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Efficient Conservative Visibility Culling Using
the Prioritized-Layered Projection Algorithm
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Abstract—We propose a novel conservative visibility culling technique based on the Prioritized-Layered Projection (PLP) algorithm.
PLP is a time-critical rendering technique that computes, for a given viewpoint, a partially correct image by rendering only a subset of
the geometric primitives, those that PLP determines to be most likely visible. Our new algorithm builds on PLP and provides an efficient
way of finding the remaining visible primitives. We do this by adding a second phase to PLP which uses image-space techniques for
determining the visibility status of the remaining geometry. Another contribution of our work is to show how to efficiently implement
such image-space visibility queries using currently available OpenGL hardware and extensions. We report on the implementation of
our techniques on several graphics architectures, analyze their complexity, and discuss a possible hardware extension that has the

potential to further increase performance.

Index Terms—Conservative visibility, occlusion culling, interactive rendering.

1 INTRODUCTION

NTERACTIVE rendering of very large data sets is a

fundamental problem in computer graphics. Although
graphics processing power is increasing every day, its
performance has not been able to keep up with the rapid
increase in data set complexity. To address this short-
coming, techniques are being developed to reduce the
amount of geometry that is required to be rendered while
still preserving image accuracy.

Occlusion culling is one such technique whose goal is to
determine which geometry is hidden from the viewer by
other geometry. Such occluded geometry need not be
processed by the graphics hardware since it will not
contribute to the final image produced on the screen.
Occlusion culling, also known as visibility culling,1 is
especially effective for scenes with high depth complexity
due to the large amount of occlusion that occurs. In such
situations, much geometry can often be eliminated from the
rendering process. Occlusion culling techniques are usually
conservative, producing images that are identical to those
that would result from rendering all of the geometry.
However, they can also be approximate techniques that
produce images that are mostly correct in exchange for even
greater levels of interactivity. The approximate approaches
are more effective when only a few pixels are rendered
incorrectly, limiting any artifacts that are perceivable to the
viewer.

1. Visibility culling is also used in a more general context to refer to all
algorithms that cull geometry based on visibility, such as back-face culling,
view frustum culling, and occlusion culling.
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The Prioritized-Layered Projection (PLP) algorithm,
introduced by Klosowski and Silva [16], [17], is one such
example of an approximate occlusion culling technique.
Rather than performing (expensive) conservative visibility
determinations, PLP is an aggressive culling algorithm that
estimates the visible primitives for a given viewpoint and
only renders those primitives that it determines to be most
likely visible, up to a user-specified budget. Consequently,
PLP is suitable for generating partially correct images for
use in a time-critical rendering system. To illustrate this
approach, consider the images of the office model shown in
Fig. 1. The image generated by PLP for this viewpoint is
shown in Fig. 1a, while the correctly rendered image is in
Fig. 1b. We can see that the image rendered by PLP is fairly
accurate, although portions of the model are missing,
including the plant stand, clock, door jam, and parts of
the desk lamp.

PLP works by initially creating a partition of the space
occupied by the geometric primitives. Each cell in the
partition is then assigned, during the rendering loop, a
probabilistic value indicating how likely it is that the cell is
visible, given the current viewpoint, view direction, and
geometry in the neighboring cells. The intuitive idea behind
the algorithm is that a cell containing much geometry is
likely to occlude the cells behind it. At each point of the
algorithm, PLP maintains a priority queue, also called the
front, which determines which cell is most likely to be
visible and therefore projected next by the algorithm. As
cells are projected, the geometry associated with those cells
is rendered until the algorithm runs out of time or reaches
its limit of rendered primitives. At the same time, the
neighboring cells of the rendered cell are inserted into the
front with appropriate probabilistic values. It is by schedul-
ing the projection of cells as they are inserted in the front
that PLP is able to perform effective visibility estimation.

In [16], [17], PLP was shown to be effective at finding
visible primitives for reasonably small budgets. For exam-
ple, for a city model containing 500K triangles, PLP was
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Fig. 1. Office model: (a) This image was computed using PLP and is missing several triangles. (b) The correct image showing all the visible triangles
rendered with cPLP. (c) The current z-buffer, rendered as luminance, for the image in (a). Black/white represents near/far objects. (d) Final z-buffer

for the correct image in (b).

able to find (on average) 90 percent of the visible triangles
while rendering only 10 percent of the total geometry. This
number alone does not guarantee the quality of the
resulting images since the missing 10 percent of the visible
triangles could occupy a very large percentage of the screen
or may be centrally located so that the incorrect pixels are
very evident to the viewer. To address this concern, the
authors reported the number of incorrect pixels generated
by the PLP algorithm. In the worst case, for the same model
and viewpoints discussed above, PLP only generated
4 percent of the pixels incorrectly. These two statistics
support the claim that PLP is effective in finding visible
geometry.

As mentioned previously, approximate occlusion culling
techniques will sacrifice image accuracy for greater render-
ing interactivity. While this trade-off may be acceptable in
some applications (especially those that demand time-
critical rendering), there are many others (such as manu-
facturing, medical, and scientific visualization applications)
that cannot tolerate such artifacts. The users of these
applications require that all of the images generated be
completely accurate. To address the requirements of these
applications, we describe an efficient conservative occlusion
culling algorithm based upon PLP. Essentially, our new
algorithm works by filling in the holes in the image where
PLP made the mistake of not rendering the complete set of
visible geometry.

An interesting fact is that, after rendering PLP’s estima-
tion of the visible set, as shown in Fig. 1la, most of the
z-buffer gets initialized to some nondefault value, as
illustrated by Fig. 1c. This figure corresponds to the z-buffer
rendered as luminance, where black represents near objects
and white represents far objects. If we were to render the
cells in the front (see Fig. 3), the visible cells would protrude
through the rendered geometry. The techniques we present
in this paper are based on incrementally computing which
cells in PLP’s front are occluded (that is, cannot be “seen”
through the current z-buffer) and eliminating them from the
front until the front is empty. When this condition holds, we
know we have the correct image (Fig. 1b) and z-buffer
(Fig. 1d).

The use of (two-dimensional) depth information to avoid
rendering occluded geometry is not a new idea. The
Hierarchical Z-Buffer technique of Greene et al. [14] is

probably the best known example of a technique that
effectively uses such information. However, even before
this seminal paper, Kubota Pacific already had hardware
support on their graphics subsystem for visibility queries
based on the current status of the depth buffer. In Section 5,
we will put our new techniques into context with respect to
the relevant related work.
The main contributions of our work are:

e We propose cPLP, an efficient interactive rendering
algorithm that works as an extension to the PLP
algorithm by adding a second phase which uses
image-space visibility queries.

o We show how to efficiently implement such image-
space visibility queries using available OpenGL
hardware and extensions. Our implementation
techniques can potentially be used in conjunction
with other algorithms.

e We discuss the performance and limitations of
current graphics hardware, and we propose a simple
hardware extension that could provide further
performance improvements.

