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Progressive Volume Rendering of Large Unstructured Grids
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Abstract—
We describe a new progressive technique that allows real-time rendering of extremely large tetrahedral meshes. Our approach uses
a client-server architecture to incrementally stream portions of the mesh from a server to a client which refines the quality of the
approximate rendering until it converges to a full quality rendering. The results of previous steps are re-used in each subsequent
refinement, thus leading to an efficient rendering. Our novel approach keeps very little geometry on the client and works by refining
a set of rendered images at each step. Our interactive representation of the dataset is efficient, light-weight, and high quality. We
present a framework for the exploration of large datasets stored on a remote server with a thin client that is capable of rendering and
managing full quality volume visualizations.

Index Terms—Volume Rendering, Large Unstructured Grids, Client-Server, Progressive Rendering, Level-of-Detail
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1 INTRODUCTION

Unstructured grids (e.g., tetrahedral meshes) are common in simula-
tion domains such as computational fluid dynamics and structural me-
chanics. Because of the constantly improving algorithms and com-
putational power, the scale of these simulations has continued to
grow at a rate faster than visualization techniques can explore them.
Specialized graphics clusters have been developed to visualize large
datasets in parallel and on large displays. However, the availability of
these clusters is often limited. More recently, many techniques have
been developed to visualize volumetric data on commodity PCs using
graphics hardware [6, 23]. This provides a solution that allows re-
searchers to perform their visualizations locally when other resources
are unavailable. However, due to the limitations of storage and mem-
ory with most desktop machines or laptops, this solution does not scale
well for extremely large datasets.

As an example, consider a scientist working remotely who would
like to visualize a large dataset on his laptop computer. A reduced rep-
resentation of the data (e.g., simplification [12]) may not be appropri-
ate if a high quality visualization is required for analysis. Complicat-
ing matters even further, the laptop may not have capacity on the hard
disk or in memory to keep the dataset. The problem is compounded if
you consider that the scientist may only want to browse through a se-
ries of datasets quickly, requiring the download of each dataset before
visualization.

In this paper, we present a client-server architecture for hardware-
assisted, progressive volume rendering. The main idea is to create an
effect similar to progressive image transmission over the internet. A
server acts as a data repository and a client (i.e., a laptop with pro-
grammable graphics hardware) acts as a renderer that accumulates the
incoming geometry and displays it in a progressively improving man-
ner (see Figure 1). Our progressive strategy is unique because it only
requires the storage of a few images on the client for the incremental
refinement. For interactivity, a small portion of the mesh is stored on
the client using a bounded amount of memory. Furthermore, the pro-
gressive representation provides a natural means for level-of-detail ex-
ploration of very large datasets without an explicit simplification step
that may be difficult and costly. Because the geometry is rendered
in steps, the user can stop a progression and change the view without
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penalty, thus facilitating exploration. Our algorithm is robust, memory
efficient, and provides the ability to create and manage approximate
and full quality volume renderings of unstructured grids too large to
render interactively at full resolution.

Our contributions include:

• We introduce a client-server architecture and interface for ren-
dering large datasets and managing the resulting visualizations;

• We detail a server that acts as a data repository by streaming a
tetrahedral mesh in partial visibility order to one or more clients;

• We describe a client that uses hardware-assisted, progressive vol-
ume rendering to provide an interactive approximation, progres-
sive refinement, and full-quality rendering of large datasets;

• We provide experimental results of our algorithm and include a
discussion on the benefits and limitations of our approach.

The rest of the paper is outlined as follows. Section 2 provides an
overview of related research. Section 3 describes an overview of our
client-server architecture. More detail is provided about the server in
Section 4 and about the client in Section 5. In Section 6, we outline our
experimental results, in Section 7 we include a discussion of the trade-
offs of our algorithm, and in Section 8, we provide brief discussion of
our algorithm and our conclusions.

