EFFICIENT RENDERING OF
VOLUMETRIC IRREGULAR GRIDS DATA

A Dissertation Presented

by
Ricardo Farias
TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF
DocTOR OF PHILOSOPHY
IN

APPLIED MATHEMATICS AND STATISTICS

State University of New York at Stony Brook

June 2001

© Copyright 2001
by

Ricardo Farias

State University of New York at Stony Brook
The Graduate School

Ricardo Farias

We, the dissertation committee for the above candidate for the Doctor of

Philosophy degree, hereby recommend acceptance of this dissertation.

Joseph S. B. Mitchell, Dissertation Advisor
Professor, Applied Mathematics and Statistics

Claudio T. Silva, Dissertation Co-Advisor
Adjunct Assistant Professor, Applied Mathematics and Statistics

Esther M. Arkin, Committee Chair
Professor, Applied Mathematics and Statistics

Klaus Mueller
Assistant Professor, Computer Science

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

i

Abstract of the Dissertation
Efficient Rendering of Volumetric Irregular Grids Data
by
Ricardo Farias
Doctor of Philosophy
in
Applied Mathematics and Statistics
State University of New York at Stony Brook
2001

In this dissertation, we show the results of our research on the field of
volumetric rendering of unstructured grid data sets. We present and explain
in detail our most important results and contributions.

Volumetric rendering is a highly computational intense process. Images
generated by this process show informations about the interior of the data, not
only about the surface, by considering the data composed by semi-transparent
materials.

A technique to be used as a tool for real-time analysis, is required to
achieve a minimum rate of 10 frames per second (ideally 30 fps). Even the
fastest algorithm for volumetric rendering takes about 3.5 seconds to generate
an image of a data set composed by half million cells in a computer with a
fast processor, nowadays.

In the first part of our research, we optimized the fastest algorithm (at the
time), developed by Bunyk et al. [6], and put together some approximation
techniques to speed up the image generation. In a time-critical fashion, ap-

proximate images are delivered until the system is given more time, when it

il

generates more and more accurate images up to the exact one.

In the second part, we present a novel, simple, fast, memory efficient, exact
and robust volume rendering algorithm based on the sweep paradigm, called
ZSweep. This algorithm and the further work we developed on it, became
the most important contribution of our research. Extensions developed on this
algorithm are its adaptation to run on shared memory architectures, results
got on SGI machines, and time and memory requirements of an out-of-core
implementation. Also another simple out of core volume rendering algorithm

is proposed.

v

To my wife Vania, my son Renato, my daughter Leticia
and

My Parents Roberto Hudson and Myrian

Contents

1 Introduction

2 Review
2.1 Data Representation
2.2 Volume Rendering
2.2.1 Volume Rendering Pipeline: Geometric Stage
2.2.2 Volume Rendering Pipeline: Rasterization Stage
2.3 Parallel Rendering Basics
2.3.1 Parallel Architectures
2.3.2 Types of Parallelism
2.3.3 Parallel Programming Efficiency

3 Time-Critical Rendering
3.1 Introduction
3.2 The Rendering Algorithm
3.3 Time-Critical Algorithm
3.4 Experimental Results

3.5 Conclusion

vi

10
12
19
21
21
24
27

4 ZSweep Algorithm

4.1 Introduction Lo
4.2 The ZSweep Algorithm
4.3 Implementation Details
4.3.1 Preprocessing and Basic Structures
4.3.2 SWEED e e e
4.3.3 Projection oL
4.3.4 Delayed Compositing
4.3.5 Optimizations
4.4 Experimental Results0 0000
4.4.1 ZSweep Performance
4.4.2 Comparison with Other Methods
4.5 Conclusion

5 Parallelizing ZSweep

5.1 Imtroduction L Lo
5.2 Related Worko
5.3 The Parallel ZSWEEP Algorithm
5.4 Experimental Results
5.4.1 Sequential Tile-Based ZSWEEP
5.4.2 Load Balancing L.
5.4.3 Data and Image Scalability
5.5 Conclusiono L oo

6 I/0 Volume Rendering

6.1 Introduction

vii

61
62
67
73
74
74
7
7
78
81
82
85
86

93
94
98
101
104
105
106
109
110

113

6.2 Related Work oo 115
6.2.1 Unstructured Grid Volume Rendering 115
6.2.2 Out-Of-Core Scientific Visualization. 119

6.3 Out-Of-Core Rendering Algorithms for Unstructured Grids . . 120

6.3.1 Memory-Insensitive Rendering 120

6.3.2 Out-Of-Core ZSWEEP 123

6.4 Experimental Results 128

7 Conclusions 133

viii

List of Figures

w

© o0 N O Ot

11

12
13
14
15
16

Basic geometrical connectivities.o 7
Example of real 3D object. 9

Sequence of faces intersected by a ray cast through one pixel of

theimage. 11
The Volume Rendering Pipeline. 13
Viewing transformations. 14
Cross section for lighting model elaboration. 16
Clipping a set of triangles. 19
Parallel implementation considerations. 22
Distributed memory architecture representation. 25
Examples of five different data division schemes. 30
Spatial coherence in image space. 34
Ray cast optimization scheme. 39
Loss of boundary information. 53
Interior points simplification scheme. 54
Using ghost points to preserve boundary information. 55
Speeding up by scaling the resulting images. 56

X

17
18
19
20

21
22
23
24
25
26
27
28
29

30
31
32
33
34
35

36
37

Image down-sampling on the Blunt Fin.
Applying all simplification schemes.
Liquid Oxygen Post simplification.

A screen shot of the time-critical system GUL.

Faces projection scheme.
Breaking a rectangular face.
The sparse representation of a 2D mesh.
Image of Blunt Fin created in 5122512.
Image of Combustion Chamber created in 512x512.
Image of Liquid Oxygen Post created in 512x512.
Image of Delta Wing created in 512x512.
SPX dataset. Lo

Example of a hexahedral dataset.