The remainder of our paper has been organized as
follows: In Section 2, after a brief overview of PLP and some
aspects of its implementation, we detail our new cPLP
algorithm. We present several techniques for the imple-
mentation of our image-space visibility queries using
available OpenGL hardware and extensions in Section 3.
We also propose a simple hardware extension to further
improve rendering performance. In Section 4, we report on
the overall performance of the various techniques on
several graphics architectures. In Section 5, we provide a
brief overview of the previous work on occlusion culling,
followed by a more thorough comparison of our current
algorithm with the most relevant prior techniques. Finally,
we end the presentation with some concluding remarks.

2 THE CONSERVATIVE PLP ALGORITHM

The conservative PLP algorithm (cPLP) is an extension to
PLP which efficiently uses image-space visibility queries to
develop a conservative occlusion culling algorithm on top
of PLP’s time-critical framework. In this section, we briefly
review the original PLP algorithm and then present our
cPLP algorithm. Our image-space visibility queries, a
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crucial part of the implementation of cPLP, are discussed in
Section 3.

2.1 Overview of PLP

Prioritized-Layered Projection is a technique for fast
rendering of high depth complexity scenes. It works by
estimating the visible primitives in a scene from a given
viewpoint incrementally. At the heart of the PLP algorithm
is a space-traversal algorithm, which prioritizes the projec-
tion of the geometric primitives in such a way as to delay
rendering primitives that have a small likelihood of being
visible. Instead of explicitly overestimating the visible set of
primitives, as is done in conservative techniques, the
algorithm works on a budget. For each viewpoint, the
viewer can provide a maximum number of primitives to be
rendered and the algorithm will deliver what it considers to
be the set of primitives which maximizes the image quality,
based upon a visibility estimation metric. PLP consists of an
efficient preprocessing step followed by a time-critical
rendering algorithm as the data is being visualized.

PLP partitions the space that contains the original input
geometry into convex cells. During this one-time preproces-
sing, the collection of cells is generated in such a way as to
roughly keep a uniform density of primitives per cell. This
sampling leads to large cells in unpopulated areas and
small cells in densely occupied areas. Originally, the spatial
partitioning used was a Delaunay Triangulation [16];
however, an octree has recently been shown in [17] to be
a more effective data structure, both in terms of efficiency
and ease of use. Since an octree is actually a hierarchy of
spatial nodes, as opposed to a disjoint partition, we only
utilize the set of all leaf nodes of the octree since these do
provide such a partition.

Using the number of geometric primitives contained in a
given cell, a solidity value p is defined, which represents the
intrinsic occlusion that this cell will generate. During the
space traversal algorithm, solidity values are accumulated
by cells based upon the current viewing parameters
(viewpoint and view direction), as well as the normal of
the face shared by neighboring cells. Using these accumu-
lated values, the traversal algorithm prioritizes which cells
are most likely to be visible and therefore should be
projected. For a complete treatment of these calculations,
please refer to [16], [17].

Starting from the initial cell which contains the
viewpoint, PLP attempts to carve cells out of the
tessellation. It does this by always projecting the cell in
the front F (the front is the collection of cells that are
immediate candidates for projection) that is least likely to
be occluded according to its solidity value. For each new
viewpoint, the front is initially empty and we insert the
cell containing (or closest to) the viewpoint. This cell is
then immediately projected (since it is the only candidate
currently in the front) and, as its neighboring cells are
inserted into the front, their accumulated solidity values
are estimated to reflect their position during the traversal.
At the next iteration, the cell in the front most likely to be
visible is projected, and its neighboring cells are inserted
into the front with appropriate solidity values. If a cell
has already been inserted into the front, its solidity values
are updated accordingly. Every time a cell in the front is

projected, all of the geometry assigned to it is (scheduled
to be) rendered.

2.2 The cPLP Algorithm

As previously mentioned, the cPLP algorithm is built on top
of PLP. The basic idea is to first run PLP to render an initial,
approximate image. As a side effect of rendering this image,
two further structures will be generated that we can exploit
in cPLP: 1) the depth buffer corresponding to the
approximate image and 2) PLP’s priority queue (front),
which corresponds to the cells of the spatial partition that
would be rendered next by PLP if it had more time. In cPLP,
we will iteratively use the depth buffer to effectively cull the
cells in the front until all of the visible geometry has been
rendered. The general idea can be summarized as follows:

1. Run PLP using a small budget of geometric
primitives.

This step generates a partially correct image with
“holes” (regions of incorrect pixels), the correspond-
ing depth buffer, and the priority queue (front)
containing the cells that would be projected next.

2. While the front is not empty, perform the following
steps:

a. Given the current front, determine which cells
are occluded, using image-space visibility
queries, and remove them from the front.

b. Continue running PLP so that each cell in the
current front gets projected since we know that
they are all visible.

During this phase, new cells that neighbor
the projected cells are inserted into the front as
before, although they are not candidates for
projection during this iteration. We terminate
this iteration after each of the original cells (i.e.,
those in the front after Step 2a have been
projected.

As cells are rendered in Step 2b, the holes (and the

depth buffer) get filled in until the image is

complete. A nice feature of cPLP is that we know
we are done exactly when the front is empty.

One advantage of the formulation given above is that
cPLP is able to perform several visibility queries during
each iteration. At the same time, the main complication in
implementing cPLP comes from the visibility queries in
Step 2). This is further discussed in Section 3.

2.3 Challenges

There are primarily three obstacles that cPLP must over-
come to be a conservative, interactive rendering algorithm.
It must start with a good estimation of the correct image,
determine which regions of the estimation are incorrect,
and find the remaining visible geometry. Of course, to be
truly interactive, each of the solutions to these challenges
must be performed very efficiently. This can be done thanks
to the way PLP was designed. We discuss each of these
issues below.



Fig. 2. lllustration of the accuracy of PLP: For the same viewpoint and
model as shown in Fig. 1, the visible geometry that PLP rendered is
shown in white and the visible geometry that PLP did not render is
shown in red.

2.3.1 Estimating the Image

As demonstrated in [16], [17], PLP is very effective in
finding the visible polygons and correctly rendering the
vast majority of pixels, even when using relatively small
budgets. To illustrate this point, Fig. 1a and Fig. 1b show
images of an office model for the PLP and cPLP algorithms.
PLP was fairly successful in finding most of the visible
geometry for this viewpoint. To better visualize the
accuracy of PLP, Fig. 2 highlights the visible geometry that
PLP rendered in white and the visible geometry that PLP
did not render in red. By taking full advantage of the
accuracy of PLP, our conservative algorithm can quickly
obtain a good estimation of the correct image.

This feature can also be used to potentially speed up
other occlusion culling techniques (such as those in [25],
[33]), which rely on using the z-buffer values to cull
geometry.