2 PREVIOUS WORK

Hardware-Assisted Volume Rendering. Volume rendering on
a commodity PC has been the subject of much research recently, due to
the steady increase in processing power on graphics processing units
(GPUs) and the advent of programmable shaders. Here we summa-
rize the state-of-the-art for hardware-assisted volume rendering of un-
structured grids; for more detail we refer the reader to a recent sur-
vey [22]. For unstructured grids, volume rendering algorithms gen-
erally fall into two categories: ray-casting and splatting. Recently,
Weiler et al. [23] proposed an algorithm to perform ray-casting com-
pletely on the GPU by storing the mesh and traversal structure in GPU
memory. This algorithm was made more efficient and extended to
handle non-convex meshes in subsequent work by Weiler et al. [24]
and Bernardon et al. [2]. These algorithms benefit from low latency
because they avoid CPU to GPU data transfers. However, the lim-
ited memory of GPUs prevents these algorithms from rendering even
moderately sized datasets. Pioneering work on tetrahedral splatting by
Shirley and Tuchman [21] introduced the Projected Tetrahedra (PT)
algorithm. For each viewpoint, PT decomposes a tetrahedron into one
to four triangles that can be rendered efficiently in hardware. Unfor-
tunately, compositing of the triangles requires an explicit visibility or-
dering that is implicit to ray-casting. Many algorithms have been pro-
posed to perform the visibility ordering in object-space (e.g., [26]).
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Fig. 1. A sequence of progressive volume rendering steps for the SF1 dataset with about 14 million tetrahedra. Starting from an interactive mode
that uses only the boundary (left), the algorithm progressively refines the image using incoming geometry as well as the results of the previous
refinement until the full-quality rendering is achieved (right).

More recent work by Callahan et al. [6] introduced the Hardware-
Assisted Visibility Sorting (HAVS) algorithm which sorts in object-
space and image-space. The HAVS algorithm is fast, efficient, and
flexible enough to handle dynamically changing geometry [1]. In
this paper, we exploit these benefits to provide a client renderer that
handles streaming geometry in a progressive form. A more detailed
overview of the algorithm is provided in Section 5.

Level-of-Detail. Hardware-accelerated volume rendering algo-
rithms allow the interactive rendering of moderately sized datasets.
However, multiresolution or level-of-detail (LOD) techniques [17] are
still essential to render large datasets interactively. Unlike structured
grids, the area is relatively new and not well studied for unstructured
grids. For this reason, initial algorithms applied techniques for struc-
tured grids on unstructured grids by sampling them uniformly [15].
A drawback with this type of approach is that the resulting resam-
pled meshes are larger than the original by at least an order of mag-
nitude. A more efficient algorithm proposed by Museth et al. [19]
uses a hierarchy of splats to render culled, opaque geometry that can
be explored with the use of CSG cuts. For direct volume rendering,
Cignoni et al. [8] present a hierarchy of simplification steps that can
be traversed to a desired LOD for interactive visualization. In gen-
eral, these algorithms are not suitable for streaming in a client-server
architecture due to a combination of increased data size, inability to
display a full-quality volume rendering, or the difficulty of travers-
ing the levels-of-detail dynamically. More recently, Callahan et al. [5]
introduced sample-based simplification for dynamic LOD on unstruc-
tured grids. The algorithm samples the geometry by importance and
determines the number of elements to render at each pass based on the
frame-rate of the previous pass. Our algorithm uses a similar idea to
create an approximate volume rendering from the portion of the ge-
ometry that has arrived from the server.

Client-Server Visualization. The problem of remotely visualiz-
ing large datasets has been the subject of research for many years. The
most widely recognized solutions perform the visualization task on
large clusters using software algorithms [20] or with hardware-assisted
algorithms [18] through the use of specialized graphics hardware [13].
Typically, an image is created using the cluster, then compressed for
transmission to the client, where it is decompressed and displayed to
the user [10]. Systems such as Vizserver1 are available from vendors
for performing client-server visualization in this manner. The Visa-
pult system [3] was developed to push more of the burden onto the
client. This is done by rendering blocks of the data from the server
in a distributed system and compositing the results on the client. A
less restrictive class of algorithms performs the visualization on more
limited resources by assuming a simple server (e.g., a web server). To
this end, Lippert et al. [16] introduced a system in which the server
stores compressed wavelet splats that are transmitted to the client for

1http://www.sgi.com/products/software/vizserver

rendering. As the splats are received by the client, the image is pro-
gressively refined. Another approach by Engel et al. [9] describes a
progressive isosurface visualization algorithm for use on the web. This
is done by allowing the server to compute a hierarchy of isosurfaces
that are transmitted to the client progressively. For efficiency, only
the difference between two successive levels of the hierarchy is sent
across the network. More recently, the client-server architecture pro-
vided by Kaehler et al. [14] performs visualization of Adaptive Mesh
Refinement (AMR) data that is stored remotely on a server and adap-
tively rendered locally on a client by interpolating the hierarchical
structure of the grids. Our algorithm is similar to this latter class of
algorithms, but for the more difficult case of unstructured grids. We
assume a limited server that prepares the geometry and streams it to
the client in a series of progressive steps that avoid redundant trans-
mission and unnecessary storage. This allows the client to receive the
non-overlapping geometry and refine the image with assistance of the
GPU.

