
Computing and Rendering Point Set Surfaces
Marc Alexa, Johannes Behr, Daniel Cohen-Or, Member, IEEE,

Shachar Fleishman, David Levin, and Claudio T. Silva, Member, IEEE

Abstract—We advocate the use of point sets to represent shapes. We provide a definition of a smooth manifold surface from a set of

points close to the original surface. The definition is based on local maps from differential geometry, which are approximated by the

method of moving least squares (MLS). The computation of points on the surface is local, which results in an out-of-core technique that

can handle any point set. We show that the approximation error is bounded and present tools to increase or decrease the density of the

points, thus allowing an adjustment of the spacing among the points to control the error. To display the point set surface, we introduce

a novel point rendering technique. The idea is to evaluate the local maps according to the image resolution. This results in high quality

shading effects and smooth silhouettes at interactive frame rates.

Index Terms—Surface representation and reconstruction, moving least squares, point sample rendering, 3D acquisition.

æ

1 INTRODUCTION

POINT sets are receiving a growing amount of attention as
a representation of models in computer graphics. One

reason for this is the emergence of affordable and accurate
scanning devices generating a dense point set, which is an
initial representation of the physical model [34]. Another
reason is that highly detailed surfaces require a large
number of small primitives, which contribute to less than a
pixel when displayed, so that points become an effective
display primitive [41], [46].

A point-based representation should be as small as
possible while conveying the shape, in the sense that the
point set is neither noisy nor redundant. In [1], we have
presented tools to adjust the density of points so that a
smooth surface can be well-reconstructed. Fig. 1 shows a
point set with varying density. Our approach is motivated
by differential geometry and aims at minimizing the
geometric error of the approximation. This is done by
locally approximating the surface with polynomials using
moving least squares (MLS). Here, we include proofs and
explanations of the underlying mathematics, detail a more
robust way to compute points on the surface, and derive
bounds on the approximation error.

We understand the generation of points on the surface of
a shape as a sampling process. The number of points is
adjusted by either up-sampling or down-sampling the
representation. Given a data set of points P ¼ fpig (possibly

acquired by a 3D scanning device), we define a smooth

surface SP (MLS surface) based on the input points (the

definition of the surface is given in Section 3). We suggest

replacing the points P defining SP with a reduced set R ¼
frig defining an MLS surface SR which approximates SP .

This general paradigm is illustrated in 2D in Fig. 2: Points

P , depicted in purple, define a curve SP (also in purple). SP
is resampled with points ri 2 SP (red points). This typically

lighter point set, called the representation points, now

defines the red curve SR which approximates SP .
Compared to the earlier version [1], we give more and

new details on the (computational) properties of the surface

definition:

Smooth manifold: The surface defined by the point set is a

2-manifold and expected to be C1 smooth, given that the

points are sufficiently close to the smooth surface being

represented.

Bounded sampling error: Let SR be defined by the set of

representation points frig � SP . The representation has

bounded error ", if dðSP ; SRÞ < ", where dð�; �Þ is the

Hausdorff distance.

Local computation: For computing a point on the surface

only a local neighborhood of that point is required. This

results in a small memory footprint which depends only

on the anticipated feature size and not the number of

points (in contrast to several other implicit surface

definitions, e.g., those based on radial basis functions).

In addition to giving more implementation details for the

rendering method from [1], we give a justification that

builds on the error bounds introduced here. This connection

to the bounded error substantiates the claimed properties of

our rendering scheme:

High quality: Since SR is a smooth surface, proper

resampling leads to smooth silhouettes and normals,

resulting in superior rendering quality at interactive

frame rates.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 1, JANUARY-MARCH 2003 3

. M. Alexa is with the Interactive Graphics Systems Group, Department of
Computer Science, TU Darmstadt, Fraunhoferstr. 5, 64283 Darmstadt,
Germany. E-mail: alexa@gris.informatik.tu-darmstadt.de.

. J. Behr is with the Computer Graphics Center (ZGDV), Fraunhoferstr. 5,
64283 Darmstadt, Germany. E-mail: jbehr@zgdv.de.

. D. Cohen-Or and S. Fleishman are with the School of Computer Science,
Tel Aviv University, Tel Aviv 69978, Israel.
E-mail: dcor@tau.ac.il, shacharf@math.tau.ac.il.

. D. Levin is with the Department of Applied Mathematics, School of
Mathematical Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
E-mail: levin@math.tau.ac.il.

. C.T. Silva is with AT&T Labs-Research, 180 Park Ave., Bldg. 103,
Florham Park, NJ 07932-0971. E-mail: csilva@research.att.com.

Manuscript received 15 Feb. 2002; revised 15 Mar. 2002; accepted 2 Apr.
2002.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 116211.

1077-2626/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

Single step procedure: Resampling respects screen space

resolution and guarantees sufficient sampling, i.e., no

holes have to be filled in a postprocessing step.

2 RELATED WORK

2.1 Consolidation

Recent technological and algorithmic advances have im-

proved the process of automatic acquisition of 3D models.

Acquiring the geometry of an object starts with data

acquisition, usually performed with a range scanner. This

raw data contains errors (e.g., line-of-sight error cite [21],

[47]) mainly due to noise intrinsic to the sensor used and its

interaction with the real-world object being acquired. For a

nontrivial object, it is necessary to perform multiple scans,

each in its own coordinate system, and to register the scans

[6]. In general, areas of the objects are likely to be covered

by several samples from scans performed from different

positions. One can think of the output of the registration as

a thick point set.
A common approach is to generate a triangulated surface

model over the thick point set. There are several efficient

triangulation techniques, such as [2], [3], [5], [7], [17]. One of

the shortcomings of this approach is that the triangulated
model is likely to be rough, containing bumps and other
kinds of undesirable features, such as holes and tunnels,
and be nonmanifold. Further processing of the triangulated
models, such as smoothing [51], [14] or manifold conversion
cite [20], becomes necessary. The prominent difficulty is
that the point set might not actually interpolate a smooth
surface. We call consolidation the process of “massaging” the
point set into a surface. Some techniques, such as Hoppe
et al. [23], Curless and Levoy [12], and Wheeler et al. [55]
consolidate their sampled data by using an implicit
representation based on a distance function defined on a
volumetric grid. In [23], the distances are taken as the
signed distance to a locally defined tangent plan. This
technique needs further processing [24], [22] to generate a
smooth surface. Curless and Levoy [12] use the structure of
the range scans and essentially scan convert each range
surface into the volume, properly weighting the multiply
scanned areas. Their technique is robust to noise and is able
to take relative confidence of the samples into account. The
work of Wheeler et al. [55] computes the signed distance to
a consensus surface defined by weighted averaging of the
different scans. One of the nice properties of the volumetric
approach is that it is possible to prove, under certain
conditions, that the output is a least-square fit of the input
points (see [12]).

The volumetric sign-distance techniques described above
are related to a new field in computer graphics called
Volume Graphics pioneered by Kaufman and colleagues [26],
[54], [50], which aims at accurately defining how to deal
with volumetric data directly and answering questions
related to the proper way to convert between surface and
volume representations.

It is also possible to consolidate the point set by
performing weighted averaging directly on the data points.
In [53], model triangulation is performed first, then
averaging is performed in areas which overlap. In [49],
the data points are first averaged, weighted by a confidence
in each measurement, and then triangulated.