2.3.2 Finding the Holes

As PLP projects cells (and renders the geometry inside these
cells), it maintains the collection of cells that are immediate
candidates for projection in a priority queue, called the
front. Clearly, as the primitives in the scene are rendered,
parts of the front get occluded by the rendered geometry. In
Fig. 3, we illustrate this exact effect. If no “green” (the color
that we used for the front) were present, the image would
be correct. In general, the image will be completed, and
rendering can be stopped, after all of the cells in the front
are occluded by the rendered primitives. Thus, to find the
holes in the estimated image, we need only consider the
cells in the front.

2.3.3 Filling the Holes

The final piece that we need to build cPLP is how to
complete the rendering once we know what parts of the
front are still visible. For this, it is easier to first consider the
current occluded part of the front. Basically, we can think of
the occluded front as a single occluder (see Fig. 4) that has a
few holes (corresponding to the green patches in Fig. 3).
Thinking analogously to the work of Luebke and Georges
[19], the holes can be thought of as “portals,” or reduced
viewing frusta, through which all of the remaining visible
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Fig. 3. The current front is highlighted in green. By determining where
the front is still visible, it is possible to localize the remaining work to be
done by our rendering algorithm.

geometry can be seen. An equivalent formulation is to
incrementally determine what cells belong to these smaller
view frusta by using an efficient visibility query (discussed
below).

3 IMPLEMENTING VISIBILITY QUERIES

As previously discussed, to extend PLP into a conservative
algorithm, we need to efficiently determine which cells in
the front are visible. The visibility queries will take place in
image-space and will utilize the current depth buffer. In this
section, we first describe three techniques for implementing
these queries using available OpenGL hardware and
extensions. These include using a hardware feature avail-
able on some graphics architectures (such as some Hewlett-
Packard (HP) and Silicon Graphics (SGI) graphics adapters),
an item-buffer technique that requires only the capability of
reading back the color buffer, and an alternative approach
that uses an extension of OpenGL 1.2. Then, we discuss
some further optimization techniques. Finally, we end this
section by proposing a new hardware extension that has the
potential to speed up visibility queries even further.

3.1 Counting Fragments after Depth Test

One technique for performing the visibility queries of cPLP
is to use the HP occlusion culling extension, which is
implemented in their fx series of graphics accelerators. This
proprietary feature, which actually seems quite similar to
the capabilities of the Kubota Pacific Titan 3000 reported by
Greene et al. [14], makes it possible to determine the
visibility of objects as compared to the current values in the
z-buffer. The idea is to add a feedback loop in the
hardware which is able to check if changes would have
been made to the z-buffer when scan-converting geo-
metric primitives. The actual hardware feature as im-
plemented on the fx series graphics accelerators is
explained in further detail in [25], [26]. Though not
well-known, several other vendors provide the same
functionality. Basically, by simply adding instrumentation
capabilities to the hardware which are able to count the
fragments which pass the depth test, any architecture can
be efficiently augmented with such occlusion culling
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Fig. 4. This figure illustrates the technique used in finding the remaining
visible cells in cPLP. These cells are found by limiting the remaining
work done by the algorithm to only the visible regions.

capabilities. This is the case for the SGI Visual Work-
station series which have defined an extension called
GL_SGIX_depth_pass_instrument [27, pp. 72-75].
Several new graphics boards, such as the SGI
InfiniteReality 3 and the Diamond FireGL, have such
functionality. Even low-cost PC cards, such as the 3Dfx
Voodoo graphics boards, have had similar functionality in
their Glide library (basically by supporting queries into the
hardware registers). Since the functionality proposed by the
different vendors is similar, in the rest of this paper, we
concentrate on the HP implementation of such occlusion
culling tests.

One possible use of this hardware feature is to avoid
rendering a very complex object by first checking if it is
potentially visible. This can be done by checking whether a
bounding volume bv, usually the bounding box of the
object, is visible and only rendering the actual object if bv is
visible. This can be done using the following fragment of
C++ code:

glEnable (GL_OCCLUSION_TEST_HP) ;

glDepthMask (GL_FALSE) ;

glColorMask (GL_FALSE, GL_FALSE, GL_FALSE,
GL_FALSE) ;

DrawBoundingBoxOfObject () ;

bool isVisible;

glGetBooleanv (GL_OCCLUSION_RESULT_HP,

&isVisible) ;

glDisable (GL_OCCLUSION_TEST_HP) ;

glDepthMask (GL_TRUE) ;

glColorMask (GL_TRUE, GL_TRUE, GL_TRUE,
GL_TRUE) ;

if (isvisible)

DrawGeometryofObject () ;

This capability is exactly what is required by our cPLP
visibility queries. Given the current z-buffer, we need to
determine what cells in the front are visible. It is a simple
task to use the HP hardware to query the visibility status of
each cell.

The HP occlusion culling feature is implemented in
several of their graphics accelerators, for example, the fx6
boards. Although performing our visibility queries using

the HP hardware is very easy, the HP occlusion culling test
is not cheap. In an HP white paper [26], it is estimated that
performing an occlusion query with a bounding box of an
object on the fx6 is equivalent to rendering about 190
25-pixel triangles. Our own experiments on an HP Kayak
with an fx6 estimates the cost of each query being higher.
Depending upon the size of the bounding box, it could
require anywhere between 0.1 milliseconds (ms) to 1 ms.
This indicates that a naive approach to visibility culling,
where objects are constantly checked for being occluded,
might actually hurt performance and not achieve the full
potential of the graphics board. In fact, it is possible to slow
down the fx6 considerably if one is unlucky enough to
project the polygons in a back-to-front order since none of
the bounding boxes would be occluded. In their most recent
offerings, HP has improved their occlusion culling features.
The £x5 and fx10 accelerators can perform several occlusion
culling queries in parallel [9]. Also, HP reports that their
OpenGL implementation has been changed to use the
occlusion culling features automatically whenever feasible.
For example, prior to rendering a large display list, their
software would actually perform an occlusion query before
rendering all of the geometry.

Utilizing the HP occlusion culling feature has proven to
be the simplest and most efficient of our three techniques
for performing the visibility queries needed by cPLP.
Unfortunately, at this time, this hardware feature is not
widely available in other graphics boards (for instance,
neither of market leaders Nvidia or ATI support this
feature). Because of this, we next describe a simple item-
buffer technique whose only requirement is the capability
to read back the color buffer. In Section 3.6, we propose a
simple extension of the OpenGL functionality which
extends the fragment-counting idea by adding components
of the techniques described next.

3.2 An Item Buffer Technique

It is possible to implement visibility queries similar to the
ones provided by the HP occlusion test on generic OpenGL
hardware. The basic idea is to use the color buffer to
determine the visibility of geometric primitives. For
example, if one would like to determine if a given primitive
is visible, one could clear the color buffer, disable changes
to the z-buffer (but not the actual z test), and then render the
(bounding box of the) primitive with a well-known color. If
that color appears during a scan of the color buffer, we
know that some portion of the primitive passed the z test,
which means the (bounding box of the) primitive is actually
visible.