ZSWEEP algorithm in action.
A 8-by-8 tiling decomposition is shown.
Sequential tile-based ZSWEEP results.
Running times on up to 12 processors for the Post dataset. . .
Load imbalance with different tiling parameters.

Rendering time plot.o oL

The main idea of the (in-core) ZSWEEP algorithm.
The rendering portion of out-of-core ZSWEEP.

60

70
76

List of Tables

1 Information about the data sets used in our experiments. . . . 46
2 Optimization time results. 47
3 Speed up from lazy transformations. 48
4 Down sampling time speed up. 49
) Dataset information.o oo 80
6 Speed ups obtained over sparse representation. 80
7 Render times on a SGI machine. 83
8 Render times on K7-PC machine. 83
9 Blunt fin render time and memory requirement. 84
10 Combustion chamber render time and memory requirement. . 84
11 Liquid oxigen post render time and memory requirement. . . . 84
12 Delta wing render time and memory requirement. 85
13 Rendering times for SPX.o 108
14 Main datasets used for benchmarking the parallel ZSweep. . . 109
15 Main datasets used for benchmarking the 10-ZSweep. 126

xi

16

17
18

Rendering times for the in-core ZSweep code running with one
gigabyte of RAM.o oL 128
Rendering times for the OOC-ZSweep using 128 MBytes of RAM.130

Rendering times for our memory insensitive rendering algorithm.131

xii

Acknowledgments

First T would like to express my deep gratitude to my advisor, Professor Joe
Mitchell and my Co-Advisor Claudio Silva, for their support, friendship, en-
couragement and guidance over the past five years.

I thank also the members of my committee, Professors Esther M. Arkin and
Klaus Mueller for their time and useful criticism. Many thanks to the AMS
Department staff, in particular, Scott Connelly, Claire Dugan, Nancy Policas-
tro, Loretta Budd, and Laura Colucci for their help and patience, making this
hard period of my life much easier.

Thanks to Brian Wylie, Dino Pavlakos and Pat Crossno from Sandia Na-
tional Labs, for their contributions to my work. To all of our Computational
Geometry group students, Jim Klosowski, Changkil Lee, Xinyu Xiang, Tsung-
Chin Ho, Nenad Jovanovic, Petr Konecny, Saurabh Setia and Pyiush Kumar
for helpful discussions, mutual help and friendship.

I would like to thank Paul Bunyk and Claudio Silva for making their codes
available. Also thanks to the the graphics community, who so often share
through the internet their hard-developed code. Thanks to Peter Williams
and Will Schroeder for providing some interesting datasets, NASA for making
available the Blunt Fin, Liquid Oxigen Post and Delta Wing datasets.

Thanks to many friends from Brazil who helped me not only with moti-
vation, but with their friendship during the dark period of adaptation and
qualifying exams: Professor Antonio Oliveira, Professor Alex Motta Borges;
my friends from LCG, Luiz Marcos Garcia Gon calves, Marcelo Eugénio Kall-
mann, José Luis de Souza Pio, Fernando Wagner da Silva, Antonio Lopes
Apolinério Junior, Antonio Alberto Silva Junior, Victor Toso, Gilson Antonio
Giraldi, José Augusto Pereira Brito and José Maria Ribeiro Neves. Thanks
also to Murilo and Clarice Camargo for the short but high quality time we
spent together.

I thank my family for supporting me during all these years. My nephews
Anderson and Heverson whose sporadic visits always comforted me a lot. Spe-
cial thanks go to my dad Roberto Hudson and my mom Myrian, who are
also my friends and have always supported my crazy dreams, and without
whom nothing would have been possible. Thanks to my sister Jane, brothers
Hudson and Edson who completed my life helping me to become who I am
today. Thanks go also to my inlaws Evando and Maria Madureira. Most of
all, I thank my wife Vania, for her friendship and support during my graduate
studies, in all aspects, my son Renato and daughter Leticia who have always
been the reason for my persistence and determination. I finally thank God for
putting so many wonderful people in my life.

Thank you all.

Funding for this research has come from a variety of sources. I received

direct (e.g., stipend) funding from CNPq — Brazil (Ph.D. fellowship), Sandia

National Labs and the Office of Applied Mathematics of the U.S. Department
of Energy, and the National Science Foundation. Money for equipment and
other purposes have been provided by grants and donations from the National
Science Foundation, the State University of New York at Stony Brook, Sandia
National Labs and Compagq.

Chapter 1

Introduction

Volume rendering is the sub-field of the visualization with the goal of generat-
ing 2D images from 3D volumetric data sets.

The importance of volume rendering comes from the fact that data gen-
erated from computer simulations in sciences such as fluid dynamics, finite
element analysis, aerodynamics, etc, and also data acquired from satellites
for weather forecast, terrain mapping, etc, result usually in large data files of
giga-bytes in size. While all five human senses are very limited, our vision
sense has the important characteristic of allowing us to capture information
at a rate on the order of 100 million bits per second, since such information is
presented to us in the appropriate format: images.

To be able to analyze such data sets, we need to “see” them, and the
images generated must be consistent with our common sense. For instance, if
the data represents clouds, then the more dense the cloud, the darker it should
be displayed on the screen. Also, the hotter a region in space is, the brighter

in red color it should be shown. This coherence between the data, the type

CHAPTER 1. INTRODUCTION 2

of experiment and the appearance of the image generated, makes it possible
for us to visually analyse this huge amount of data in a reasonable amount of
time.

Besides color coherence, just mentioned, another image characteristic cru-
cial for its correct analysis, is the definition. It will dictate how clearly details
of the data (either experiment or simulation) will be shown, making it easier
and faster to precisely analyze of the data. It is usual to use approximate
rendering algorithms to interactively find a position and angle of observation,
and then apply a precise and more expensive rendering algorithm to generate
the exact image. For example, iso-surface extraction can make use of graphics
hardware to deliver images at interactive frame rates. In areas like surgery, in
medicine, it is desirable that the image generated even during the fly through,
is as precise as possible, to avoid mistakes.

