as the main
memory size goes down. For instance, with 64M, for the 8th
isosurface of Delta Wing, it takesioQuery the same 12 sec-
onds, whilevtkiso takes 300 seconds!

In some charts, there seem to be some anomalies we currently do
not understand. For instance, it is not clear why for Chamber, cost
(2) is not directly correlated to (1). Chamber is the only dataset that
ioQuery takes more time thanvtkiso to extract the 10 isosur-
faces; even for this dataset, when main memory is low,ioQuery
is still faster.



5 Conclusions

We have presented an I/O-optimal technique for isosurface extrac-
tion from volumetric data. Our method is to preprocess the dataset
to build an I/O-optimal interval tree in disk, and then to extract iso-
surfaces by querying the interval tree for active cells and generating
the isosurfaces from those cells. We discussed the theoretical as-
pects of the method. It is I/O-optimal in space and query, and nearly
I/O-optimal in preprocessing. We also established its practical effi-
ciency through experimental results, based on our implementation
of an I/O filter for Vtk’s isosurface extraction for the case of un-
structured grids. We show that the time for searching active cells is
less than the time for generating the isosurfaces from active cells,
and this search time is independent of the main memory available.
Also, with the interval tree built in disk, there is no need to load
the entire dataset into main memory. In addition, the preprocess-
ing is performed once and for all; its running time is the same as
running external sorting a few times, and is linear in the size of the
datasets. All these features make our technique especially suitable
for use with very large datasets, or for the case where there is only
a small amount of main memory. In fact, even for smaller datasets
with enough main memory, our method introduces only a negligible
overhead.
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Figure 3: Running times for extracting isosurfaces usingioQuery (top row) andvtkiso (bottom row) with 128M of main memory.

Figure 4: Running times for extracting isosurfaces usingioQuery (top row) andvtkiso (bottom row) with 64M of main memory.

Figure 5: Running times for extracting isosurfaces usingioQuery (top row) andvtkiso (bottom row) with 32M of main memory.