There are two main costs associated with the item-buffer
technique: transferring the color buffer from the graphics
adapter to the host computer’s main memory and the time
it takes the CPU to scan the color buffer. The transfer cost
can be substantial in comparison to the scanning cost (see
Table 2). Consequently, it is much more efficient to do many
visibility queries at once. By coloring each of the cells in the
front with a different color, it is possible to perform many
queries at the same time.

An unwanted side effect of checking multiple cells is that
a cell, C, in the front may be occluded by other cells in the
front, as opposed to the current z-buffer, which contains



depth information for the previously rendered geometry. This
is a problem because, although cell C' is occluded by the
other cells in the front, the geometry contained within cell C
may not be occluded by the geometry within the other cells.
A multipass algorithm is therefore required to guarantee
that a cell is properly marked as occluded. Initially, all cells
in the front are marked as “potentially visible.” We also
disable writing to the z-buffer so that it remains accurate
with respect to the geometry previously rendered by PLP.
To retain the color buffer information for this geometry, we
save the initial image generated by PLP during Step 1 (see
Sections 2.2 and 3.5). Each pass of the algorithm then clears
the color buffer and renders the boundary of each of the
cells in the front that is potentially visible using a distinct
color. We then transfer and scan the color buffer to
determine which cells are actually visible and mark them.
Iterating in this fashion, we can determine exactly which
cells are visible with respect to the previously rendered
geometry. The remaining cells are determined to be
occluded by the previously rendered geometry and need
not be considered further. The multipass algorithm termi-
nates once the color buffer scan indicates that none of the
rendered cells, for the current pass, were determined to be
visible. That is, the color buffer is completely empty of all
colors. Note that potentially visible cells will need to be
rendered multiple times; however, once a cell is found to be
visible in one pass, it is marked appropriately and not
rendered again. Pseudocode for the item-buffer technique is
included below.

glDepthMask (GL_FALSE) ;
for each cell ¢ in front {
markCellPotentiallyVisible(c);
}
bool done = false;
while (!done) {
glClear (GL_COLOR_BUFFER_BIT) ;
for each cell ¢ in front {
if (potentiallyVisible(c))
renderCell (c) ;
}
glReadPixels (0, 0, width, height,
GL_RGBA, GL_UNSIGNED_BYTE,
visible_colors) ;
int cnt = 0;
for each cell c that appears in
visible_colors {
markCellvisible(c);
cnt++;
}
if (cnt == 0)
done = true;
}

3.3 The OpenGL Histogram Extension

The item-buffer technique just proposed performs a lot of
data movement between the graphics accelerator’s mem-
ory and the host computer’s main memory. On most
architectures, this is still a very expensive operation since
the data must flow through some shared bus with all of
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the other components in the computer. We propose a
different technique which uses intrinsic OpenGL opera-
tions to perform all the computations on the graphics
accelerators and only move a very small amount of data
back to the host CPU.

Our new technique shares some similarity with the
previous item-buffer technique. For instance, it also needs
to render the potentially visible cells multiple times until no
visible cell is found. However, the new method uses
OpenGL’s histogramming facility, available in the
ARB_imaging extension of OpenGL 1.2, to actually com-
pute the visible cells (see [1]). After rendering the poten-
tially visible cells in this case, rather than transferring the
color buffer to the host’s CPU and scanning it for the visible
cells, we simply enable the histogramming facility and
transfer the color buffer into texture memory (still on the
graphics accelerator). During this transfer, OpenGL will
compute the number of times a particular color appears. A
short array with the accumulated values can then be fetched
by the host CPU with a single call. A fragment of our C++
code illustrates this approach.

glEnable (GL_TEXTURE_2D) ;

glEnable (GL_HISTOGRAM_EXT) ;

glHistogramEXT (GL_HISTOGRAM_EXT, 256,
GL_LUMINANCE, GL_TRUE ) ;

glCopyTexSubImage2D (GL_TEXTURE_2D, 0,
0, 0, WIDTH, HEIGHT, WIDTH, HEIGHT) ;

GLuint histogram_values[256];

glGetHistogramEXT (GL_HISTOGRAM_EXT,
GL_FALSE, GL_LUMINANCE,
GL_UNSIGNED_INT, histogram_values) ;

glResetHistogramEXT ( GL_HISTOGRAM_EXT ) ;

glDisable (GL_TEXTURE_2D) ;

glDisable (GL_HISTOGRAM_EXT) ;

After this code is executed, the array histogram_values
contains the number of times each color (here, uniquely
identified by an integer between 0 to 255) appeared. With
this technique, the graphics board does all the work and
only transfers the results to the host CPU. The same
termination criterion exists for this multipass algorithm as
for the item-buffer technique, although we can more easily
test for this condition in this case. For instance, if
histogram_values[0] is equal to WIDTH x HEIGHT, mean-
ing all pixels are the same (background) color, then no cells
are visible and we terminate the algorithm.

3.4 Improving Visibility Query Performance

It is possible to improve the performance of our visibility
query techniques by implementing several optimizations.
The previous two techniques need to perform operations
that touch all the pixels in the image, possibly multiple
times. To avoid computations in areas of the screen that
have already been completely covered, we have implemen-
ted a simple tiling scheme that greatly reduces the amount
of transfers and scans required. The basic idea is to simply
divide the screen into fixed tiles. For a 512 x 512 pixel
image, we could break the screen up into 64 tiles, each
containing a block of 64 x 64 pixels. During the multipass
algorithm, we need to keep track of the active tiles, those
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Fig. 5. OpenGL imaging pipeline.

that, in the previous iteration, contained visible primitives.
After each iteration, tiles get completed and the number of
tiles which need to be rendered to and scanned decreases.

Another simple optimization for the item-buffer techni-
que was to minimize the number of color channels to
transfer to the host computer’s main memory. For example,
if we have r bits to represent the red color component on
our machine and we have fewer than 2" cells to check in the
front, we can uniquely color these cells using only the red
color component. Consequently, we would only need to
transfer and scan the GL_RED component for each pixel in
the image, as opposed to transferring and scanning the
entire GL_RGBA component.

We have implemented and are currently using these two
optimizations. A nonconservative optimization for our
techniques would be to compute visibility in a lower
resolution than the actual rendering window [33]. Although
a quite effective optimization, this might lead to undesirable
artifacts. This is one of the reasons we do not use it in our
system.

3.5 Integration with cPLP

The techniques presented so far essentially solve Step 2a of
cPLP. Both the item-buffer technique as well as the
histogramming technique need to have access to the color
buffer of the machine being used for its computations. For
each pass, they require that the color buffer be cleared,
which conflicts with the image computation which is
performed in Steps 1 and 2b. Naively, it would be necessary
to save the complete color buffer (or at least the active tiles)
before each call to Step 2a and restore it before the call to
Step 2b.