To achieve this goal, computer scientists are actively investigating new al-
gorithms and techniques to speed up the volume rendering process. As will
be explained in Chapter 2, data can be represented as regular or irregular
grids, while a more general representation would be unstructured, where no
connectivity is considered. In the last decade, fast and exact algorithms were
developed and optimized for regular grid data (which utilizes implicit grid in-
formation), achieving the desired real-time frame rate (about 30 frames per
second). It made this kind of representation very attractive for scientists in
various areas of research. But it was noticed that data density is not homoge-
neously distributed in space, and that a regular grid representation becomes
quickly prohibitive, as the amount of information grows, due to the high level

of redundancy.

CHAPTER 1. INTRODUCTION 3

A more compact and efficient representation for volumetric data is an ir-
regular grid. The grids can be refined in regions of high density of information
and sparse in low density regions. A drawback of such efficiency in space
representation is that more adjacency information must be taken into consid-
eration, making it much harder to perform rendering. This is the focus of our

research. In this dissertation we present our results in this field.

Dissertation OQutline

This dissertation is organized as follows:

In Chapter 2 we present a brief review of volume rendering and the most im-
portant efficiency issues related to the parallelization of rendering algorithms.

In Chapter 2.3.3 we describe the development of a tool for time critical
scientific visualization. We integrated a fast ray-tracing algorithm with some
approximation methods, in both image and object spaces, that allowed us to
trade accuracy for speed in the image generation process. Both the original
and the simplified meshes are kept in memory, and the system delivers ap-
proximated images, showing more accurate ones when more time is available.

In Chapter 4 we propose a novel volume rendering algorithm we call ZSweep.
The algorithm is based on the sweep paradigm; see [56]. By sweeping all points
in the data in increasing z direction the algorithm projects the faces of the
cells incident on the point. The intersections for each pixel are kept in an
ordered list that is used in a future step of compositing. The efficiency arises

from the fact that the algorithm exploits the implicit (approximate) global

CHAPTER 1. INTRODUCTION 4

ordering that the z-ordering of the vertices induces on the cells that are inci-
dent on them. Simplicity, speed, memory efficiency, and robustness were the
contributions of this algorithm is to the field of volume rendering.

In Chapter 5 we present the first parallelization results of the ZSweep al-
gorithm. Details about modifications necessary to avoid costly overheads and
to achieve a good load balancing are discussed. Also some cache coherence
analysis is given.

In Chapter 6 we propose two out-of-core volume rendering algorithms. The
first is a simple scheme of simple implementation that presents the desirable
characteristic of using a constant amount of memory, independent of the size
of the image required, we called memory insensitive rendering (MIR). The
second algorithm is more involved and is an extension of the ZSweep algo-
rithm, which brings down the memory requirement for the original algorithm
implementation.

Finally, Chapter 7 summarizes our work and gives some future directions.

Chapter 2

Review

In this chapter we review the basic concepts of volume rendering and issues
related to its parallelization. We start with a brief overview about data rep-

resentation.

2.1 Data Representation

Volume rendering is a subfield of visualization, which is an important field
of study in computer graphics. The goal of volume rendering is to create
(two-dimensional) images of (three-dimensional) volumetric data.

A volumetric dataset consists of information at sample locations in space.
The information may represent a scalar field, such as density in a computed
tomography (CT), or a vector field, such as velocity in a flow field, or even a
combination between these two, such as, energy, density, and momentum in a
computational fluid dynamics simulation.

Volumetric datasets are often represented in rectilinear grids, as a 3D grid

CHAPTER 2. REVIEW 6

of volume elements, called vozels. Each voxel is a unit of the volume and has
associated with it some property of the object or phenomenon being studied.
If all voxels are identical cubes the dataset is said to be reqular. Examples are
found in medical data, simulations of fluid dynamics experiments, and finite
element models. A variation on regular grids is curvilinear grids, which can be
thought of as the result of a “warping” of a regular grid. Unstructured grids
consist of arbitrarily shaped polyhedral cells, with no particular relation to
rectilinear grids. In this work, we focus on presenting efficient solutions for
visualizing volumetric datasets given as unstructured grids.

The most common techniques of volume rendering are ray-casting, splat-
ting, shear-warp and texture mapping based rendering. All of these techniques
can be applied to regular datasets, but only ray-casting and texture map-
ping (by means of 3D texture mapping), can be applied to unstructured grids
datasets.

Since we deal only with unstructured grids, we point to [50] as a reference
giving a survey and comparison among the techniques applied to regular grid
data.

We start by defining some important terms and concepts. We are given
a set V of n points in 3D space (R*). If no connection between the points
is given, such set is said to represent a point cloud. In unstructured grids,
connections are given between the points, which serve to organize the points

into a polyhedral decomposition of R? into vertices, edges, faces, and cells:

e Vertices are the input points V'; vertices are 0-dimensional.

e Edges are line segments connecting two vertices; edges are 1-dimensional.

CHAPTER 2. REVIEW 7

(a) (b) (c)

Figure 1: Basic geometrical connectivities. (a) Edges connect pairs of points.
(b) Points po, p1, p2 and ps are connected in a cycle that forms the boundary
of the face F'. To give a better 3D impression, we show the projection, P, of
F on the (z,y)-plane. Note that faces that are determined by more than 3
points may be non-planar. (c) A tetrahedral cell is defined by four triangular
faces.

See Figure 1.a.

e Faces are 2-dimensional polygons represented by a cycle of edges. See

Figure 1.b.

e Cells are 3-dimensional connected regions bounded by the faces. See

Figure 1.c.