3 SYSTEM OVERVIEW

Our client-server system architecture is depicted in Figure 2. The
server acts as a data repository and geometry processor. The data is
stored on the server hierarchically for efficient traversal and iterative
object-space sorting. The client keeps the boundary triangles for an
Interactive Mode and requests geometry from the server in a Progres-
sive Mode. In the Progressive Mode, the client uses hardware-assisted
LOD volume rendering to refine the image using the results of the pre-
vious progressive step. Upon completion of the progressive volume
rendering, the client saves a copy of the image for later browsing in a
Completed Mode. Viewing changes in any of the client steps causes
the progressive renderer to stop and return to the Interactive Mode.

4 THE SERVER

4.1 Geometry Processing
Overview. The server acts as a data repository that sorts and

streams triangles. However, sorting large datasets in one pass may
be cumbersome. For the client to remain interactive, it should begin
receiving nearly-sorted faces immediately from the server. Further-
more, the client should be able to interrupt the streaming of the faces
at any time to keep the exploration interactive.

To keep the processing of the datasets to a minimum, we perform
a one-time preprocessing of the datasets to extract the unique triangle
faces and vertices and store them in a binary format that we read when
starting the server. Then, we use the server to process the faces of the
mesh into an octree structure that can be traversed by depth ranges,
from front to back. For every packet of faces requested from the client,
the server first culls faces outside the current depth range, sorts the
remaining faces, and sends them to the client. Subsequent packets
use incremented depth ranges. This has the effect of distributing the
sorting burden between each step of the progression. It also prevents
unused geometry from being sorted.
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Fig. 2. The client-server architecture. Communication between the
client and the server is shown with annotated arrows.

Depth-range culling. For a given depth range, we cull the asso-
ciated geometry using a depth-range octree. Our octree is a geometric
partition of the faces, according to their centroids. Our depth-range
octree is similar to the octree from [25] for isosurface extraction. How-
ever, instead of using scalar values, our octree uses dynamically chang-
ing depth ranges to cull the geometry outside the current depth range.
Each octree node contains an array of face indices. The depth range
of a node is the minimum and maximum distance from the eye to the
bounding box corners of the node. To find the faces matching a given
depth range, the octree nodes are culled hierarchically by traversing
nodes that may contain triangles in the given depth range. Next, the
collection of triangles in the matching octree nodes are culled accord-
ing to their distance from the viewpoint. The remaining triangles are
then inserted into an array for sorting. We use a radix sort on the face
centroids, as in [6]. The triangles are then sent as a vertex array for
direct rendering on the client.

To increment the depth range on each pass, we uniformly divide
the range of the minimum and maximum distance from the eye to the
bounding box of the mesh. This has the unfortunate side effect that
the number of triangles per slice can vary in size. We address this
issue by collecting packets on the server and only transmitting them to
the client when a user-specified target triangle count is reached. This
results in good performance since the sorting and network transfers are
more efficient for larger packets.

View-frustum culling. When interactively exploring regions of
the mesh in detail, often many of the faces are outside of the view-
frustum. These faces should not be transmitted to the client. There-
fore, in addition to the depth range test, we also perform view-frustum
culling for each node of the octree. The left, right, bottom and top
planes of the frustum are computed from the modelview-projection
matrix sent by the client. This results in significant performance im-
provements for zoomed-in views of the dataset (see Figure 5).

Compression. Network transfers become a bottleneck for client-
server systems with high bandwidth. To reduce the bandwidth, we
compress the transmitted vertex arrays using the open-source zlib
library2 based on Huffman codes, which is fast and robust. We use the
maximum level of compression for our client-server data transfers.

4.2 Network Protocol
The following description assumes a single client per server, and can
be extended for multiple clients by storing the context of the stream on
each client.

2http://www.zlib.net

The server understands three types of commands:
NEW CAMERA, NEXT BOUNDARY, and NEXT INTERNAL.

New Camera. Each new client initializes the stream by sending a
NEW CAMERA command, containing a frame ID and the camera in-
formation. The frame ID is an integer initialized to 0 and incremented
by the client for every NEW CAMERA command.

Next Boundary. Upon connection, the client requests bound-
ary faces from the server using the NEXT BOUNDARY command.
The server incrementally sends the boundary faces in a BOUND-
ARY DATA packet consisting of an unsorted triangle soup (i.e., a se-
quence of vertex coordinates) for the client to use during interactive
rendering. By sending the boundary in chunks, the client can request
only the portion that it can retain in memory. If the client is lim-
ited and can only use a portion of the boundary during interaction,
the NEXT BOUNDARY command can be used at the beginning of
the progressive rendering to fill in the missing boundaries before the
internal faces are transmitted.