4 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 1, JANUARY-MARCH 2003

Fig. 1. A point set representing a statue of an angel. The density of

points and, thus, the accuracy of the shape representation are changing

(intentionally) along the vertical direction.

Fig. 2. An illustration of the paradigm: The possibly noisy or redundant
point set (purple curve). This manifold is sampled with (red) representa-
tion points. The representation points define a different manifold (red
curve). The spacing of representation points depends on the desired
accuracy of the approximation.

Another approach to defining surfaces from the data
points is to perform some type of surface fitting [18], such as
fitting a polynomial [31] or an algebraic surface [42] to the
data. In general, it is necessary to know the intrinsic
topology of the data and (sometimes) have a parametriza-
tion before surface fitting can be applied. Since this is a
nontrivial task, Krishnamurthy and Levoy [28] have
proposed a semiautomatic technique for fitting smooth
surfaces to dense polygon meshes created by Curless and
Levoy [12]. Another form of surface fitting algorithms
couples some form of high-level model recognition with a
fitting process [44].

The process of sampling (or resampling) surfaces has
been studied in different settings. For instance, surface
simplification algorithms [9] sample surfaces in different
ways to optimize rendering performance. Related to our
work are algorithms which use particle systems for
sampling surfaces. Turk [52] proposes a technique for
computing level of details of triangular surfaces by first
randomly spreading points on a triangular surface, then
optimizing their positions by letting each point repel their
neighbors. He uses an approximation of surface curvature
to weight the number of points which should be placed in a
given area of the surface. A related approach is to use
physically-based particle systems to sample an implicit
surface [56], [13]. Crossno and Angel [11] describe a system
for sampling isosurfaces, where they use the curvature to
automatically modulate the repulsive forces.

Lee [30] uses a moving-least squares approach to the
reconstruction of curves from unorganized and noisy
points. He proposes a solution for reconstructing two and
three-dimensional curves by thinning the point sets.
Although his approach resembles the one used here (and
based on theory developed in [33]), his projection procedure
is different and requires several iterations to converge to a
clean point set (i.e., it is not actually a projection, but more
of a converging smoothing step).

An alternative to our point-based modeling mechanism
is proposed by Linsen [36]. His work is based on extending
the k neighborhood of a point to a “fan” by using an angle
criterion (i.e., a neighborhood should cover the full
360 degrees around). Using this simple scheme, Linsen
proposes a variety of operations for point clouds, including
rendering, smoothing, and some modeling operations.

2.2 Point Sample Rendering

Following the pioneering work of Levoy and Whitted [35],
several researchers have recently proposed using “points”
as the basic rendering primitive, instead of traditional
rendering primitives, such as triangulated models. One of
the main reasons for this trend is that, in complex models,
the triangle size is decreasing to pixel resolution. This is
particularly true for real-world objects acquired as “tex-
tured” point clouds [39].

Grossman and Dally [19] presented techniques for
converting geometric models into point-sampled data sets
and algorithms for efficiently rendering the point sets. Their
technique addresses several fundamental issues, including
the sampling rate of conversion from triangles to points,
and several rendering issues, including handling “gaps” in
the rendered images and efficient visibility data structures.

The Surfels technique of Pfister et al. [41] builds and
improves on this earlier work. They present alternative
techniques for the sampling of the triangle mesh, including
visibility testing, texture filtering, and shading.

Rusinkiewicz and Levoy [46] introduce a technique
which uses a hierarchy of spheres of different radii to
model a high-resolution model. Their technique uses small
spheres to model the vertices at the highest resolution and a
set of bounding spheres to model intermediate levels.
Together with each spherical sample, they also save other
associated data, such as normals. Their system is capable of
time-critical rendering as it adapts the depth of tree
traversal to the available time for rendering a given frame.
In [45], they show how their system can be used for
streaming models over a network.

Kalaiah and Varshney introduced an effective method
for rendering point primitives that requires the computa-
tion of the principal curvatures and a local coordinate frame
for each point [25]. Their approach renders a surface as a
collection of local neighborhoods and it is similar to our
rendering technique, proposed later, although they do not
use dynamic level of detail in their system.

All the above techniques account for local illumination.
Schaufler and Jensen [48] propose computing global
illumination effects directly on point-sampled geometry
by a ray tracing technique. The actual intersection point is
computed, based on a local approximation of the surface,
assuming a uniform sampling of the surface.

Point-based rendering suffers from the limited resolution
of the fixed number of sample points representing the
model. At some distance, the screen space resolution is high
relative to the point samples, which causes undersampling.
Tackling this problem by interpolating the surface points in
image space is limited. A better approach is to resample the
surface during rendering at the desired resolution in object-
space, guaranteeing that sampling density is sufficient with
respect to the image space resolution.

Hybrid polygon-point approaches have been proposed.
Cohen et al. [10] introduce a simplification technique which
transitions triangles into (possibly multiple) points for faster
rendering. Their system uses an extension of Floriani et al.’s
Multi-Triangulation data structure [15], [16]. A similar
system has been developed by Chen and Nguyen [8] as
an extension of QSplat.

3 DEFINING THE SURFACE—PROJECTING

Our approach relies on the idea that the given point set
implicitly defines a surface. We build upon recent work by
Levin [33]. The main idea is the definition of a projection
procedure, which projects any point near the point set onto
the surface. Then, the MLS surface is defined as the points
projecting onto themselves. In the following, we explain the
projection procedure, prove the projection and manifold
properties, motivate the smoothness conjecture, and give
details on how to efficiently compute the projection.

3.1 The Projection Procedure

Let points pi 2 IR3; i 2 f1; . . . ; Ng, be sampled from a
surface S (possibly with a measurement noise). The goal
is to project a point r 2 IR3 near S onto a two-dimensional

ALEXA ET AL.: COMPUTING AND RENDERING POINT SET SURFACES 5

surface SP that approximates the pi. The following

procedure is motivated by differential geometry, namely,

that the surface can be locally approximated by a function.

1. Reference domain: Find a local reference domain
(plane) for r (see Fig. 3). The local plane H ¼
fxjhn; xi ÿD ¼ 0; x 2 IR3g; n 2 IR3; knk ¼ 1 is com-
puted so as to minimize a local weighted sum of
squared distances of the points pi to the plane. The
weights attached to pi are defined as the function of
the distance of pi to the projection of r into the plane
H, rather than the distance to r. Assume q is the
projection of r onto H, then H is found by locally
minimizing

XN
i¼1

hn; pii ÿDð Þ2� kpi ÿ qkð Þ; ð1Þ

where � is a smooth, monotone decreasing function,

which is positive on the whole space. By setting q ¼
rþ tn for some t 2 R, (1) can be rewritten as:

XN
i¼1

n; pi ÿ rÿ tnh i2� kpi ÿ rÿ tnkð Þ: ð2Þ

We define the operator QðrÞ ¼ q ¼ rþ tn as the local

minimum of (2) with the smallest t and the local

tangent plane H near r accordingly. The local

reference domain is then given by an orthonormal

coordinate system on H so that q is the origin of this

system.
2. Local map: The reference domain for r is used to

compute a local bivariate polynomial approximation
to the surface in a neighborhood of r (see Fig. 3). Let
qi be the projection of pi onto H, and fi the height of
pi over H, i.e., fi ¼ n � ðpi ÿ qÞ. Compute the coeffi-
cients of a polynomial approximation g so that the
weighted least squares error

XN
i¼1

gðxi; yiÞ ÿ fið Þ2� kpi ÿ qkð Þ ð3Þ

is minimized. Here, ðxi; yiÞ is the representation of qi
in a local coordinate system in H. Note that, again,
the distances used for the weight function are from
the projection of r onto H. The projection P of r onto
SP is defined by the polynomial value at the origin,
i.e., PðrÞ ¼ q þ gð0; 0Þn ¼ rþ ðtþ gð0; 0ÞÞn.