Faces can be defined by three or more points. An important issue is that
when a face is determined by more then three points, it cannot be guaranteed
that the points are coplanar. This can lead to problems in the interpolation
step of the rendering procedure, as we discuss later.

We emphasize the distinction between a surface embedded in the 3D space,

bounding a 3D object, and an actual solid model of a 3D object. See Figure 2.

CHAPTER 2. REVIEW 8

3D objects are represented by (3-dimensional) cells, while a 2D surface is
represented only by a union of triangles or polygons, with no explicit data
representing the points in 3D that comprise the body of the object surrounded
by the surface. When generating an image using only the boundary faces, as
polygon rendering techniques do, no information about the interior is taken
into account.

If all cells of an unstructured grid are tetrahedral, we say that such a
dataset is represented by a tetrahedral grid. If the cells are given as hexahedra
(each having six faces), the dataset is said to be a hezahedral grid dataset. We
explicitly mention these two types of cells, since these are the most common
irregular grid representations found in the literature.

In Section 2.3.3 we describe the ray-casting algorithm, proposed by Bunyk
et al [6]; it uses cell connectivity to figure out the list of cells intersected by the
ray cast through each pixel of the image. In Section 4 we discuss the previous
works based on the sweep paradigm, including the ZSweep algorithm that we
propose in this thesis. In Section 5 and Section 6 we present the extensions
we have made to ZSweep, including the implementation and analysis of its
parallelization for shared-distributed memory architectures. We also describe
its adaptation to the out-of-core framework, in which the image is generated
in parts, and only the minimum data information necessary to generate each
part of the image is read in to memory at a time, allowing the visualization of

much larger datasets.

CHAPTER 2. REVIEW

ZSTH)
4"%"‘ 0\
ASESEAPET

_ g2

7 \/
7 .

o5
KEEA
o0
KA/
6

N
g
%
PV
P
%
Y%
%% 7
L5

& D
R
N
pAYA
N
N/
A
i
ey
g
<

\ 5
2
7

A
R
A

7

AN
=0
X
VA
FAVA)
AV

> P TAVAYAY
vt vavav =i
SRRt
AAARRHHAS

a
VA

&\

Figure 2: As an example of real 3D object we use the tetrahedral mesh for
the dataset SPX. (a) Frontal boundary faces. (b) All boundary faces. (c) The
entire mesh, where the edges of the interior faces are shown in green. Note
that the mesh shown in (b) is a 2D surface, while the mesh shown in (c) is a
real 3D mesh since information about its interior is considered by taking into

account interior faces.

CHAPTER 2. REVIEW 10

2.2 Volume Rendering

We now review some of the basic ideas and concepts of volume rendering.

The rendering process is a very computational intensive and complex pro-
cess. To control each step of the process, while making optimizations possible,
it is usual to break the whole process into a sequence of small steps. Such a
sequence is called the rendering pipeline and is discussed in the next section.
To make our discussion more general, we comment on the general rendering
pipeline, which applies to both polygon rendering and volume rendering.

In polygon rendering, each pixel is assigned the characteristics of the closest
intersection among all intersections between the ray cast through the pixel, and
all polygons in the scene. In contrast, in volume rendering, the final color of
a pixel comes from the sum of the contributions from each cell intersected by
the ray. Even though at first it may seem that in both cases we would have to
find all intersections between the ray for each pixel and all faces in the scene,
in polygon rendering one is often able to eliminate many of the faces before
starting the more expensive steps of the pipeline. For each step discussed
below, we note if it is applicable only to polygon rendering or also to volume
rendering.

Finally, we refer to Figure 3, where we show from two different points of
views the results of applying a ray tracing (Figure 3 (a)), where only informa-
tion from the boundary faces can be taken into account to generate the final
image, and of applying ray casting (Figure 3 (b)), where the ray penetrates
the volume, instead of stopping at its surface. In volume rendering the faces

are considered to be semi-transparent, allowing the ray of light to pass from

CHAPTER 2. REVIEW 11

NN

N

"
Ny
LR

Wi
N
AVAN

AVAV,
VAVAN

N/
WV

/]

(b) Interior Information Considered

Figure 3: This is the data set SPX, seen from two different view points. (a)
Only surface information is shown for both viewing directions. (b) In addition
to the external edges, we show all faces intersected by the ray cast through
the pixel (160,230) when generating a 400-by-400 image.

CHAPTER 2. REVIEW 12

cell to cell. Ray casting determines for each pixel a list of intersections that
will be used to compute the lighting integral, resulting in the pixel’s final color.

Each step of the Volume Rendering Pipeline groups a set of operations
necessary to perform a specific part of the whole process. The pipeline subdi-
vision depends on the particular implementation requirements. We will adopt
the following subdivision; see Figure 4. For convenience we split the pipeline
into two stages, the geometric stage and the rasterization stage.

Here we adopt the term model or object to indicate a connected portion of

the dataset; a single file may can contain many (disconnected) models.

2.2.1 Volume Rendering Pipeline: Geometric Stage

Transformations and computations in the object space are performed at this

stage.

Modeling and Viewing Transformation

When first read into memory, an object resides in its on object space coordi-
nates. Each object has associated with it a sequence of transformations to
achieve the desired position and orientation relative to the world coordinate
system. The world space is unique, allowing all objects to be treated uniquely
throughout the pipeline.

To decrease the amount of work to be done, only the wvisible part of the data
has to be rendered. To determine the vertices and cells that must be taken into
account, a view transformation is performed. This transformation places the

camera (or observer) in the origin of the world, looking in a specific direction,

CHAPTER 2. REVIEW

[Input Data]

\4

PN
Model & View
Transformatio

——

\4

S E—

Back—face
Culling

v

Lighting

v

Screen

Projection
~— = @@

\4

S E—

Clipping

| S —

v

)
Scan

Conversion

@

\'4
[Display Imag%

(a)

Figure 4: The Volume Rendering Pipeline.