Next Interior. To avoid unnecessary sorting when the camera
is moving, the server does not sort the faces until it receives a
NEXT INTERNAL command from the client. The server culls the
geometry by depth and frustum, sorts by centroid, and sends back a
chunk of the interior faces in an INTERNAL DATA packet.

Synchronization issues. We use a TCP/IP socket to transmit our
data. Unlike UDP, TCP guarantees that the data packets sent from
the server arrive in the same order they were sent and without error.
Since the client can change the camera at any time, the state of the
client and the server need to be synchronized. This is necessary to
avoid issues when the camera moves and the client is receiving data
asynchronously, or the server is processing data. All the packets from
the client or from the server contain a frame ID. Before processing
a packet, the client and the server check that the frame ID from the
packet is the same as the current frame ID. Packets with obsolete frame
IDs are ignored by the server and the client. In addition, when the
client receives an obsolete packet, it resets the stream.

5 THE CLIENT

The main function of the client is as a progressive volume renderer.
Because the client may be limited in disk space as well as memory
(e.g., a laptop), the goal is to minimize the data stored on the machine
at each progressive step. Therefore, the client acts as a stream ren-
derer— it receives geometry transmitted from the server and renders it
directly with the GPU. This requires a volume renderer capable of han-
dling dynamic data in an efficient manner. In addition, our algorithm
requires an approximation technique for partial geometry as well as
a means of keeping previously computed information for subsequent
refinement steps.

To leverage GPU efficiency, we extend the Hardware-Assisted Vis-
ibility Sorting (HAVS)3 algorithm of Callahan et al. [6] to perform
progressive volume rendering. The HAVS algorithm operates in both
object-space and image-space to sort and composite the triangles that
compose a tetrahedral mesh. In object-space, the triangles are sorted
by their centroids using a linear-time radix sort for floating-point num-
bers. This provides a partial order for the triangles. Upon rasteriza-
tion, the fragments are sorted again in image space using a fixed size
A-buffer [7] implemented with programmable shaders called the k-
buffer. For each pixel of the resulting image, k entries (scalar value
v and depth d) are stored in textures on the GPU. An incoming frag-
ment is compared to entries in the k-buffer to find the two closest to
the current viewpoint (for front-to-back compositing). These entries
are then used to look up the color and opacity for the volume gap in a
pre-integrated table by using the front scalar, back scalar, and distance
between the entries. This color and opacity are then composited to the
framebuffer, the front entry is discarded, and the remaining entries are
written back into the k-buffer. For more detail on the HAVS algorithm,
see [6]. Our progressive renderer uses the HAVS algorithm as a basis

3http://havs.sourceforge.net
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Fig. 3. The progressive volume renderer on the client. A progressive
buffer is maintained between steps and an approximate buffer is created
to fill the unknown region of the mesh.

for sorting and compositing. The server handles the object-space sort-
ing, while the client handles the fixed-size image-space sorting and
compositing.

The k-buffer is implemented in hardware using multiple render tar-
gets (MRTs), which allows the reading and writing of multiple off-
screen textures in each pass. Currently, hardware limits the number
of MRTs to four, which limits the size of k to six (one texture for
an off-screen framebuffer and three textures for k-buffer entries). In
OpenGL, the simplest access to multiple render targets is in the form
of Framebuffer Objects (FBOs). An FBO is a collection of logical
buffers such as color, depth, or stencil. Multiple color buffers (up to
four) can be attached to an FBO for off-screen rendering. FBOs make
it possible (and efficient) to swap attached buffers between rendering
passes. Currently, this is faster than switching between multiple FBOs.
The ability to render into a subset of buffers in multiple passes is at the
heart of our progressive algorithm.

The progressive volume rendering works by using five different ren-
der targets for each pass, represented as four channel, 32-bit floating-
point textures. The textures are used as follows:

Tpro: An off-screen framebuffer for the progressive image
(Rp,Gp,Bp,Ap).

Tk12: k-buffer entries 1 and 2 (v1,d1,v2,d2).

Tk34: k-buffer entries 3 and 4 (v3,d3,v4,d4).

Tk56: k-buffer entries 5 and 6 (v5,d5,v6,d6).

Tapprox: A temporary framebuffer for the approximation of the por-
tion of the mesh not yet received (Ra,Ga,Ba,Aa).

A combination of these textures is used for each step of the progres-
sive volume rendering. The contents of all the textures except Tapprox
are reused in subsequent progressive passes.