3.2 Properties of the Projection Procedure

In our application scenario, the projection property (i.e.,
PðPðrÞÞ ¼ PðrÞ) is extremely important: We want to use the
above procedure to compute points exactly on the surface.
The implication of using a projection operator is that the set
of points we project and the order of the points we project
do not change the surface.

From (2), it is clear that if ðt; nÞ is a minimizer for r,
then ðs; nÞ is a minimizer for rþ ðsÿ tÞn. Assuming the
minimization is global in a neighborhood U 2 IR3 of q,
then Q is a projection operation in U , because the pair
ð0; nÞ is a minimizer for rÿ tn ¼ q. Further, q þ gð0; 0Þn ¼
rþ ðtþ gð0; 0ÞÞn is also a minimizer and, thus, P is also a
projection in U .

We like to stress that the projection property results from
using distances to q rather than r. If � depended on r the
procedure would not be a projection because the values of �
would change along the normal direction.

The surface SP is formally defined as the subset of all
points in IR3 that project onto themselves. A simple
counting argument shows that this subset is a two-
parameter family and, thus, SP a 2-manifold. Equation (2)
essentially has six degrees of freedom: three for r, two for n,
and one for t. On the other hand, there are four independent
necessary conditions: For a local minimum, the partial
derivatives of the normal and t have to be zero and, for r to
be on the surface, t ¼ 0 is necessary. This leaves 6ÿ 4 ¼ 2
free parameters for the surface. It is clear from simple
examples that the parameter family includes manifolds
which cannot be expressed as functions over IR2.

The particular charm of this surface definition is that it
avoids piecewise parameterizations. No subset of the
surface is parameterized over a planar piece, but every
single point has its own support plane. This avoids the
common problems of piecewise parameterizations for
shapes, e.g., parameterization dependence, distortions in
the parameterization, and continuity issues along the
boundaries of pieces.

However, in this approach, we have the problem of
proving continuity for any point on the surface because its
neighbors have different support planes in general. The
intuition for SP 2 C1 is, of course, that (1) interpreted as a
function IR6 ! IR is C1 so that a particular kernel of its
gradient is also C1.

The approximation of single points is mainly dictated by
the radial weight function �. The weight function suggested
in [33] is a Gaussian

�ðdÞ ¼ eÿ
d2

h2 ; ð4Þ

where h is a fixed parameter reflecting the anticipated
spacing between neighboring points. By changing h, the
surface can be tuned to smooth out features of size < h in S.
More specifically, a small value for h causes the Gaussian to

6 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 1, JANUARY-MARCH 2003

Fig. 3. The MLS projection procedure: First, a local reference domain H
for the purple point r is generated. The projection of r onto H defines its
origin q (the red point). Then, a local polynomial approximation g to the
heights fi of points pi over H is computed. In both cases, the weight for
each of the pi is a function of the distance to q (the red point). The
projection of r onto g (the blue point) is the result of the MLS projection
procedure.

decay faster and the approximation is more local. Conversely,

large values for h result in a more global approximation,

smoothing out sharp or oscillatory features of the surface.

Fig. 4 illustrates the effect of different h values.

3.3 Computing the Projection

We explain how to efficiently compute the projection and

what values should be chosen for the polynomial degree

and h. Furthermore, we discuss tradeoffs between accuracy

and speed.
Step 1 of the projection procedure is a nonlinear

optimization problem. Usually, (2) will have more than

one local minimum. By definition, the local minimum with

the smallest t has to be chosen, which means the plane

should be close to r. For minimizing (2), we have to use

some iterative scheme which descends toward the next local

minimum. Without any additional information, we start

with t ¼ 0 and first approximate the normal. Note that, in

this case, the weights �i ¼ � kpi ÿ rkð Þ are fixed. Let B ¼
fbjkg; B 2 IR3�3 be the matrix of weighted covariances

defined by

bjk ¼
X
i

�i pij ÿ rj
ÿ �

pik ÿ rkð Þ:

Then, the minimization problem (2) can be rewritten in

bilinear form

min
knk¼1

nTBn ð5Þ

and the solution of the minimization problem is given as the
Eigenvector ofB that corresponds to the smallest Eigenvalue.

If a normal is computed (or known in advance), it is fixed

and the function is minimized with respect to t. This is a

nonlinear minimization problem in one dimension. In

general, it is not solvable with deterministic numerical

methods because the number of minima is only bounded by

the number N of points pi. However, in all practical cases,

we have found that, for t 2 ½ÿh=2; h=2�, there is only one

local minimum. This is intuitively clear as h is connected to

the feature size and features smaller than h are smoothed

out, i.e., features with distance smaller than h do not

provide several minima. For this reason, we make the

assumption that any point r to be projected is at most h=2

away from its projection. In all our practical applications,

this is naturally satisfied.
Using these prerequisites, the local minimum is

bracketed with �h=2. The partial derivative

2
XN
i¼1

n; pi ÿ rÿ tnh i 1þ n; pi ÿ rÿ tnh i2

h2

 !
ekpiÿrÿtnk

2=h2 ð6Þ

can be easily evaluated together with the function itself. The

derivative is exploited in a simple iterative minimization
scheme, as explained in [43, Chapter 10.3].

Once t 6¼ 0, fixing t and minimization with respect to the
normal direction is also a nonlinear problem because q ¼
rþ tn changes and, thus, the weights change also. The search
space can be visualized as the tangent planes of a sphere with

ALEXA ET AL.: COMPUTING AND RENDERING POINT SET SURFACES 7

Fig. 4. The effect of different values for parameter h. A point set representing an Aphrodite statue defines an MLS surface. (a) shows an MLS surface
resulting from a small value and reveals a surface micro-structure. (b) shows a larger value for h, smoothing out small features or noise.

center point r and radius t. However, in practice, we have
found the normal (or q) to change only slightly so that we
approximate the sphere locally around the current value of
rþ tn as the current plane defined t and n. On this plane, a
conjugate gradient scheme [43] is used to minimize among all
q on the plane. The main idea is to fix a subspace for
minimization in which n cannot vanish so that the constraint
knk ¼ 1 is always satisfied. The use of a simple linear
subspace makes the computation of partial derivatives
efficient and, thus, conjugate gradient methods applicable.
Clearly, this search space effectively changes t, resulting in a
theoretically worse convergence behavior. In practice, the
difference between the sphere and the plane is small for the
region of interest and the effect is not noticeable.

Using these pieces, the overall implementation of
computing the support plane looks like this:

Initial normal estimate in r: The normal in a point might be
given as part of the input (e.g., estimated from range
images) or could be computed when refining a point set
surface (e.g., from close points in the already processed
point set). If no normal is available, it is computed using
the Eigenvector of the matrix of weighted covariances B.

Iterative nonlinear minimization: The following two steps
are repeated as long as any of the parameters changes
more than a predefined ":

1. Minimize along t, where the minimum is initially
bracketed by t ¼ �h=2.

2. Minimize q on the current plane H : ðt; nÞ using
conjugate gradients. The new value for q ¼ rþ tn
leads to new values for the pair ðt; nÞ.