13

CHAPTER 2. REVIEW 14

(a) (b)

Figure 5: On the left, the camera is positioned as the user specified. The
viewing transformation translates the view point to the origin, looking toward
the negative z-axis direction. It makes clipping and projection operations
simpler and faster. This procedure applies to both perspective and orthogonal
projections.

usually the negative z-axis. After applying these two transformations to all

data, the objects are now said to lie in the eye space. See Figure 5.

Back-Face Culling

This step, applicable only to polygon rendering, eliminates all faces whose
normals make angles smaller than 7/2 degrees with the viewing direction. In
the case of volume rendering, where the data is defined be interior faces as

well, back-face culling is not well defined, since the back of one cell is most

CHAPTER 2. REVIEW 15

likely the front of another cell. If the scene contains both types of models
(polygonal and volumetric), the application must be prepared to handle both
models, differently.

Lighting

This is the step of the Volume Rendering pipeline in which the color for each
pixel of the image is computed. Various physical models can be used. The
more elaborate the model, the more realistic the images that are generated
and the more expensive and slower this step of the pipeline becomes.

Optical models used in volume rendering are based on physical models of
interaction between light and matter. The mathematical equation for this
purpose is known as the volume rendering integral (VRI) [4, 36, 47, 33]. The
model we analyze here is the one we have been using throughout our imple-
mentations, where the particles that comprise the matter of the object being
visualized are assumed to absorb and to emit light.

For the geometrical considerations used in obtaining the expression for the
optical model, we refer to Figure 6. In order to derive the VRI, we are going to
analyze the amount of light both absorbed and emitted by a cylindrical cross
section of the data with volume given by V = AAs, where A is area of the
base of the cylinder and As is its height. See Figure 6(a). For simplicity the
particles that comprise the object are considered to be identical spheres, with
radius r, resulting in a projected area of S = 7r? on the frontal area of the
cross section; see Figure 6(b). Given p as the particle density in the volume,
there are N = pAAs particles in the cross section. For small As, the total

projected area can be approximated by N7wr? = pAnr?As or pnr?As per unit

CHAPTER 2. REVIEW 16

δs

(a) (b)

Figure 6: (a) In this cross section of an object, the small spheres represent the
particles that comprise the object. The arrow indicates the viewing direction.
(b) This is the frontal view of the cross section; the small circles are the
projections of the particles on the front face.

CHAPTER 2. REVIEW 17

area of the cross section. In the limit of As — 0, no overlap occurs and the

exact expression is given by the following differential equation:

ar _
ds

Here the terms I.(s) and I,(s) are respectively the light intensities emitted

p(s)mrLe(s) — p(s)mr°Ia(s) (1)

and absorbed by the differential cross section. It is usual to express 7(s) =

p(s)mr.

dl
= () — 7(9)La(s) (2)

E(s) = 7(s)I.(s) is called the emission term while 7(s) is called the ab-
sorption coefficient in the second term on the right-hand side of Equation 2.

This equation can be solved by passing the second term on the right-
hand side to the left-hand side, multiplying the whole equation by the term
exp (fy 7(s)dt), and performing the integration with respect to s, from 0 to z,

on both sides of the equation. The result is:

I=1,T(z) + /0 TE(2)dT(2)dz (3)

The term T(z) can be understood as the “transparency” of the object. The
transparency and the opacity, O(z), are related as follows: T(z) = 1 — O(z).
Considering the intensities I as the intensities in terms of color, absorbed or

emitted by the particles in the object, we can rewrite equation 3 as

C(z) = Cot [e() (1 - O(:)) d, (4)

CHAPTER 2. REVIEW 18

and the opacity O(z) is obtained from
O(z) = O + /O “o(2)dz. (5)
This can be approximated as
O =0+ % (0 + 0) A, (6)

Finally, we obtain an analytical expression for the solution to Equation 4,

considered up to its second degree term:

1 1
C,=C,— 3 (ce+cp) (O, —1)Az — % (3¢.0. + 5¢,0¢ + €0y, + 3¢,0,) AZE.
(7)
Note that we changed the limits of integration from the range (0, z) to the
range (z, zn), in order to correspond to the integration from the current z to

the next z.

Projection

As we reach this point in the pipeline, all data is ready to be normalized to
fit on the screen. Remember that the data lies in the view space, usually the
unit-radius cube, with extreme points at (—1,—1, —1) and (1,1, 1). Depending
on the application’s needs, one can decide to use either orthographic projection
(also called parallel projection) or perspective projection. Both transformations
can be represented by a 4r4 matrix and are well covered in the literature, so

we omit explicit review here.

Clipping

Only the primitives completely or partially inside the view volume need to be

passed to the next step of the rendering pipeline, which then draws them on

CHAPTER 2. REVIEW 19

<Y

b4/

pa
w o

Figure 7: Clipping a set of triangles.

the screen. Among such primitives, those that lie partially inside the viewing
volume require clipping; see Figure 7. Clipping is applicable in both polygon

and volume rendering algorithms.

2.2.2 Volume Rendering Pipeline: Rasterization Stage

After all transformations have been performed in the object space, we have the
data ready to generate the final 2D image to be displayed on the screen. This
process is the rasterization or scan conversion. A very simple way to think
about this step of the pipeline is to consider a triangular face of the data,
compute its bounding box, and make a double loop in X and Y coordinates,
and for each pixel inside the bounding box, compute its z coordinate. If scalar

field values (which are given at the vertices of the input) is also to be taken

CHAPTER 2. REVIEW 20

into account, one can compute them by means of a bilinear interpolation of
the scalar values defined on each of the three vertices. We use this information
to compute the contribution for the three color components, (7,g,b), for each
pixel, and also the opacity. Modern video cards have support for triangular
face scan conversion, which accelerates this process.