Instead, since we expect that, after Step 1, most of the
visible triangles have been rendered, we simply save the
image Step 1 generated and ignore the changes to the color
buffer from then on (we rerendered the extra geometry in
the end to recover the correct image). The important thing is
to correctly account for the z-buffer changes that are
triggered by the rendering of the geometry inside the cells.
To do this, before Step 2b, we change the masks on the
z-buffer so that it gets updated as geometry is rendered in
Step 2b. When the front becomes empty, we know the
z-buffer was completed. At that point, we perform a single
image restore (with the image we saved in Step 1) and we
rerender all the geometry that was found to be visible since
that point.

Fig. 10 provides an overview of our cPLP algorithm as
described. For a sample view of an office model, snapshots
were taken at several iterations (Step 2) of our algorithm.
Fig. 10a, Fig. 10b, and Fig. 10c illustrate the current color
buffer and front (in blue) at each iteration. The remaining
visible geometry will come from within the visible front

cells. Fig. 10d, Fig. 10e, and Fig. 10f illustrate the tiles of the
screen that have been completed and therefore do not need
to be scanned during subsequent iterations. Fig. 10c and
Fig. 10f correspond to the final (correct) image since all of
the tiles have been completely covered. Note that, in
Fig. 10b, the front cells, which are barely visible, are in the
upper left corner and near the two desks in the middle of
the screen. As expected, the tiles that represent these areas
are not marked as completed.

3.6 Extending the OpenGL Histogram

Here, we propose a modification to OpenGL that has the
potential to greatly improve performance. In particular, it
would make it possible to avoid the costly multipass
visibility computations that we are currently forced to use
and it can be seen as a generalization of the HP occlusion
culling test.

3.6.1 OpenGL Background

Before we go into detail, it helps to understand a bit more
about how OpenGL works. The graphics pipeline is the
term used for the path a particular primitive takes in the
graphics hardware from the time the user defines it in 3D to
the time it actually contributes to the color of a particular
pixel on the screen. At a very high level, a primitive must
undergo several operations before it is drawn on the screen.
A flowchart of the operations is shown in Fig. 5.

The user has several options for specifying vertices that
are grouped into primitives, e.g., triangles or quads.
Primitives go through several stages (not shown) and,
eventually, get to the rasterization phase. It is at raster-
ization that the colors and other properties of each pixel are
computed. During rasterization, primitives get broken into
what we usually refer to as “fragments.” Modern graphics
architectures have several per-fragment operations that can
be performed on each fragment as they are generated. As
fragments are computed, they are further processed and the
hardware incrementally fills the framebuffer with an image.

3.6.2 Per-Fragment Histogramming

The OpenGL histogramming facility, part of the pixel
transfer operations shown in Fig. 5, operates on images,
which can potentially come from the framebuffer. The
OpenGL histogram works by counting the number of times
a color appears in a given image.

The reason we need to perform multiple passes to
determine when cells are visible at this time is that we are
using the color buffer to find which of the primitives passed
the z-test. With the standard pipeline, we only get the “top
layer” of visible cells since one of the per-fragment
operations that occurs before a pixel is written to the color
buffer is the depth-test. If a per-fragment histogramming



facility is added to the pipeline and it could be used to
perform the same exact operation on fragments (which pass
the z-test), it would be possible to count how many
fragments of a given primitive passed the z-test. If this
number is zero, the primitive would be occluded; other-
wise, the histogram value would not only tell us that it is
visible, but actually provide an upper bound on the number
of its pixels that are visible. With the proposed change in
the OpenGL pipeline, we would still be able to perform
several queries at the same time, but we would not be
required to perform multiple passes over the framebuffer.

The per-fragment histogramming functionality we are
proposing is a clean way to extend the (already useful)
techniques based on counting the number of fragments
which pass the z-test (such as the HP occlusion culling test)
so that it is able to handle multiple and more general tests
with better performance. We would like to point out that
the hardware cost (in component cost or chip area) would
likely be nontrivial since high-performance graphics hard-
ware is highly parallel (for instance, Nvidia’s GeForce can
compute four fragments simultaneously) and the extra
hardware for the per-fragment histogramming would have
to be replicated for each fragment generator. Of course, this
is already the case for several other extensions, including
the existing fragment counting hardware. We believe the
actual cost (in time) of our augmented test would be similar
to the cost of a single HP test, while we would be able to
perform several tests concurrently.

4 EXPERIMENTAL RESULTS

We performed a series of experiments to determine the
effectiveness of our new cPLP algorithm. We report results
for each of the three implementations of our visibility
queries presented in Section 3, as well as several alter-
natives for benchmarking:

cPLP-HP: cPLP, using the HP occlusion culling extension,
cPLP-IB: cPLP, using the item-buffer technique,
cPLP-HG: cPLP, using the OpenGL histogram extension,

cPLP-EXT: cPLP, using our hardware extension proposed
in Section 3.6,

PLP: the original PLP,
VEF-BF: view frustum and back-face culling only,

HP: using the HP hardware to perform the visibility queries
without the benefit of running PLP to preload the color
and depth buffers.

Test model. The primary model that we report results on
is shown in Fig. 9a and consists of three copies, placed side
by side, of the third floor of the Berkeley SODA Hall
Arranging the copies in such a way helps us better
understand how the different occlusion culling techniques
function in a high depth complexity environment since they
have their greatest opportunity where there is significant
occlusion. Each room in the model has various pieces of
furniture and, in total, the three replicas contain over one
million triangles.

We generated a 500-frame path that travels right-to-left,
starting from the upper right corner of Fig. 9a. In Fig. 9b,
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TABLE 1
The Configurations of the Machines Used in Our Experiments
| Machine | CPU(s) |  Graphics | RAM |
SGI Octane | 1 X R12000, 300MHz MXE 512MB
SGI Onyx 12 X R10000, 195MHz | Infinite Reality 2GB
HP Kayak | 2 X Pentium II, 450MHz fx6 384MB

The number of processors P per machine is listed in the CPU(s) column
in the form: P X cpu-type, cpu-speed.

Fig. 9¢c, Fig. 9d, and Fig. 9e, we show a few representative
frames of the path. The number of visible polygons in each
frame varies considerably, especially when moving from
room to room.

Machine architectures. Our experiments were per-
formed on a three different architectures: an SGI Octane,
an SGI Onyx, and an HP Kayak. The configurations of the
machines are listed in Table 1.

Preprocessing. As discussed in Section 2, the preproces-
sing step of cPLP, which is identical to the preprocessing
step of the original PLP algorithm, is very efficient. The
preprocessing includes reading the input geometry from a
file, building the octree, determining which geometry each
cell contains, and computing the initial solidity values. The
total preprocessing times for the one million triangle model
mentioned above was 76 seconds, 128 seconds, and
90 seconds for the Octane, Onyx, and Kayak, respectively.
While these times are actually quite modest, we have an
additional opportunity to reduce the preprocessing require-
ment. For portability purposes, we are currently using an
ASCII format to store the model. For each of the three
machines being used, at least half (42, 64, and 56 seconds,
respectively) of the preprocessing time listed above was
spent simply reading in the model. If we were to store the
model in a compact binary format, the input portion of the
preprocessing would likely be reduced considerably. The
octree construction, geometry assignment, and initial
solidity computation only required 34, 64, and 34 seconds,
respectively, on each of the three machines, and could likely
be reduced by carefully optimizing our code. For the
experiments reported here, we subdivided the octree until
each leaf contained fewer than 5,000 triangles. This resulted
in 1,429 octree leaf cells being created.