Our progressive volume rendering is separated into three modes of
operation. Interactive Mode is used during camera events such as rota-
tion, pan, or zoom. Progressive Mode is used when interaction stops to
stream triangles from the server to the client in chunks. The Progres-
sive Mode can be interrupted at any time if the user begins interaction
again or the stream finishes. When a complete image is generated
with the Progressive Mode, Completed Mode automatically stores the
image for future browsing.

Fig. 4. A snapshot of the interaction with the Completed Mode for the
SF1 dataset. Upon completion of a full quality rendering, the image is
automatically stored for future browsing by selecting the icons at the
bottom of the window. The user may also save intermediate steps with
a keystroke.

5.1 Interactive Mode
A reduced representation of the original mesh is often necessary when
considering large datasets. Our interactive mode has two require-
ments. First, it is fast enough to render at interactive rates (e.g., 10 fps).
Second, the results of the interactive mode can be used as a first step in
the progressive volume rendering. Because of the second requirement,
level-of-detail techniques that require simplification hierarchies [8] are
not feasible. Instead, we use a similar approach to Callahan et al. [5],
where a subset of the original geometry is used to create a reduced
representation. In particular, Callahan et al. noticed that an efficient
approximation of the dataset can be created by computing the volume
rendering integral between only the boundary fragments of the mesh.
We use a more robust version of this approximation that can be used
in future progressive steps.

Upon connection with the server, the client receives some initial
data to begin the progressive rendering process. First, mesh parame-
ters such as maximum edge length and scalar range are transferred for
creating a pre-integrated lookup table. Immediately following these
parameters, the boundary triangles of the mesh are transferred to the
client. These boundary triangles are placed in arrays on GPU memory
and remain there for the duration of the client-server connection. If
the entire boundary cannot be maintained in memory, a subset of the
boundary can be used instead.

During user interaction (i.e., rotation, panning, or zooming), the
following steps take place to create an approximate image.

1. Buffer Tk12 is attached to the FBO as well as a depth buffer. The
depth buffer is cleared and set to GL LESS for a first pass on the
boundary geometry. The depth buffer is then cleared again and
set to GL GREATER for a second pass at the boundary geometry.
This has the same effect as depth-peeling [11] the front and back
fragments and placing them in the k-buffer.

2. Buffers Tapprox and Tk12 are attached to the FBO and a screen-
aligned plane is rendered. Color and opacity for the ray-gaps be-
tween the front and back fragments from the boundary are looked
up from Tk12 and composited into Tapprox.

3. Buffer Tapprox is displayed to the screen.
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These steps are repeated for every view change. When the user
stops interacting, the entries in Tk12 are used for the progressive steps.
The importance of using this depth-peeling approach instead of the
k-buffer directly is discussed in more detail in Section 5.4.

5.2 Progressive Mode
After the boundary has been drawn in Interactive Mode, the internal
triangles of the mesh are streamed in an approximate front-to-back or-
der based on their centroids. For each portion of the geometry that
arrives from the server, the progressive volume renderer takes the fol-
lowing steps:

1. Buffer Tapprox is cleared.

2. Buffers Tpro, Tk12, Tk34, and Tk56 are attached to the FBO and the
incoming internal geometry is rendered. The k-buffer is used to
sort the fragments and composite the results into Tpro. This step
is similar to HAVS, but with only a portion of the geometry.

3. Buffer Tapprox is attached to the FBO, Tk12, Tk34 and Tk56 are
bound as a read-only textures, and a screen-aligned plane is
drawn. The fragment shader finds the k-buffer entry f closest
to the current view and the entry b farthest from the current view,
looks up the color and opacity for the ray gap between f and b,
and composites the result into Tapprox.

4. Buffers Tpro and Tapprox are attached to the FBO and a screen-
aligned plane is drawn. The fragment shader composites Tpro
into Tapprox.

5. Buffer Tapprox is displayed to the screen.

The k-buffer entries and progressive buffer Tpro are then ready to be
used in the next rendering pass. Figure 3 illustrates the textures used
during a progressive step. This process is repeated until all the geome-
try has been streamed from the server. When rendering the last portion
of geometry from the server, an additional step is taken to flush the k-
buffer entries into the Tpro by rendering k− 1 screen-aligned planes
after the second step. After which, the Tpro buffer contains the full
quality volume rendering.