The last pair ðt; nÞ defines the resulting support plane H.
The second step of the projection procedure is a standard

linear least squares problem: Once the plane H is
computed, the weights �i ¼ �ðkpi ÿ qkÞ are known. The
gradient of (3) over the unknown coefficients of the
polynomial leads to a system of linear equations of size
equal to the number of coefficients, e.g., 10 for a third
degree polynomial.

Through experimentation, we found that high degree
polynomials are likely to oscillate. Polynomials of degree 3
to 4 have proven to be very useful as they produce good fits
of the neighborhood, do not oscillate, and are quickly
computed.

3.4 Data Structures and Tradeoffs

The most time-consuming step in computing the projection
of a point r is collecting the coefficients from each of the pi
(i.e., computing the sum). Implemented naively, this
process takes OðNÞ time, where N is the number of points.
We exploit the effect of the quickly decreasing weight
function in two ways:

1. In a certain distance from r, the weight function is
effectively zero. We call this the neglect distance dn,
which depends solely on h. A regular grid with cell
size 2dn is used to partition the point set. For each
projection operation, a maximum of eight cells is
needed. This results in a very small memory footprint
and yields a simple and effective out-of-core

implementation, which makes the storage require-
ments of this approach independent of the total
size of the point set.

2. Using only the selected cells, the terms are collected
using a hierarchical method inspired by solutions to
the N-body problem [4]. The basic observation is
that a cluster of points far from r can be combined
into one point. To exploit this idea, each cell is
organized as an Octree. Leaf nodes contain the pi;
inner nodes contain information about the number
of points in the subtree and their centroid. Then,
terms are collected from the nodes of the Octree. If
the node’s dimension is much smaller than its
distance to r, the centroid is used for computing
the coefficients; otherwise, the subtree is traversed.
In addition, whole nodes can be neglected if their
distance to r is larger than dn.

The idea of neglecting points could be also made

independent of numerical issues by using a compactly

supported weight function. However, the weight function

has to be smooth. An example for such an alternative is

�ðxÞ ¼ 2x3 ÿ 3x2 þ 1.
A simple way to trade accuracy for speed is to assume

that the plane H passes through the point to be projected.

This assumption is reasonable for input points, which are

expected to be close to the surface they define (e.g., input

that has been smoothed). This simplification saves the cost

of the iterative minimization scheme.

3.5 Results

Actual timings for the projection procedure depend heavily

on the feature size h. On a standard Pentium PC, the points

of the bunny were projected at a rate of 1,500-3,500 points

per second. This means the 36K points of the bunny are

projected onto the surface they define themselves in 10-

30 seconds. Smaller values for h lead to faster projection

since the neighborhoods and, thus, the number of points

taken into account are smaller.
As has been stressed before, the memory requirements

mainly depend on the local feature size h. As long as h is

small with respect to the total diameter of the model the use

of main memory of the projection procedure is negligible.

4 APPROXIMATION ERROR

Consider again the setting depicted in Fig. 2. Input points

fpig define a surface SP , which are then represented by a set

of points frig 2 SP . However, the set frig defines a surface

SR which approximates SP . Naturally, we would like to

have an upper bound on the distance between SR and SP .
From differential geometry, we know that a smooth

surface can be locally represented as a function over a local

coordinate system. We also know that, in approximating a

bivariate function, f by a polynomial g of total degree m, the

approximation error is kgÿ fk �M � hmþ1 [32]. The con-

stant M involves the ðmþ 1Þth derivatives of f , i.e.,

M 2 Oðkf ðmþ1ÞkÞ. In the case of surface approximation,

since SP is infinitely smooth, there exists a constant Mmþ1,

involving the ðmþ 1Þth derivatives of SP such that

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 1, JANUARY-MARCH 2003

kSP ÿ SRk �Mmþ1h
mþ1; ð7Þ

where SR is computed using polynomials of degree m.
Note that this error bound holds for the MLS surface SR,

which is obtained by the projection procedure applied to
the data set R, using the same parameter h as for SP .
Moreover, the same type of approximation order holds for
piecewise approximation: Assume each point ri defines a
support plane so that SP is a function over a patch ½ÿh; h�2
around ri on the plane and, further, that the points frig
leave no hole of radius more than h on the surface. Then,
the above arguments hold and the approximation error of
the union of local, nonconforming, polynomial patches Gi

around points ri approximates SP as

SP ÿ
[
Gi

 �Mmþ1h
mþ1: ð8Þ

Here, Gi is the polynomial patch defined by an MLS
polynomial gi for the point ri, with corresponding reference
plane Hi with normal ni, a corresponding orthonormal
system fui; vi; nig, and an origin at qi.

Gi ¼ fqi þ x � ui þ y � vi þ giðx; yÞ � nijðx; yÞ 2 ½ÿh; h�2g: ð9Þ

These error bounds explain nicely why curvature (see,
e.g., [17]) is an important criterion for piecewise linear
approximations (meshes): The error of piecewise linear
functions depends linearly on the second derivatives and
the spacing of points. This means, more points are needed
where the curvature is higher.

However, when the surface is approximated with higher
order polynomials, curvature is irrelevant to the approx-
imation error. Using cubic polynomials, the approximation
error depends on the fourth order derivatives of the surface.
Note that our visual system cannot sense smoothness
beyond second order [38]. From that point of view, the
sampling density locally depends on an “invisible” criter-
ion. We have found it to be sufficient to fix a spacing h of
points ri on SP .

5 GENERATING THE REPRESENTATION POINT SET

A given point set might have erroneous point locations (i.e.,
is noisy), may contain too many points (i.e., is redundant),
or may not have enough points (i.e., is undersampled).

The problem of noise is handled by projecting the points
onto the MLS surface they define. The result of the projection
procedure is a thin point set. Redundancy is avoided by
decimating the point set, taking care that it persists to be a
good approximation of the MLS surface defined by the
original point set. In the case of undersampling, the input
point set needs to be upsampled. In the following sections, we
show techniques to remove and add points.

Fig. 5 illustrates the idea of resampling in the example of
the Buddha statue. Using the techniques presented below, it
is possible to resample the geometry to be evenly sampled
on the surface.

5.1 Downsampling

Given a point set, the decimation process repeatedly
removes the point that contributes the smallest amount of
information to the shape. The contribution of a point to the

shape or the error of the sampling is dictated by the

definition of the shape. If the point set is reconstructed by

means of a triangulation, criteria from the specific triangu-

lation algorithm should control the resampling. Criteria

include the distance of points on the surface [23], curvature

[17], or distance from the medial axis of the shape [2]. For a

direct display of the point set on a screen, homogeneous

distribution of the points over the surface is required [19],

[41]. Here, we derive a criterion motivated by our definition

of the surface.
The contribution of a projected point pi to the surface SP

can be estimated by comparing SP with SPÿfpig. Computing

the Hausdorff distance between both surfaces is expensive

and not suitable for an iterative removal of points of a large

point set. Instead, we approximate the contribution of pi by

its distance from its projection onto the surface SPÿfpig.

Thus, we estimate the difference of SP and SPÿfpig by

projecting pi onto SPÿfpig (projecting pi under the assump-

tion it was not part of P).
The contribution values of all points are inserted into a

priority queue. At each step of the decimation process, the

point with the smallest error is removed from the point set

and from the priority queue. After the removal of a point,

the error values of nearby points have to be recalculated

since they might have been affected by the removal. This

process is repeated until the desired number of points is

reached or the contributions of all points exceeds some

prespecified bound.