Rendering results. We present our main rendering
results for the various cPLP implementations in Fig. 6.
The vertical axis represents the average rendering time for
each of the 500 steps in the path generated for the test
model. The horizontal axis represents the initial budget
used by PLP to render what it determined to be the most
likely visible geometry, thereby preloading the color and
depth buffers.

If we compare the item-buffer and histogram techniques,
we see that the item-buffer is considerably faster on each of
the SGI machines. All of these runs® tended to reach their
minimum values for an initial PLP budget of 25K triangles,
or roughly 2.5 percent of the total number in the model. For
this budget, the rendering times for the item-buffer
technique on the Octane and Onyx were 0.081 and 0.113

2. The only exception being the Octane cPLP-HG method, which reached
a minimum at a PLP budget of 50K triangles.
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Fig. 6. Average rendering times per frame for the implementations of the
cPLP algorithm. The PLP budget, reported in thousands of triangles,
determines the number of triangles initially rendered to fill-in the depth
buffer.

seconds on average per frame. This is equivalent to
rendering 12.35 and 8.85 frames per second, respectively.
In comparison, the histogram approach took 0.164 and
0.178 seconds on average per frame or the equivalent of 6.10
and 5.62 rendered frames per second.

We did not run cPLP-HG on the Kayak since the
OpenGL histogram extension is not available on that
machine. Also, the cPLP-IB technique on the Kayak was
very slow, requiring 0.864 seconds on average per frame.
We explain why this is the case when we discuss the costs
of the primitive operations for each of the techniques below.
The HP hardware occlusion culling extension was clearly
not available on the SGIs and, so, we can only report on this
technique on the Kayak.

cPLP-HP was the most efficient algorithm, but we were a
little surprised by the fact that it increased in running time
as we increased the PLP budget. We anticipated that we
would see a parabolic curve similar to the runs on the two
SGI machines. Initially, we considered that running PLP
followed by our cPLP-HP visibility queries was not
benefitting us at all on the Kayak. To test this hypothesis,
we implemented another technique, HP, that used the
hardware occlusion culling extension without the benefit of
running PLP first to preload the depth buffer. Given the set
of leaves in our octree, we first discarded those nodes that
were outside the view frustum and then sorted the
remaining nodes according to their distance from the
viewpoint. We then performed visibility queries for the
nodes in this order. On average, the HP technique required
0.157 seconds per frame, which is considerably slower than
our cPLP-HP algorithm.

While sorting the nodes according to distance appeared
to be a good technique, it clearly cannot capture any
occlusion information as did cPLP. In addition, this
HP technique does not have a mechanism for determining
which nodes are still visible and which sections of the
screen are yet incomplete. Consequently, this method
cannot easily determine when it is finished and, therefore,
must perform many more visibility queries than the cPLP-
HP technique. One could think of modifying this
HP approach so that the queries are performed in a

hierarchical fashion since we have the octree constructed
anyway. However, while in some cases this could reduce
the overall rendering time, in many others the times will
increase due to the increase in the number of visibility
queries. We shall discuss shortly the times required for the
HP visibility queries. Thus, although the benefit gained
from PLP was not exactly as we anticipated, it still plays a
crucial role in achieving interactive rendering times.

To quantify how well our conservative culling algorithm
is working, we implemented a simple rendering algorithm,
VF-BF, that performed only view frustum and back-face
culling. These traditional culling approaches were also used
within c¢PLP. The VF-BF algorithm is considerably slower
than all of the cPLP implementations. For example, on the
Octane, VE-BF took 0.975 seconds to render each frame on
average. Thus, our cPLP-IB and ¢PLP-HG methods render
frames 12 and 6 times faster than the VE-BF technique. Our
cPLP-HP method provides even better comparisons. Such
improvements in rendering speeds, which were similar on
all of the architectures, are crucial for any application
requiring interactivity.

Of the time spent by our cPLP approaches, a good
portion of that time was actually spent running the initial
PLP algorithm. For example, on the Octane, out of the
0.081 seconds it takes to render a frame on average,
0.064 seconds were occupied by the initial PLP algorithm
and 0.017 seconds used by the iterative visibility queries to
complete the rendered image. For the item-buffer and
histogram techniques, the average number of iterative
visibility queries per frame ranged from 4.7 iterations, for
an initial PLP budget of only 1,000 triangles, to 1.5 iterations,
for an initial budget of 100,000 triangles.

Primitive Operation Costs. To better understand the
rendering times reported in Fig. 6, we analyzed the cost of
performing the underlying primitive operations for each of
the methods. By looking at these results, we can offer
additional insight into why each of the methods works as
well, or as poorly, as it does.

For the cPLP-HP technique, the visibility queries involve
enabling the HP culling extension, rendering a cell, and
reading back the flag to indicate whether the z-buffer would
have changed if we had actually rendered the cell. We
timed the visibility queries on the HP Kayak and found that
the time ranged between 100 microseconds (us) and
1,000us. In addition to these costs, the HP visibility query
can also interrupt the rendering pipeline, thereby reducing
the overall throughput. Consequently, it is imperative when
using these queries to do so with some caution. It is
especially advantageous when you are very likely to find
significant occlusion. Otherwise, many queries may be
wasted and the overall rendering performance will be
reduced.

The primitive operation for the item-buffer technique is
the transferring of the color buffer from the graphics
accelerators memory to the main memory of the host
computer. This is done in OpenGL using a single call to
glReadPixels. The other main cost associated with this
technique is the time it takes the CPU to scan the color
buffer to determine which cells have actually contributed to
the image. We report these numbers for each of our
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TABLE 2
Times for Primitive Operations on the Iltem-Buffer Technique
Machine SGI Octane | SGI Onyx HP Kayak
Image Size || 64° | 5127 | 647 | 512 | 64% | 5127
Transfer 217 | 4483 | 564 | 7733 | 375 | 11250
Scan 30 | 2300 | 20 | 1000 | 47 | 3430
[ Total [ 247 [ 6783 [ 584 | 8733 | 422 [ 14680 ]

An image size of 64* refers to an image that is 64 x 64 pixels in size. The
transfer time is the dominant cost of this method. All times are reported
in microseconds.

machines in Table 2. It is immediately apparent why the
cPLP-IB technique on the Kayak is so slow. The transfer and
scan times are considerably slower (for the 512 x 512 image)
than on the SGIs. Another interesting observation, which
also helps justify our tiling optimization in Section 3.4, is the
substantial increase in time that is required to transfer and
scan a 512 x 512 pixel image, as opposed to only a 64 x 64
pixel (sub)image.