5.3 Completed Mode
Once the stream of geometry has terminated and the progressive vol-
ume rendering is completed, we capture the Tpro buffer and save it for
subsequent browsing as shown if Figure 4. Our progressive volume
renderer allows the user to browse any previously completed visual-
izations by selecting the corresponding thumbnail. Capturing this data
for the user has important benefits. First, it prevents the user from los-
ing important visualizations through interactions that could reset the
results of the previous stream. Second, it allows a user to specify a
set of camera positions to the progressive volume renderer so the user
can easily capture an animation of the exploration process. This tool
is useful for exploring previously generated results while the current
view is being progressively rendered off-screen.

5.4 Considerations
The k-buffer algorithm efficiently handles streaming geometry be-
cause it simultaneously reads and writes from textures at each pass.
Due to the highly parallel nature of GPU architectures, this may re-
sult in a race condition for overlapping triangles. Because the HAVS
algorithm sends geometry sorted by centroid, it effectively layers the
geometry in the depth direction and thus avoids these errors. How-
ever, since the depth compexity of the boundary is generally small and
we want to keep the interaction as fast as possible, we do not sort the
boundary faces in object-space before rendering. This may result in
some noticeable artifacts in the first pass that would remain in subse-
quent progressive steps. Therefore, we perform the depth-peeling of
the front and back fragments before inserting them into the k-buffer.
This resolves the race condition, improves the quality of the rendering,
and maintains interactive rates (see Section 6).

Fig. 5. A zoomed-in view of the STP dataset (about 25M tetrahedra)
during interaction. Significant performance improvements are made by
frustum-culling the geometry on the server. Here, 50% of the geometry
is culled during the progression.

The depth-peeling as described has the unfortunate side-effect that
it removes any non-convexities in the boundary. This can propagate
through the progressive steps and cause the empty space to be com-
posited into the final image. Since storing the back fragments in the k-
buffer effectively reduces k by one during the progressive steps, storing
all boundary information for non-convex objects can severely impact
sorting capabilities. A solution to this problem is to transmit bound-
ary and internal faces during progressive steps. This would introduce
redundant fragments only in the front and back and allow other bound-
ary fragments to be used in the progression steps to avoid compositing
empty space, as in [6]. To completely remove the storage overhead
of the back boundary in the k-buffer, an extra texture can be used to
store the back fragments during Interactive Mode and can be bound as
a read-only texture during Progressive Mode.

6 RESULTS

Our experimental results were measured on a thin client (IBM T41
laptop) running Windows with a 1.7 GHz Pentium M processor, 1.5
GB RAM, and an ATI Mobility Fire GL T2 graphics card with 128
MB RAM. The server machine was running Linux with two Dual core
Opteron 2.25 GHz processors, 8 GB RAM, and an NVidia GeForce
7800 GTX graphics card. Performance timings are measured with a
512×512 viewport on a 100 Megabit/sec ethernet network with regu-
lar network load. Our experiments include timing results for the pro-
gressive rendering with local and remote configurations, as well as

Dataset Tetrahedra Preprocess Size
Fighter 1.4 M 15 s 117 MB
F16 6.3 M 81 s 531 MB
SF1 13.9 M 110 s 1165 MB
STP 25.0 M 458 s 2087 MB

Table 1. Experimental datasets with initial tetrahedra count, time to pre-
process tetrahedral mesh to binary triangle format, and resulting size of
the dataset.
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Dataset Server Preprocess Server Data Transfer Client TotalLoad Octree Traverse Sort Interactive Progressive
Local
Fighter 0.25 s 0.92 s 0.79 s 0.78 s 1.32 s 0.01 s 0.21 s 1.53 s
F16 1.10 s 6.12 s 1.17 s 4.18 s 4.17 s 0.01 s 0.39 s 4.56 s
SF1 2.53 s 7.87 s 9.04 s 7.90 s 16.16 s 0.01 s 0.43 s 16.59 s
SF1 (25%) 2.53 s 7.87 s 2.32 s 1.49 s 3.10 s 0.01 s 0.71 s 3.81 s
STP 36.55 s 18.46 s 8.62 s 18.89 s 21.80 s 0.38 s 9.82 s 31.62 s
STP (25%) 36.55 s 18.46 s 2.13 s 2.96 s 3.65 s 0.38 s 0.36 s 4.01 s
Ethernet
Fighter 0.25 s 0.92 s 0.79 s 0.78 s 13.12 s 0.10 s 10.77 s 23.89 s
F16 1.10 s 6.12 s 3.95 s 4.68 s 102.51 0.10 s 128.06 s 230.57 s
SF1 2.53 s 7.87 s 10.05 s 9.17 s 237.62 s 0.24 s 501.15 s 738.77 s
SF1 (25%) 2.53 s 7.87 s 2.41 s 1.70 s 87.73 s 0.24 s 32.37 s 120.10 s
STP 36.55 s 18.46 s 51.74 s 17.26 s 727.86 s 0.45 s 551.98 s 1279.84 s
STP (25%) 36.55 s 18.46 s 11.19 s 2.73 s 208.05 s 0.45 s 121.65 s 329.70 s

Table 2. Performance analysis of the preprocessing and one step of the progressive volume rendering. Measurements were obtained for a client
running on the server (Local) and on a laptop over the network (Ethernet).

error measurements for the progressive images. Table 1 shows the
tetrahedra count of our test datasets, the one-time penalty to reformat
them into our binary format used by the server, and the resulting size
of the binary files.