ALEXA ET AL.: COMPUTING AND RENDERING POINT SET SURFACES 9

Fig. 5. Points acquired by range scanning devices or vertices from a
processed mesh typically have uneven sampling density on the surface
(a). The sampling techniques discussed here allow us to evenly
resample the object (b) to ensure a sufficient density for further
processing steps, for example rendering (c).

Fig. 6 illustrates our decimation process applied on the

set of red points depicted in Fig. 6a. First, the red points are

projected on the MLS surface to yield the blue points. A

close up view over a part of the points shows the relation

between the input (red) points and the projected points. In

Fig. 6b, we show three snapshots of the decimation process,

where points are colored according to their error value; blue

represents low error and red represents high error. Note

that, in the sparsest set, all of the points have a high error,

that is, their removal will cause a large error. As the

decimation proceeds, fewer points remain and their im-

portance grows and the error associated with them is larger.

Fig. 7 shows the decimation process in 3D with correspond-

ing renderings of the point sets.

5.2 Upsampling

In some cases, the density of the point set might not be

sufficient for the intended usage (e.g., direct point render-

ing or piecewise reconstructions). Motivated by the error

bounds presented in Section 4, we try to decrease the

spacing among points. Additional points should be placed

(and then projected to the MLS surface) where the spacing

among points is larger then a specified bound.

The basic idea of our approach is to compute Voronoi

diagrams on the MLS surface and add points at vertices of

this diagram. Note that the vertices of the Voronoi diagram

are exactly those points on the surface with maximum

distance to several of the existing points. This idea is related

to Lloyd’s method [37], i.e., techniques using Voronoi

diagrams to achieve a certain distribution of points [40].
However, computing the Voronoi diagram on the MLS

surface is excessive and local approximations are used

instead. More specifically, our technique works as follows:

In each step, one of the existing points is selected randomly.

A local linear approximation is built and nearby points are

projected onto this plane. The Voronoi diagram of these

points is computed. Each Voronoi vertex is the center of a

circle that touches three or more of the points without

including any point. The circle with largest radius is chosen

and its center is projected to the MLS surface. The process is

repeated iteratively until the radius of the largest circle is

less than a user-specified threshold (see Fig. 8). At the end

of the process, the density of points is locally near-uniform

on the surface. Fig. 8 shows the original sparse point set

containing 800 points, and the same object after adding 20K

points over its MLS surface.

6 RENDERING

The challenge of our interactive point rendering approach is

to use the representation points and (when necessary)

create new points by sampling the implicitly defined

surface at a resolution sufficient to conform to the screen

space resolution (see Fig. 9 for an illustration of that

approach).
Usually, the representation points are not sufficient to

render the object in screen space. In some regions, it is not

necessary to render all points as they are occluded,

backfacing, or have higher density than needed. However,

typically, points are not dense enough to be projected

directly as a single pixel and more points need to be

generated by interpolation in object space.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 1, JANUARY-MARCH 2003

Fig. 6. Noisy input points (green points) are projected onto their smooth

MLS curve (orange points). The figures in (a) show the point sets and a

close up view. The decimation process is shown in (b). Points are color-

coded as in Fig. 7.

Fig. 7. The point set representing an Aphrodite statue is projected onto a smooth MLS-surface. (a) After removing redundant points, a set of 37K
points represents the statue. (b) The corresponding rendering is shown. The point set is decimated using point removal. (c) An intermediate stage of
the reduction process is shown. Note that the points are color-coded with respect to their importance. Blue points do not contribute much to the
shape and might be removed; red points are important for the definition of the shape. The final point set in (e) contains 20K points. The
corresponding rendering is depicted in (d) and is visually close to the one in (b).

6.1 Culling and View Dependency

The structure of our rendering system is similar to QSplat

[46]. The input points are arranged into a bounding sphere

hierarchy. For each node, we store a position, a radius, a

normal coverage, and, optionally, a color. The leaf nodes

additionally store the orientation of the support plane and the

coefficients of the associated polynomial. The hierarchy is

used to cull the nodes with the view frustum and to apply a

hierarchical backface culling [29]. Note that culling is

important for our approach since the cost of rendering the

leaf nodes (evaluating the polynomials) is relatively high

compared to simpler primitives. Moreover, if the traversal

reaches a node with an extent that projects to a size of less than

a pixel, this node is simply projected to the frame-buffer

without traversing its subtree. When the traversal reaches a
leaf node and the extent of its bounding sphere projects to
more than one pixel in screen space, additional points have
to be generated.

The radius of a bounding sphere in leaf nodes is simply set
to the anticipated feature size h. The bounding spheres for
inner nodes naturally bound all of their subtree’s bounding
spheres. To compute the size of a bounding sphere in pixel
space, the radius is scaled by the model-view transform and
then divided by the distance of center and eye point in z-
direction to accommodate the projective transform.

6.2 Sampling Additional Points

The basic idea is to generate a grid of points sufficient to
cover the extent of a leaf node. However, projecting the grid
points using the method described in Section 3 is too slow
in interactive applications. The main idea of our interactive
rendering approach is to sample the polynomials associated
with the representation points rather than really projecting
the points.

It is clear that the union of these polynomial patches is not a
continous surface. However, the Hausdorff-error of this
approximation is not worse than the error of the surface
computed by projecting every point using the operatorP (see
Section 4). Since the Hausdorff-error in object space limits the
screen space error, the error bound can be used to make the
approximation error invisble in the resulting image.

However, to conform with the requirements formulated
in Section 4, the point set and the associated polyonmials
are required to be near-uniform on the surface. It might be
necessary to first process a given point set with the
upsampling methods presented in Section 5. This way, we
ensure that the local, nonconforming (i.e., overlapping or
intersecting) polynomials are a good approximation to the
surface inside a patch ½ÿh; h�2 around a point and, thus, the
resulting image shows a smooth surface. However, most

ALEXA ET AL.: COMPUTING AND RENDERING POINT SET SURFACES 11

Fig. 8. The upsampling process: Points are added at vertices of the
Voronoi diagram. In each step, the vertex with the largest empty circle is
chosen. The process is repeated until the radius of the largest circle is
smaller than a specified bound. The wavy torus originally consisting of
800 points has been upsampled to 20K points.

Fig. 9. Upsampling could be used generate enough points on the surface to conform with the resolution of the image to be rendered. The right image

shows a close up rendered with splats.

dense point sets can be readily displayed with the approach
presented here. For example, Fig. 11 shows several
renderings of the original Stanford Bunny data.

It is critical to properly define the extent of a polynomial
patch on the supporting plane such that neighboring patches
are guaranteed to overlap (to avoid holes), but do not overlap
more than necessary. Since no interpoint connectivity
information is available, it is unclear which points are
immediate neighbors of a given point on the surface.

To compute the extent of a polynomial patch associated to
the point pi on the support planeH, all points inside a ball of
radius h around the projection q ¼ QðpiÞ are collected. These
points are projected to the support plane H, which leads to
local ðu; vÞ coordinates for each projected point. The extent is
defined by a circle around q that encloses all projected points.
More specifically, assume q has the local coordinate (0, 0), the
radius of the circle is given by the largest 2-norm of all local
ðu; vÞ coordinates of projected points. Since the spacing of
points is expected to be less than h, patches of neighboring
points are guaranteed to overlap.