The color computed for each pixel is in the format (r, g, b, 0), where the o
stands for the opacity; these values are kept in a buffer called the color buffer.
It is usual to use two buffers at the same time. All drawing is performed in
one buffer and it is only sent to the screen when all of the primitives have
been scan converted. At this time, we start drawing in the second buffer and
when it is completed, it is flushed, and so on. The double buffer technique
avoids undesired effects, such as flicking, while the program is drawing each
primitive.

There is another buffer called the Z-Buffer, which keeps for each pixel the
z coordinate of the face closest to the observer. By comparing the z value
for each new intersection for each pixel, it is possible to decide which value
must be kept. The Z-Buffer resolves occlusion problems in hardware very
inexpensively. Note that the Z-Buffer is applicable only to opaque objects in
the scene. In scientific visualization, where all data is assumed to be semi-
transparent, this use of the Z-buffer is not applicable.

There is another buffer designed to handle transparency between two faces
— the stencil buffer. To use this buffer for volume rendering, extra care must
be taken, since the faces must be sent to it in the correct depth order, which
requires an ordering on the cells (often obtained from a topological (partial)

ordering of the cells). Furthermore, if the faces in the data contain “cycles”

CHAPTER 2. REVIEW 21

in the visibility (partial) ordering, it is impossible to obtain a correct order,

unless some of the faces involved in the loop are cut, in order to break cycles.

2.3 Parallel Rendering Basics

For a more thorough discussion of parallel rendering background, we refer
the reader to [16]; the discussion we give in this section contains only the
minimum information necessary for the reader to grasp the basic ideas about
parallel processing applied to volume rendering.

An algorithm is said to be embarrassingly parallel if it can be easily paral-
lelized, with an implementation that performs little or no inter-process com-

munication, and a very small overhead is introduced due to parallel issues.

2.3.1 Parallel Architectures

Parallel architectures is an extensive subject. Here we give just a brief idea
about the two most important classes of parallel architectures: shared memory
and distributed memory architectures. For further background on this topic,
see [17].

For shared memory machines, all of the memory available in the machine
can be accessed by any one of the processors. When executing a parallel code,
the operating system creates the first thread, called the parent thread. The
parent thread is responsible for creating all of the global variables, which will
be accessible by any process in the parallel part of the code. After reading all
necessary data and allocating memory space for all global variables, it reaches

the part of the code where the parallel commands will order the operating

CHAPTER 2. REVIEW 22

Physical Memory

Processor 0 R, - Private
——
Processor 1 P, ~ Private
Processor 2} s
/ Global Variables
L)
[)
L)
Processor _ly P, - Private
P1 - Private

(a)

Figure 8: Parallel implementation considerations. Each processor has its on
private set of variables, while all processors are able to access a common mem-
ory area for the global variables. Two implementation issues must be carefully
considered for the sake of efficiency: modifying global variables only when
necessary, and memory locality for cache coherence.

system to create the desired number of threads or processes. Note that the
number of threads has no connection to the number of processors in the ma-
chine. One can create, say, five threads in a one-processor machine, and the
processor time will be shared between the processes, managed by the operat-
ing system. If the number of threads one creates is less than or equal to the
number of processors in the machine, the operating system assigns one thread
for each available processor. See Figure 8.

When the operating system creates all threads, any variable created by
one thread can be accessed only by itself (private variables), but the global

variables can still be accessed by all threads. This means that global data can

CHAPTER 2. REVIEW 23

be manipulated by any of the processors in a transparent way, making the
access the same as usually experienced in a serial program.

Parallelizing a serial algorithm into this type of architecture is often straight-
forward, but, in order to achieve efficiency, care must be taken when it comes
to global variables access. All processes can read the value of the same vari-
able at the same time without problem. But if the access modifies the content
of a global variable, the processor must make sure that no other process will
try to modify this same variable at the same time by locking its global access
permission during the modification. On the other hand, the processor must
unlock the variable global access as soon as possible to avoid other processes
having to wait idle for the variable to have its access freed.

In this type of architecture, processors access RAM memory using the data
bus. The memory access speed is a function of the data bus band-width. This
dependency imposes a limitation on the scalability of the shared memory ar-
chitecture, or the number of processors that can be added to the configuration.

Some smart schemes were introduced to speed up this architecture while
also allowing a greater number of processors to be used. One such scheme is
non-uniform memory access, where each processor has a local memory module;
accessing its own memory is faster than accessing other processors’ remote
memory. In this scheme the bus band-width is not as restrictive, as in the
previous scheme, allowing a much better scalability. But the cost for remote
memory access is higher, and the programmer is responsible for avoiding as
much as possible its occurrence.

The other important class of architecture is the distributed memory ar-

chitecture. Here, each processor can be seen as a stand-alone computer and

CHAPTER 2. REVIEW 24

communication between two different CPU’s must be carried out by means
of networking communications. Message passing is the most common such
technique used. See Figure 9.

In this architecture, access to remote memory becomes very expensive and
a different approach for a parallel implementation must be considered. A more
elaborate scheme is required to avoid communication as much as possible. For
instance, in ray-casting algorithms if each process is assigned with the task
of computing the final color of a set of £ pixels of the image, only these
k sets of (r,g,b) values will have to be sent to the process responsible for
assembling the final image. On the other hand, this approach requires a lot
of information to be duplicated on each processor. Another possible scheme is
to divide the data among the processors, avoiding data duplication; however,
this will require each processor to send more information around, increasing
the communication cost.

The decision of which scheme to use is highly dependent upon the char-
acteristics of the algorithm chosen, the type of data to be handled, and the

specifications of the hardware available.

2.3.2 Types of Parallelism

The types of parallelism one can apply in the volume rendering include func-
tional parallelism, data parallelism, and temporal parallelism. The method to
be used depends upon the application and the rendering algorithm to be de-
veloped. These methods can also be combined into a hybrid method, which

may be more efficient.