For those machines that support the OpenGL histogram
extension, the underlying operations include copying an
image, or subimage in the case of our tiles, from the
framebuffer to texture memory. We have timed this
operation with the histogram extension enabled to see
how much time is required for the copy with the histogram
calculations. The histogram calculation also includes the
time to retrieve and scan the histogram results. On the
Octane, it takes 800us for a 64 x 64 pixel image, and
34,000us for a 512 x 512 image. On the Onyx, it takes 6905
for a 64 x 64 pixel image, and 13,500us for a 512 x 512
image. (We should note that it is quite difficult to perform
such measurements, but we have done our best to report
accurate results.) We were surprised by the amount of time
required to copy the image to texture memory and perform
the histogram computations. Our initial belief was that, by
using the actual hardware to perform our visibility queries,
our rendering times would decrease. Unfortunately, this is
not the case at this point in time. While the Onyx appears to
be more advanced than the (newer) Octane in its histo-
gramming features, neither machine performs well enough
to be faster than the item-buffer techniques.

Depth Complexity. To further test our cPLP algorithms,
we considered another model with extremely high depth
complexity. Fig. 7 shows an interior view of a skyscraper
model which consists of over one million triangles. The
model, courtesy of Ned Greene, consists of 54 copies of a
module, each with almost 20K triangles.

The purpose of this experiment was to determine the
depth complexity of this model when rendering it using the
various techniques. By depth complexity, we refer here to the
average number of times a z-test is performed for each pixelin
the image. If our cPLP techniques are effective at determining
occlusion, our methods should reduce the depth complexity
considerably in comparison to a standard rendering algo-
rithm. Using one such technique, VF-BF, we determined the
depth complexity of this model (for this viewpoint) tobe 26.70
on average, for all of the pixels in the image. Using cPLP, we
were able to reduce this value to only 7.97. We emphasize that
these numbers refer to the number of z-tests per pixel, as
opposed to the number of z-tests that pass (i.e., resulting in

Fig. 7. Interior view of a skyscraper model. cPLP reduced the depth
complexity of this rendered image from 26 to 8.

the pixel’s color being overwritten by a fragment that is closer
to the viewer), which has been reported in other approaches.
We opted for this number since the number of z-tests more
accurately reflects the work that is done during the rendering
algorithm.

cPLP-EXT. Since we do not actually have hardware
which implements our proposed extension, here we
extrapolate on its performance based on the results we
have, assuming we were to add such an extension to the
HP Kayak fx6. Using cPLP-IB, it is possible to determine the
number of tests that can be performed in parallel for each
triangle budget in Fig. 6. Assuming our extension is
properly implemented, we believe it should take no more
time than the fragment counting technique already avail-
able on several architectures. While measuring on HP
machines, we found that, in the worst case, an occlusion test
costs 1 ms. But, since we have to bring more data from the
graphics hardware for our extension, we will assume that
each query is twice as expensive, or 2 ms, to account for the
extra data transfer. (Since only extremely small arrays of
256 values are being transfered, we don’t believe it would
actually have such an impact.)

Table 3 summarizes our findings. Basically, we are
computing the time for cPLP-EXT as a sum of the initial
PLP cost (initializing its per-frame data structures, such as
zeroing the solidity of each cell, and rendering the first
batch of triangles for all frames), plus the total number of
parallel EXT tests (which we assume take 2 ms each), plus
the time to render the extra triangles (at a rate of
approximately 1 million triangles/sec), which are found
as visibility tests are performed.

With these assumptions, we can see that our frame rates
get considerably better (see Fig. 8) and we could potentially
achieve a frame rate of 23 Hz (versus 18 Hz for cPLP-HP, an
improvement of 28 percent) if we had a hardware
implementation of our extension. We would like to point
out that the advantage would be even greater if the cost of
initializing PLP’s per-frame data structures was made
lower. Our current PLP implementation uses an STL set,
which is not particularly optimized for linear traversals
which are necessary during initialization. If necessary, it
would be possible to optimize this code further.



KLOSOWSKI AND SILVA: EFFICIENT CONSERVATIVE VISIBILITY CULLING USING THE PRIORITIZED-LAYERED PROJECTION ALGORITHM 11

TABLE 3
Performance of cPLP-EXT on a “Hypothetical” HP Kayak fx6

PLP Budget (triangles) | PLP Time (s) | #EXT Tests | Avg. Extra Triangles | Average Time (s) | Frame Rate (Hz) |

1,000 0.019 4.688 16844 0.044 227
10,000 0.028 3.376 10978 0.045 222
25,000 0.043 2426 5641 0.053 18.9
50,000 0.066 1.908 2796 0.072 13.9
75,000 0.091 1.630 1770 0.096 10.4
100,000 0.112 1.372 1247 0.116 8.6

All times are reported in seconds. The average extra triangles are the number of triangles that get rendered in addition to the PLP budget. See text

for further details.

5 RELATED WORK

There has been a substantial amount of recent work on
occlusion culling (see, for instance, [ 5], [6], [8], [11], [18],
[23], [24], [30], [31]). The purpose of this section is not to do
an extensive review of all occlusion culling algorithms. For
that, we refer the interested reader to the recent surveys by
Cohen-Or et al. [7] and Durand [10]. Instead, we focus on
reviewing work that is more closely related to our own so
that we can indicate the similarities and differences with
our current work.

Closely related to our work are techniques that use two-
dimensional depth information to avoid rendering oc-
cluded geometry. An early example of this is a technique
by Meagher [20] that stores the scene in an octree and the
framebuffer in a quadtree. Meagher renders the octree in a
strict front-to-back order, while keeping track of which
parts of the quadtree get filled, in order to avoid touching
parts of the octree that cannot be seen. Naylor [22] proposes
another version of this idea, where, instead of using an
octree and a quadtree, he uses two binary-space partition-
ing trees [12], one in 3D, the other in 2D, to efficiently keep
both the scene and the image, respectively. The 3D BSP can
be used to traverse the scene in a strict front-to-back order
and the 2D BSP is used to keep the areas of the screen which
get filled. Our current approaches differ from these
methods in that they do not render in a strict front-to-back
order (which was shown to be less effective), but rather
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Fig. 8. Average rendering times per frame for cPLP-HP and our
proposed hardware extension method cPLP-EXT. The PLP budget,
reported in thousands of triangles, determines the number of triangles
initially rendered to fill-in the depth buffer.

allow PLP to determine the order in which to visit (and
render) the cells.

The Hierarchical Z-Buffer (HZB) technique of Greene
et al. [14] is probably the best known example of a technique
that efficiently uses depth information for occlusion culling.
Their technique is related to Meagher [20] in that it also uses
an octree for managing the scene, which is rendered in
front-to-back order. Another similarity is that they also use
a quadtree, but not for the actual framebuffer (as in [20]).
Instead, they use the quadtree to store the z-buffer values,
which allow for fast rejection of occluded geometry. The
HZB technique also explores temporal coherency by
initializing the depth buffer with the contents of the visible
geometry in the previous frame.