Note that using a constant extent (e.g., a disk of radius h
on the support plane) can lead to errors as the polynomial g
over H might leave the ball of radius h, in which a good
approximation of the point set is expected. Fig. 10 illustrates
the computation of the patch sizes.

The grid spacing d should be so computed that
neighboring points have a screen space distance of less
than a pixel. Thus, the grid spacing depends on the
orientation of the polyonmial patch with respect to the
screen. Since the normals change on each polyonmial patch,
we rather use a simple heuristic to conservatively estimate
d: The grid spacing d is computed so that a grid
perpendicular to the viewing direction is sufficiently
sampled in image space.

If the grid is, indeed, perpendicular to the viewing
direction, the sampling is also correct on the polynomial. If
the grid is not perpendicular to the viewing direction, the
projected area might be oversampled or undersampled,
depending on the orientation of the support plane and the
derivatives of the polyonmial. Note, however, that sufficient
sampling is guaranteed if the derivatives are less than 1. In
practice, we have rarely encountered higher derivatives, so

we decided not to evaluate the maximum derivatives of all
polynomial patches. However, this could be done in a
preprocess and the density could be adjusted accordingly.

Upon the view-dependent grid spacing d, the polyno-
mials are evaluated by a forward difference approach,
where the polynomial is scanned across its extent in its local
u; v parametric space. The affine map transforming from
support plane coordinates to world coordinates is factored
into polynomial evaluation, thus generating points in world
coordinates. These points are then fed into the graphics
pipeline to be projected to the screen.

Surprisingly, we have found that quad meshes are
processed faster by current graphics hardware than a set
of points. For this reason we use quad meshes to represent
the polynomial patches. This has the additional advantage
that, during lazy evaluation (see below), no holes occur.

6.3 Grid Pyramids

The time-critical factor is the view-dependent evaluation of
the points on the polynomial. Optimally, these are recom-
puted whenever the projected screen space size changes. To
accelerate therendering process, we store a gridpyramid with
various resolutions per representation point. Initially, the
pyramid levels are created, but no grid is actually evaluated.
When a specific grid resolution is needed, the system creates
and stores the level that slightly oversamples the polynomial
for a specific resolution such that small changes in the viewing
position do not result in new evaluations.

To enhance the interactivity of our approach, we use lazy
evaluation during rotating or zooming. Once the viewer
stops moving, a proper grid is chosen from the pyramid.

6.4 Results

We have tested our approach on a variety of point sets.
Fig. 11 shows the renderings of the Stanford Bunny. In
Fig. 11a, the original point set is shown. Splatting, Fig. 11b,
does not lead to good results because the model is not
sampled densely enough. The traditional Gouraud-shaded
mesh in Fig. 11c and Fig. 11g is compared to our approach
in Fig. 11d and Fig. 11h. Note the accuracy of the highlights.
The nonconforming local polynomial patches are shown
color-coded in Fig. 11e and Fig. 11f. An example of an
environment mapping to demonstrate the normal continu-
ity is given in Fig. 12. Note that silhouettes and normals are
smooth, which leads to fewer distortions on the boundary
and in the reflections.

The frame rates we achieve are mainly dictated by the
number of visible representation points (i.e., graph traversal
time) and the number of pixels to be filled. All models
depicted in the paper are displayed at more than five
frames per second in a 5122 screen window (see the
accompanying video for more information). The number
of representation points ranges from 1,000 (for the torus) to
900K (for the angel statue). Tests are performed on a PC
with GeForce2 graphics board.

7 CONCLUSION

In differential geometry, a smooth surface is characterized
by the existence of smooth local maps at any point. In this
work, we use this as a framework to approximate a smooth

12 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 1, JANUARY-MARCH 2003

Fig. 10. The patch size of a polynomial: Points inside a ball of radius h
around the red point r are projected onto the support plane of the red
point. The patch size is defined as the bounding disk (in local
coordinates) of the projections. Note that using a disk of radius h would
lead to unpleasant effects in some cases, as the polynomial might leave
the ball of radius h.

surface defined by a set of points and we introduced new

techniques to resample the surface to generate an adequate

representation of the surface.
To render such surfaces, the surface is covered by a finite

number, as small as possible, of nonconforming, over-

lapping, polynomial patches. We showed that the error of
these approximations is bounded and dependent on the
spacing among points. Thus, it is possible to provide a point
set representation that conforms with a specified tolerance.

Our paradigm for representing surfaces advocates the
use of a point set (without connectivity) as a representation
of shapes. This representation is universal in the sense that
it is used from the beginning (i.e., acquisition) to the end
(i.e., rendering) of a graphical representation’s life cycle.
Moreover, we believe that this work is a step toward
rendering with higher order polynomials. Note that we
have used simple primitives (points) to achieve this goal.
This admits to the current trend of integrating high quality
rendering features into graphics hardware.

It would be interesting to integrate our approach with
combinatorial methods such as the one of Amenta et al. [2].
This would combine topological guarantees with the
additional precision of higher order approximations and
the possibility of smoothing out noise or small features.

Using different values for h, it is easy to generate more
smooth or more detailed versions of a surface from one
point set (see, for example, Fig. 4). A set of different
versions could be used as a smooth-to-detailed hierarchy
and would allow for multiresolution modeling [27]. Of
course, h is not necessarily a global parameter and could be
adapted to the local feature size. Varying h has several
implications and utility in handling point sets (see [30] for a
nice introduction to the issues in two dimensions), such as
properly accounting for differences in sampling rate and
levels of noise during the acquisition process. Also,

ALEXA ET AL.: COMPUTING AND RENDERING POINT SET SURFACES 13

Fig. 11. The Stanford Bunny: The points defining the bunny are depicted in (a) (some points are culled). Points are splatted in (b) to satisfy screen

space resolution. Note the difference of a piecewise linear mesh over the points (c) and close up in (g) to the rendering of nonconforming polynomial

patches (d) and (h). The patches are color-coded in (e) and (f).

Fig. 12. Comparison of mesh rendering with our technique with
environment mapping. The left column shows renderings of a mesh
consisting of 1,000 vertices. The right column shows our technique
using the vertices as input points. The environment maps emphasize the
improved normal and boundary continuity.

nonradial functions might be necessary to properly account
for sharp features in the models.

ACKNOWLEDGMENTS

We gratefully acknowledge the helpful comments of
Markus Gross, Jörg Peters, Ulrich Reif, and several
anonymous reviewers. This work was supported by a grant
from the Israeli Ministry of Science, a grant from GIF
(German Israeli Foundation), and a grant from the Israeli
Academy of Sciences (center of excellence). The bunny
model is courtesy of the Stanford Computer Graphics
Laboratory. The angel statue in Fig. 1 was scanned by Peter
Neugebauer at Fraunhofer IGD in Darmstadt, Germany
using a structured light scanner and the QTSculptor system.

REFERENCES

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C.T.
Silva, “Point Set Surfaces,” Proc. IEEE Visualization 2001, pp. 21-28,
Oct. 2001.

[2] N. Amenta, M. Bern, and M. Kamvysselis, “A New Voronoi-Based
Surface Reconstruction Algorithm,” Proc. SIGGRAPH ’98, pp. 415-
422, July 1998.