CHAPTER 2. REVIEW 25

Y

Processor 0| I/0

A

F’0 - Private

Y

X ®»m O = 4 m Z

Processor 0| I/0

A

FE) - Private

\i

Processor 0| I/0

A

P0 - Private

Y

Processor 0| 110

A

R- Private

(a)

Figure 9: Distributed memory architecture representation. Each processor can
be seen as a complete computer, with CPU, memory, and I/O. Communication
between two processors is accomplished by means of low-level I/O operations
that will send their request to the network layer of the operating system, and
wait for its answer. Communication in this architecture is a lot more expensive
than in shared memory architecture.

CHAPTER 2. REVIEW 26
Functional Parallelism

When breaking the rendering process into a set of steps of the pipeline, each
of which has a well-defined task or function, we can think of the pipeline as a
serial solution for the rendering pipeline. Then, one can assign each of these
steps to a different processor and have them compute each step in parallel.
Since each step has to finish processing its task before it can send it forward
to the next step, one can easily realize that the speed limitation for this type of
parallelization is the number of steps in the pipeline, the number of processors
involved in the computation, and also the speed of the slowest step involved

in the process. See Figure fig:VRPipeline.

Data Parallelism

Another approach is to perform the parallelization on the data itself. The data
is divided among the processors, each of which performs the serial rendering
on its part of the data. The limitation here is the dependence on the number
of processors. Inter-process communication costs must be taken into account
and in some cases can result in a considerable overhead in the rendering cost.
The choice of rendering algorithm will also depend on these characteristics of
the network.

Two classes of data parallelism can be adopted: object parallelism, in which
data is divided in the object space, and image parallelism, in which the image
generation task is divided in the image space and each processor is assigned
with one or more parts of the image.

Bottlenecks can be avoided by implementations that exploit both object

CHAPTER 2. REVIEW 27

and image parallelism. Achieving a good balance between them is a hard
problem, since the workload involved in each level is highly dependent on
factors such as scene complexity, average screen area of transformed geometric
primitives, sampling ratio and image resolution.

In short, load balancing is a crucial factor for the algorithm efficiency. This

issue will be discussed in more detail in Section 2.3.3.

Temporal Parallelism

In order to generate animations, it is necessary to create thousands of high-
quality images. In this case, the time to create each image is not as important
as the time to create the whole animation sequence. Thus, the whole animation
sequence can be broken into smaller parts and each part can be assigned to a

different processor.

2.3.3 Parallel Programming Efficiency

Implementing a parallel version of an algorithm gives rise to some additional
costs not present in serial programming. Such costs are called “parallel over-

heads,” which may be caused by some or all of the following reasons:

e load imbalance,
e inter-process communication,
e additional or duplicated computations, and

e additional memory requirements.

CHAPTER 2. REVIEW 28

To understand why these overheads appear in parallel implementations
of rendering algorithms, we have to analyze some further concepts; some are
common to most parallel programming, while others are specific to the parallel

rendering field.

Dividing work among processors

Recall that data can be divided in object space or in image space. While
object space usually achieves a more uniform division of primitives among the
processors, making it a better option for the distributed memory architecture,
it tends also to require more communication between the processors. Another
problem with this type of division is that having the same number of primitives
for each process does not guarantee the same amount of work for each of them.

Division in #mage space can result in a very uneven division of work, but
since each processor will compute the final color of all pixel assigned to it,
minimum communication between processors is necessary. However, a bad as-
pect of image space data division is that primitives can be mapped into several
regions of the screen, resulting in redundancy (more memory requirement) and
loss of spatial coherence on the boundary of the regions, which are non-existent

costs in a serial implementation.

Load Balancing

The efficiency of a parallel system is directly related to how evenly the work-

load is distributed among the processors. In parallel rendering, there are many

CHAPTER 2. REVIEW 29

issues to be taken into account. In polygon rendering, for instance, the primi-
tives may vary in size, number of vertices, illumination requirements, geomet-
ric transformations, etc. Furthermore, the back-face culling and subsequent
culling steps of the pipeline can cause more imbalance.

A much more serious source of load imbalance is caused by the non-uniform
distribution of the primitives in the image space. Processors responsible for
rasterizing dense regions of the image will do significantly more work, while
some processors may end up with empty regions. Also the mapping of objects
onto the image is view-dependent, changing from frame to frame.

Research in parallel computing has suggested some smart schemes for work

distribution, which we now briefly discuss.

Static Data Distribution

In static distribution the data is subdivided in a preprocessing step. The work
is then assigned to each processor. The process finishes when all processors
have finished their tasks. Figure 10 shows several different strategies of image
partitioning, each resulting in different load balancing characteristics. Dividing
the data in large blocks (Figure 10(a)) usually results in poor load balancing,
unless the data is very uniformly distributed in space. Fine-grained schemes
(Figure 10(c,d)) result in better work load but may incur more overhead.
Results in [71, 70] indicate that square regions (as in Figure 10(b)) tend to
minimize the loss of coherence since they have the smallest perimeter-to-area

ratio of any other rectangular subdivision scheme.

CHAPTER 2. REVIEW 30

(e)

Figure 10: Example of five different data division schemes. (a) Blocks of
lines of pixels. (b) Rectangular regions. (c) Interleaved lines of pixels. (d)
Interleaved lines and columns of pixels. (e) Adaptive schemes. (Based on a
picture from [72]).