Our timing measurements are shown in Table 2 for four large
meshes. The Fighter and F16 datasets are simulations of jets, the SF1
dataset is an earthquake simulation, and the STP dataset is a simu-
lation of a sphere going through a plate. The measurements can be
broken into four important sections: server preprocessing, server, data
transfer from the client to the server, and client. The preprocessing
step occurs on the server and includes loading the file from disk, and
building an octree, and transferring the mesh information to the client.
By extending our binary file format to include the octree structure, the
server preprocessing time could be decreased even further. The timing
results for the server, client, data transfer, and total time represent one
progressive rendering of the dataset from views that include the whole
mesh. In addition, for the larger datasets, we chose a view showing
only 25% of the mesh, which takes advantage of frustum culling (see
Figures 5, 7, and 8). Because our client uses a thread for rendering and
another for fetching data from the server, much of the data transfer and
rendering work is done in parallel. Therefore, we measure data trans-
fer as the total client time for a progressive step minus the rendering
time. In our experiments, the interactive manipulation of our progres-
sive renderer was able to achieve interactive rates for all but the largest
dataset on the thin client.

Stream Size Local Ethernet Wireless
1K Triangles 0.082 s 0.050 s 0.051 s
10K Triangles 0.085 s 0.090 s 0.130 s
100K Triangles 0.574 s 1.042 s 1.893 s

Table 3. Latency analysis of different server settings on the Fighter
dataset with an octree depth of seven, a 802.11 wireless network at
54 Mbps, and an ethernet network at 100 Mbps.

Since data transfer over the network is one of the main bottlenecks
of our progressive renderer, we generated experiments to tune the
stream parameters. One important consideration is the latency of the
network. Several settings on the server effect the round-trip latency of
the system — the time for the client to send a packet and receive a re-
sponse. An obvious consideration is the compression of the geometry
during transmission. For our network rendering, we used full compres-
sion of the stream and achieved about a 60% compression rate, which
dramatically improved performance. Other important considerations
include the octree resolution and stream size (number of triangles sent
on each progressive step). Finer octree resolution and higher stream
size improves performance, but decreases the number of progressive
steps and increases memory usage on the client. Table 3 shows the

effects of these parameters on the latency for the Fighter dataset. For
our experiments with the thin client (see Table 2), we were limited to a
stream size of 100K triangles and an octree resolution of 1K triangles
per octree node.

Our final experiment was to analyze the quality of the progressive
steps. To measure this metric, we used root mean squared (RMS) error
to compare incremental steps with the final rendering for all of our
experimental datasets. Figure 6 shows a plot of these errors as the
progression refines. Since the quality of the approximation is directly
related to the transfer function, we used the transfer functions shown
in our figures that highlight the more relevant portions of the data.
These results show that the image quality steadily converges to the
full quality image, which is important for allowing the user to explore
the dataset efficiently.

7 DISCUSSION

Our progressive volume rendering system is unique because it effi-
ciently handles data of arbitrary size on a thin client. This is done
using a novel technique which keeps only image data and boundary
geometry in GPU memory on the client for each step. The amount
of memory used on the client can be bounded by adjusting the stream
size and the size of the boundary. In our experiments, the boundary
was not large enough to adversely effect performance or expend mem-
ory constraints. In fact, even with a 25 million tetrahedron dataset, the
boundary can be volume rendered with our algorithm on a thin client
in Interactive Mode at about two frames-per-second. This interactiv-
ity depends heavily on the boundary complexity of the dataset. If a
dataset has a boundary too large to fit in GPU memory or render at
acceptable rates, our algorithm would work efficiently by using only
a random subset of the boundaries for an approximate rendering dur-
ing interaction. This would have the effect of lightening the general
appearance of the approximation. The remaining boundary triangles
could then be streamed before the rest of the internal faces.