[3] C.L. Bajaj, F. Bernardini, and G. Xu, “Automatic Reconstruction of
Surfaces and Scalar Fields from 3D Scans,” Proc. SIGGRAPH ’95,
pp. 109-118, Aug. 1995.

[4] J. Barnes and P. Hut, “A Hierarchical O(N log N) Force
Calculation Algorithm,” Nature, vol. 324, pp. 446-449, Dec. 1986.

[5] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin,
“The Ball-Pivoting Algorithm for Surface Reconstruction,” IEEE
Trans. Visualization and Computer Graphics, vol. 5, no. 4, pp. 349-
359, Oct.-Dec. 1999.

[6] P. Besl and N. McKay, “A Method for Registration of 3-D Shapes,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 14, no. 2,
pp. 239-256, Feb. 1992.

[7] J.-D. Boissonnat, “Geometric Structues for Three-Dimensional
Shape Representation,” ACM Trans. Graphics, vol. 3, no. 4, pp. 266-
286, Oct. 1984.

[8] B. Chen and M.X. Nguyen, “Pop: A Hybrid Point and Polygon
Rendering System for Large Data,” Proc. IEEE Visualization 2001,
pp. 45-52, Oct. 2001.

[9] P. Cignoni, C. Montani, and R. Scopigno, “A Comparison of Mesh
Simplification Algorithms,” Computers & Graphics, vol. 22, no. 1,
pp. 37-54, Feb. 1998.

[10] J.D. Cohen, D.G. Aliaga, and W. Zhang, “Hybrid Simplification:
Combining Multi-Resolution Polygon and Point Rendering,” Proc.
IEEE Visualization 2001, pp. 37-44, Oct. 2001.

[11] P. Crossno and E. Angel, “Isosurface Extraction Using Particle
Systems,” Proc. IEEE Visualization ’97, pp. 495-498, Nov. 1997.

[12] B. Curless and M. Levoy, “A Volumetric Method for Building
Complex Models from Range Images,” Proc. SIGGRAPH ’96.
pp. 303-312, Aug. 1996.

[13] L.H. de Figueiredo, J. de Miranda Gomes, D. Terzopoulos, and L.
Velho, “Physically-Based Methods for Polygonization of Implicit
Surfaces,” Proc. Graphics Interface ’92, pp. 250-257, May 1992.

[14] M. Desbrun, M. Meyer, P. Schröder, and A.H. Barr, “Implicit
Fairing of Irregular Meshes Using Diffusion and Curvature Flow,”
Proc. SIGGRAPH ’99, pp. 317-324, Aug. 1999.

[15] L.D. Floriani, P. Magillo, and E. Puppo, “Building and Traversing
a Surface at Variable Resolution,” Proc. IEEE Visualization ’97,
pp. 103-110, Nov. 1997.

[16] L.D. Floriani, P. Magillo, and E. Puppo, “Efficient Implementation
of Multi-Triangulations,” Proc. IEEE Visualization ’98, pp. 43-50,
Oct. 1998.

[17] M. Gopi, S. Krishnan, and C.T. Silva, “Surface Reconstruction
Based on Lower Dimensional Localized Delaunay Triangulation,”
Computer Graphics Forum, vol. 19, no. 3, Aug. 2000.

[18] A. Goshtasby and W.D. O’Neill, “Surface Fitting to Scattered Data
by a Sum of Gaussians,” Computer Aided Geometric Design, vol. 10,
no. 2, pp. 143-156, Apr. 1993.

[19] J.P. Grossman and W.J. Dally, “Point Sample Rendering,” Proc.
Eurographics Rendering Workshop 1998, pp. 181-192, June 1998.

[20] A.P. Gueziec, G. Taubin, F. Lazarus, and W. Horn, “Converting
Sets of Polygons to Manifold Surfaces by Cutting and Stitching,”
Proc. IEEE Visualization ’98, pp. 383-390, Oct. 1998.

[21] P. Hebert, D. Laurendeau, and D. Poussart, “Scene Reconstruction
and Description: Geometric Primitive Extraction from Multiple
View Scattered Data,” Proc. IEEE Computer Vision and Pattern
Recognition 1993, pp. 286-292, 1993.

[22] H. Hoppe, T. DeRose, T. Duchamp, M. Halstead, H. Jin, J.
McDonald, J. Schweitzer, and W. Stuetzle, “Piecewise Smooth
Surface Reconstruction,” Proc. SIGGRAPH ’94, pp. 295-302, July
1994.

[23] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Surface Reconstruction from Unorganized Points,” Computer
Graphics (Proc. SIGGRAPH ’92), vol. 26, no. 2, pp. 71-78, July 1992.

[24] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle,
“Mesh Optimization,” Proc. SIGGRAPH ’93, pp. 19-26, Aug. 1993.

[25] A. Kalaiah and A. Varshney, “Differential Point Rendering,”
Rendering Techniques 2001: Proc. 12th Eurographics Workshop
Rendering, pp. 139-150, June 2001.

[26] A. Kaufman, D. Cohen, and R. Yagel, “Volume Graphics,”
Computer, vol. 26, no. 7, pp. 51-64, July 1993.

[27] L.P. Kobbelt, T. Bareuther, and H.-P. Seidel, “Multiresolution
Shape Deformations for Meshes with Dynamic Vertex Connectiv-
ity,” Computer Graphics Forum, vol. 19, no. 3, pp. 249-259, Aug.
2000.

[28] V. Krishnamurthy and M. Levoy, “Fitting Smooth Surfaces to
Dense Polygon Meshes,” Proc. SIGGRAPH ’96, pp. 313-324, Aug.
1996.

[29] S. Kumar, D. Manocha, W. Garrett, and M. Lin, “Hierarchical
Back-Face Computation,” Proc. Eurographics Rendering Workshop
1996, X. Pueyo and P. Schröder, eds., pp. 235-244, June 1996.

[30] I.-K. Lee, “Curve Reconstruction from Unorganized Points,”
Computer Aided Geometric Design, vol. 17, no. 2, pp. 161-177, Feb.
2000.

[31] Z. Lei, M.M. Blane, and D.B. Cooper, “3L Fitting of Higher Degree
Implicit Polynomials,” Proc. Third IEEE Workshop Applications of
Computer Vision, Dec. 1996.

[32] D. Levin, “The Approximation Power of Moving Least-Squares,”
Math. Computation, vol. 67, no. 224, 1998.

[33] D. Levin, “Mesh-Independent Surface Interpolation,” Advances in
Computational Math., 2001.

[34] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L.
Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg, J. Shade,
and D. Fulk, “The Digital Michelangelo Project: 3D Scanning of
Large Statues,” Proc. SIGGRAPH 2000, pp. 131-144, July 2000.

[35] M. Levoy and T. Whitted, “The Use of Points as a Display
Primitive,” Tr 85-022, Univ. of North Carolina at Chapel Hill,
1985.

[36] L. Linsen, “Point Cloud Representation,” technical report,
Fakultät fuer Informatik, Universität Karlsruhe, 2001.

[37] S.P. Lloyd, “Least Squares Quantization in PCM,” IEEE Trans.
Information Theory, vol. 28, pp. 128-137, 1982.

[38] D. Marr, Vision: A Computational Investigation into the Human
Representation and Processing of Visual Information. W.H. Freeman,
Sept. 1983.

[39] D.K. McAllister, L.F. Nyland, V. Popescu, A. Lastra, and C.
McCue, “Real-Time Rendering of Real-World Environments,”
Proc. Eurographics Rendering Workshop 1999, June 1999.