The Hierarchical Z-Buffer has several similarities to
cPLP. Their use of the visible geometry from the previous
frame for the purpose of estimating the visible geometry is
similar to our approach, although, in our case, we use the
visibility estimation properties of PLP to estimate the
current frame. One advantage of doing it this way is that
(as we have shown earlier) the front intrinsically tells us
where to continue rendering to fill up the z-buffer. HZB has
no such information; it renders the remaining geometry in
front-to-back order. The fact that we employ a spatial
partitioning instead of a hierarchy in object-space is only a
minor difference. Depending upon the scene properties, this
may or may not be an advantage. The flat data structure we
use seems more efficient for a hardware implementation
since we do not need to stop the pipeline as often to
determine the visibility of objects. In [13], Greene introduces
an optimized variation of the HZB technique, including a
nonconservative mode.

A closely related technique is the Hierarchical Occlusion
Maps of Zhang et al. [33]. For each frame, objects from a
precomputed database are chosen to be occluders and are
rendered (possibly) in lower resolution to get a coverage
footprint of the potential occluders. Using this image,
OpenGL’s texture mapping functionality generates a hier-
archy of image-space occlusion maps which are then used
to determine the possible occlusion of objects in the scene.
Note that, in this technique, the depth component is
considered after it is determined that an object can
potentially be occluded. One of the main differences
between HOM and cPLP is that HOM relies on preproces-
sing the input to find its occluders, while cPLP uses PLP for
that purpose. HOM also utilizes a strict front-to-back
traversal of the object-space hierarchy.
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Fig. 9. (a) A top-down view of our data set. (b)-(e) Sample views of the recorded path.

The work by Bartz et al. [3], [4] addresses several of the
same questions we do in this paper. They provide an
efficient technique for implementing occlusion culling using
core OpenGL functionality and then propose a hardware
extension which has the potential to improve performance.
Similarly to the previous methods, Bartz et al. use a

hierarchy for the 3D scene. In order to determine the visible
nodes, they first perform view-frustum culling, which is
optimized by using the OpenGL selection mode capabil-
ities. For the actual occlusion tests, which are performed
top-down in the hierarchy nodes, they propose using a
virtual occlusion buffer, which is implemented using the
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Fig. 10. Snapshots during three iterations of our cPLP algorithm. The current front (blue) and completed tiles (red) are highlighted for iteration 1 in (a)
and (d), iteration 2 in (b) and (e), and iteration 3 in (c) and (f). The final rendered image is (c).

stencil buffer to save the results of when a given fragment
has passed the z-test. In their technique, they need to scan
the stencil buffer to perform each visibility test. Since this
has to be performed several times when determining the
visible nodes of a hierarchy, this is the most time consuming
part of their technique and they propose an optimization
based on sampling the virtual occlusion buffer (thus
making the results only approximate). In their paper, they
also propose an extension of the HP occlusion culling test
[25] (see [3] for details). At this time, the HP occlusion test
simply tells whether a primitive is visible or not. Bartz et al.
propose an extension to include more detail, such as
number of visible pixels, closest z-value, minimal-screen
space bounding box, etc. There are several differences
between their work and our own. First and foremost, our
techniques are designed to exploit multiple occlusion
queries at one time, which tend to generate a smaller
number of pipeline stalls in the hardware. Also, our
hardware extension is more conservative in its core
functionality, but has the extra feature that it would support
multiple queries. One additional difference is that, similar
to Greene et al. [14], cPLP incorporates an effective
technique for filling up the depth buffer so as to minimize
the number of queries. We do not believe that it would be
difficult to incorporate this feature within the framework of
Bartz et al.

The technique by Luebke and Georges [19] describe a
screen-based technique for exploiting “visibility portals,”

that is, regions between cells which can potentially limit
visibility from one region of space to another. Their
technique can be seen as a dynamic way to compute
information similar to that in [28]. One can think of ¢cPLP’s
obscured front as a single occluder, which has a few holes.
If we think of the holes as “portals,” this is, in certain
respects, analogous to the work of Luebke and Georges. In
the context of their colonoscopy work, Hong et al. [15]
propose a technique which merges Luebke and Georges’s
portals with a depth-buffer based technique similar to ours.
However, in their work, they exploit the special properties
of the colon being a tube-like structure.

HyperZ [21] is an interesting hardware feature that has
been implemented by ATI. HyperZ has three different
optimizations that improve the performance of 3D applica-
tions. The main thrust of the optimizations is to lower the
memory bandwidth required for updating the z-buffer,
which they report is the single largest user of bandwidth on
their graphics cards. One optimization is a technique for
lossless compression of z-values. Another is a fast z-buffer
clear, which performs a lazy clear of the depth values. ATI
also reports on an implementation of the hierarchical
z-buffer in hardware. Details on the actual features are
only sketchy and ATI has not yet exposed any of the
functionality of their hardware to applications. Conse-
quently, it is not possible at this point to exploit their
hardware functionality for occlusion culling.



14 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL.7, NO. 4, OCTOBER-DECEMBER 2001

Another recent technique related to the hierarchical
Z-buffer is described by Xie and Shantz [32]. They propose
the Adaptive Hierarchical Visibility (AHV) algorithm as a
simplification of HZB for tile architectures.

Alonso and Holzschuch [2] propose a technique which
exploits the graphics hardware for speeding up visibility
queries in the context of global illumination techniques.
Their technique is similar to our item-buffer technique.
Westermann et al. [29] propose a different technique for
using the OpenGL histogram functionality for occlusion
culling. Their work involves histogramming the stencil
buffer instead of the color buffer as is done in our work.

6 CONCLUSIONS

In this paper, we presented a novel conservative visibility
algorithm based on the nonconservative PLP algorithm.
Our approach exploits several features of PLP to quickly
estimate the correct image (and depth buffer) and to
determine which portions of this estimation were incorrect.
To complete our conservative approach, we required an
efficient means of performing visibility queries with respect
to the current estimation image. We showed how to
implement these visibility queries using either hardware
or software. If fragment-counting hardware is available
(such as on HP fx, Diamond FireGL), this is clearly the best
choice. Otherwise, the item-buffer technique is the next best
option. As graphics hardware continues to improve, and if
the OpenGL histogramming features are further optimized,
this approach may offer the highest levels of interactive
rendering.

Our cPLP approach has several nice features. It provides
a much higher level of interactivity than traditional
rendering algorithms, such as view frustum culling. As
opposed to PLP, cPLP provides a conservative visibility
culling algorithm. The preprocessing required by our
algorithm is very modest and we are not required to store
significant occlusion information, such as view-dependent
occluders or potentially visible sets. We are also able to run
our algorithm on all (polygonal) data sets since we do not
require any underlying structure or format, such as
connectivity information.

Further investigation is necessary to study the feasibility
(cost) of adding our hardware extension proposed in
Section 3.6 to current architectures. As we show in this
papet, it can further improve the performance substantially
over techniques that provide a single counter of the
fragments that pass the depth-test, such as the HP
occlusion-culling extension, since it is able to perform
several tests in parallel.
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