An important consideration for a progressive renderer is the depth
complexity and structure of the dataset. The client rendering is fill-
bound and thus depends more on the view selected or screen size then
on the depth complexity. However, the depth complexity of the dataset
may adversely affect performance of our geometry processing on the
server because more culling and sorting passes are required. Our ap-
proach for culling by depth on the server assumes an even distribution
of triangles. For most of the experimental datasets, this results in few
triangles selected in some ranges and many in others. This is balanced
by accumulating triangles on the server until a target packet size is
reached. A better approach may be to avoid using fixed depth ranges
by traversing the octree incrementally from the front to the back, rather
than doing a hierarchical culling. In our experiments, the aspect ra-
tio or depth complexity of the dataset seems to impact overall per-
formance only slightly if the server parameters are properly selected
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Fig. 6. Root Mean Squared Error (RMS) of the progressive images
going from only the boundaries (0%) to the full quality (100%).

(number of depth ranges and minimum packet size).
A client-server progressive volume renderer is advantageous be-

cause it allows the data to be stored in a central repository, while
the rendering can be performed with the help of graphics hardware
on a client. This efficiently splits the load of the client and server
for datasets that may be too large to render locally. Since processing
power continues to increase rapidly for both CPUs and GPUs, it is be-
coming increasingly important to develop algorithms that efficiently
harness the computational power without being limited by memory
constraints. Our algorithm uses this approach by acting as a stream
renderer and allowing the interactive exploration of a dataset with only
a portion of the geometry.

The main disadvantage of using this paradigm is that data transfer
over the network incurs a substantial penalty. We reduce this penalty
partially with the use of lossless compression of the stream. If some
loss in quality is acceptable, quantization techniques could also be ap-
plied to reduce the bandwidth of the geometry. Because data transfer
is a limiting factor in quickly visualizing a full quality rendering, the
quality of the approximation is important. Unlike naı̈ve approaches
that render only an opaque boundary mesh or outline, our initial ap-
proximation gives excellent results with little overhead. With only a
few iterations, our progressive volume renderer converges to the final
image which facilitates dynamic exploration. We find this aspect use-
ful because often in the exploration process, the user will not wait for
the entire progressive volume rendering before moving on to another
viewpoint. Because only the geometry within the current view frus-
tum is transferred, efficiently exploring details of the dataset becomes
easy. This feature also makes rapid transfer function exploration pos-
sible. With each update of the transfer function, the stream can be
reset and the progression started. For datasets with more important
features in the center, the boundary may not give a good approxima-
tion. A more advanced technique that uses multiple k-buffers could
be employed to render several advancing progressions at once which
results in an increased rendering overhead. A simpler approach would
be the addition of user-controlled cutting planes that could cull geom-
etry on the server, thus reducing the amount of data sent to the client
and allowing the rapid visualization of internal structures. Along with
the image capturing system, which keeps previously computed results,
these features would provide a powerful data exploration tool for large
datasets.

8 CONCLUSIONS AND FUTURE WORK

Our algorithm provides a progressive volume rendering system for in-
teractively exploring large unstructured datasets. We use a novel ap-

(a) (b)

(c) (d)

Fig. 7. A zoomed-in portion of the F16 dataset (about six million tetra-
hedra) shown progressively at (a) 0%, (b) 12%, (c) 61%, and (d) 100%.

proach of balancing the load of the client and server while minimiz-
ing the memory constraints of the client. In fact, our algorithm can
bound the memory usage of the client machine to allow a wide variety
of client devices. We have introduced a novel progressive algorithm
that efficiently uses the GPU to incrementally refine the visualization
by retaining only image data. An interactive mode can be efficiently
computed with the addition of boundary triangles that can be kept in
GPU memory. To further improve interaction, our system keeps previ-
ously computed visualizations that can be interactively browsed while
progressively rendering the visualization. Finally, we have provided
detailed experiments and discussed the trade-offs of a client-server ap-
proach for volume rendering unstructured grids.

In the future, we would like to explore more efficient methods of
reducing the data size for transmission from server to client. In par-
ticular, geometry compression algorithms (e.g., [4]) could alleviate
bandwidth constraints. We would also like to add a more advanced
depth culling algorithm to avoid manual parameter tuning and add
user-controlled cutting planes to facilitate exploration further. Another
area of future research is to extend our system to render isosurfaces
and to explore the visualization of time-varying data in a progressive
manner.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. A zoomed-in portion of the Fighter dataset (about 1.4 million tetrahedra) shown progressively at (a) 0%, (b) 14%, (c) 29%, (d) 43%, (e) 57%,
(f) 71%, (g) 86%, and (h) 100%. View-frustum culling on the server removed 75% of the original geometry for this view.
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