[40] A. Okabe, B. Boots, and K. Sugihara, Spatial Tesselations—Concepts
and Applications of Voronoi Diagrams. Chichester: Wiley, 1992.

[41] H. Pfister, M. Zwicker, J. van Baar, and M. Gross, “Surfels: Surface
Elements as Rendering Primitives,” Proc. SIGGRAPH 2000, pp.
335-342, July 2000.

[42] V. Pratt, “Direct Least-Squares Fitting of Algebraic Surfaces,”
Computer Graphics (Proc. SIGGRAPH ’87), vol. 21, no. 4, pp. 145-
152, July 1987.

[43] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery,
Numerical Recipes in C: The Art of Scientific Computing, second ed.
Cambridge Univ. Press, 1992.

[44] R. Ramamoorthi and J. Arvo, “Creating Generative Models from
Range Images,” Proc. SIGGRAPH ’99, pp. 195-204, Aug. 1999.

[45] S. Runsinkiewicz and M. Levoy, “Streaming qsplat: A Viewer for
Networked Visualization of Large, Dense Models,” Proc. Symp.
Interactive 3D Graphics, 2001.

[46] S. Rusinkiewicz and M. Levoy, “Qsplat: A Multiresolution Point
Rendering System for Large Meshes,” Proc. SIGGRAPH 2000,
pp. 343-352, July 2000.

14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 9, NO. 1, JANUARY-MARCH 2003

[47] M. Rutishauser, M. Stricker, and M. Trobina, “Merging Range
Images of Arbitrarily Shaped Objects,” Proc. IEEE Computer Vision
and Pattern Recognition 1994, pp. 573-580, 1994.

[48] G. Schaufler and H.W. Jensen, “Ray Tracing Point Sampled
Geometry,” Rendering Techniques 2000: Proc. 11th Eurographics
Workshop on Rendering, pp. 319-328, June 2000.

[49] M. Soucy and D. Laurendeau, “Surface Modeling from Dynamic
Integration of Multiple Range Views,” Proc. 1992 Int’l Conf. Pattern
Recognition, pp. I:449-452, 1992.

[50] M. Sramek and A.E. Kaufman, “Alias-Free Voxelization of
Geometric Objects,” IEEE Trans. Visualization and Computer
Graphics, vol. 5, no. 3, pp. 251-267, July-Sept. 1999.

[51] G. Taubin, “A Signal Processing Approach to Fair Surface
Design,” Proc. SIGGRAPH ’95, pp. 351-358, Aug. 1995.

[52] G. Turk, “Re-Tiling Polygonal Surfaces,” Computer Graphics (Proc.
SIGGRAPH ’92), vol. 26, no. 2, pp. 55-64, July 1992.

[53] G. Turk and M. Levoy, “Zippered Polygon Meshes from Range
Images,” Proc. SIGGRAPH ’94, pp. 311-318, July 1994.

[54] S.W. Wang and A.E. Kaufman, “Volume Sculpting,” Proc. 1995
Symp. Interactive 3D Graphics, pp. 151-156, Apr. 1995.

[55] M. Wheeler, Y. Sato, and K. Ikeuchi, “Consensus Surfaces for
Modeling 3D Objects from Multiple Range Images,” Proc. IEEE
Int’l Conf. Computer Vision 1998, pp. 917-924, 1998.

[56] A.P. Witkin and P.S. Heckbert, “Using Particles to Sample and
Control Implicit Surfaces,” Proc. SIGGRAPH ’94, pp. 269-278, July
1994.

Marc Alexa received the MSc and PhD degrees
with honors from the Technische Universität
Darmstadt, Germany (TU Darmstadt). He leads
the project group 3D Graphics Computing within
the Interactive Graphics System Group (GRIS)
at TU Darmstadt. His research interests include
shape modeling, transformation, and animation,
as well as conversational user interfaces and
information visualization.

Johannes Behr received the MSc degree in
advanced software engineering from the Uni-
versity of Wolverhampton in 1996. Since 1997,
he has been working as a research assistant
within the Visual Computing Group of the
Computer Graphics Center (ZGDV). His areas
of interests are virtual reality, real-time render-
ing, and animation/behavior descriptions for 3D
interactive worlds.

Daniel Cohen-Or received the BSc degree cum
laude in both mathematics and computer
science (1985), the MSc degree cum laude in
computer science (1986) from Ben-Gurion Uni-
versity, and the PhD degree (1991) from the
Department of Computer Science at the State
University of New York at Stony Brook. He is an
associate professor in the School of Computer
Science at Tel-Aviv University. He was a lecturer
in the Department of Mathematics and Compu-

ter Science of Ben Gurion University in 1992-1995. Dr. Cohen-Or’s
research interests are in computer graphics and include rendering
techniques, client/server 3D graphics applications, real-time walk-
throughs and flythroughs, 3D compression, visibility, meshes and
volume graphics. He has a rich record of industrial collaboration. In
1992-1993, he developed a real-time flythrough with Tiltan Ltd. and IBM
Israel for the Israeli Air Force. During 1994-1995, he worked on the
development of a new parallel architecture at Terra Ltd. In 1996-1997,
he worked with MedSim Ltd. on the development of an ultrasound
simulator. He is the inventor of WebGlide technology (RichFX) and he is
the cofounder of Enbaya Ltd. He is a member of the IEEE.

Shachar Fleishman is a PhD student in the
Computer Science Department at Tel-Aviv Uni-
versity. He received the BSc degree (1992) in
mathematics and computer science and MSc
degree (1996) from Ben-Gurion University.
During 1993-1994, he worked on the develop-
ment of an operating system for a new parallel
architecture at Terra Ltd. and, during 1995-1998,
at Microsoft R&D center in Haifa. His research
interests are in computer graphics and include

point-based object modeling and rendering and image-based rendering.

David Levin received the PhD degree from Tel
Aviv University in 1975. He is a professor at the
School of Mathematical Sciences at Tel Aviv
University and dean of the Department of
Applied Mathematics. His research interests
include numerical integration (especially conver-
gence acceleration), approximation methods,
and CAGD & Computer Graphics.

Claudio T. Silva received the Bachelor’s degree
in mathematics from the Federal University of
Ceara (Brazil), and the MS and PhD degrees in
computer science from the State University of
New York at Stony Brook. He is a principal
member of the technical staff at AT&T Labs-
Research. His current research is on architec-
tures and algorithms for building scalable dis-
plays, rendering techniques for large data sets,
3D scanning, and algorithms for graphics hard-

ware. Before joining AT&T, he was a research staff member at the
graphics group at IBM T.J. Watson Research Center. While he was a
student and, later, as a US National Science Foundation postdoctoral
researcher, he worked at Sandia National Labs, where he developed
large-scale scientific visualization algorithms and tools for handling
massive datasets. His main research interests are in computer graphics,
scientific visualization, applied computational geometry, and high-
performance computing. He has published more than 40 papers in
international conferences and journals and presented courses at major
graphics conferences, including the ACM SIGGRAPH, Eurographics,
and IEEE Visualization conferences. He serves on the program
committees of several conferences and on the editorial board of the
IEEE Transactions on Visualization and Computer Graphics. He is a
member of the ACM, Eurographics, IEEE, and IEEE Computer Society.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

ALEXA ET AL.: COMPUTING AND RENDERING POINT SET SURFACES 15

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