CHAPTER 2. REVIEW 31
Dynamic Data Distribution

Two strategies are typical in this type of data distribution — demand-driven
and adaptive. In demand-driven distribution, the problem is decomposed into
a large number of independent tasks. Each idle processor gets the next task
and processes. This scheme continues until all of the tasks are completed.
One way to avoid poor load balancing when using this strategy is to process
more expensive tasks first. Another problem, though, is to estimate the cost
of the tasks, which must be accomplished heuristically in a preprocessing step,
introducing further computational overhead. Another way to minimize load
imbalance is to use a large number of fine-grained tasks. But this can imply
more overhead due to loss of coherence and task assignment. The adaptive
strategy (Figure 10(e)) performs a first subdivision of the data and assignment
to the processors. Then, whenever a processor becomes idle by finishing its
initial task, it checks with the non-idle processors and requests tasks from
them. A good example is the stealing scheme used by Whitman. The algorithm
divides the data in image space in a relatively small number of coarse tasks
and assigns them to processors using an on-demand scheme. When a processor
becomes idle and no more tasks are available from the initial pool, it searches
for the processor with the largest workload and “steals” part of its work. Its
main overhead is due to having to access non-local information.

Dynamic schemes tend to result in better load balancing than static schemes,
but they perform better on shared memory architecture machines, which
present high band-width for remote memory access. They do not work well in

message-passing architectures, which present high communication costs.

CHAPTER 2. REVIEW 32
Granularity

Granularity refers to the sizes of the tasks to be performed by each proces-
sor. The term fine-grained means small tasks while coarse-grained indicates
substantial average amount of work per processor. It should be clear that the
finer the granularity, in general, the higher the overhead that is incurred for
task scheduling and communication and the better the load balancing. One
must carefully consider this issue, depending on the target architecture and

the overhead of the algorithm to be parallelized.

Scalability

The scalability of a parallel system refers to its efficiency in handling bigger
datasets (data-scalability), or its speedup (performance-scalability), when more
processors are made available to it. Both the hardware architecture and the
design of the software for rendering must be taken into consideration. For
instance, adding processors to a shared-memory machine, does not increase
the memory bandwidth; at some point, the memory bus becomes saturated
and the performance stalls. This is why distributed memory architectures,
which do not rely so much on memory bandwidth, tend to scale better to

much larger (hundreds, even thousands) numbers of processors.

Coherence

In computer graphics, the term coherence describes the tendency for “nearby”
pixels tend to have similar colors [64]. It is usual to consider three different

types of coherence.

CHAPTER 2. REVIEW 33

e Frame coherence (also known as temporal coherence): comparing two
frames in a sequence, one notes that an object in one frame tends to
have almost the same position in space and the same shape. Pixels
showing this object will have its colors only slightly modified from frame

to frame.

e Span coherence: Neighbor pixels in a line of the screen tend to have

similar colors.

e Scanline coherence: Neighbor pixels in a column of the screen tend to

have similar colors.

Both span coherence and scanline coherence are types of spatial coherence,
which is used by rasterization algorithms to achieve high efficiency. Frame co-
herence is heavily used in programs that create animation sequences to improve
performance and also by image compression algorithms (e.g., jpeg).

When adopting image partitioning parallelization, the coherence is lost at
the boundaries of the partitions, resulting in computational overheads. The
probability that a primitive will intersect a partition boundary depends on
the size, shape and number of image partitions [51, 71]; these issues must be
carefully considered in the implementation of a parallel rendering program [19].

In ray-casting algorithms the tendency of rays cast through neighboring
pixels to intersect the same set of cells (in the same order) is called ray co-
herence. Ray coherence has been exploited in conjunction with data caching
to reduce communication loads in parallel volume rendering and ray-tracing

algorithms [46, 2].

CHAPTER 2. REVIEW 34

(a)

Figure 11: Spatial coherence in image space. Pixels tend to have approximately
the same value compared to immediate neighbors. Scan conversion can be
highly optimized by exploiting this type of coherence.

Chapter 3

Time-Critical Rendering

1 Many papers have presented rendering techniques and simplification ideas

with the objective of speeding up image generation for irregular grid data sets.
For large data sets, however, even the current fastest algorithms are known
to require seconds to generate each image, making real-time analysis of such
data sets very difficult, or even impossible, unless one has access to powerful
and expensive computer hardware. In order to synthesize a system for han-
dling very large data sets analysis, we have assembled algorithms for rendering,
simplification and triangulation, and added to them some optimizations. We
have made some improvements on one of the best current algorithms for ren-
dering irregular grids, and added to it some approximation methods in both
image and object space, resulting in a system that achieves high frame rates,

even on slow computers without any specific graphic hardware. The algorithm

!This Chapter is based on work published: Time-Critical Rendering of Irregular Grids.
R. Farias, J. Mitchell, C. Silva and B. Wylie, In Proceedings of the XIII SIBGRAPI —
International Conference, Gramado - RS, Brazil. October 2000 IEEE.

35

CHAPTER 3. TIME-CRITICAL RENDERING 36

adapts itself to the time budget it has available for each image generation, us-
ing hierarchical representations of the mesh for faster delivery of images when
transformations are imposed to the data. When given additional time, the
algorithm generates finer images, obtaining the precise final image if given
sufficient time. We were able to obtain frame rates of the order of 5Hz for
medium-sized data sets, which is about 20 times faster than previous render-
ing algorithms. With a trade-off between image accuracy and speed, similar

frame rates can be achieved on different computers.

3.1 Introduction

Direct volume rendering methods are very useful tools in the visualization of
scalar and vector fields. Techniques for volume rendering work primarily by
modeling the volume as cloud-like cells composed of semi-transparent material
that emits its own light, partially transmits light from other cells, and absorbs
some incoming light [47]. In this thesis, we address the problem of rendering
(non-curvilinear) irregular grids (or unstructured meshes), having no implicit
connectivity. Such structures are effective at representing disparate field data.
Irregular grid data comes in several different formats; see, e.g., [75]. The
introduction of new methods for generating high-quality adaptive meshes has
made the general unstructured irregular grids a most important data type to
be visualized.

Several papers have presented efficient methods to render irregular grids,
including re-sampling techniques, ray-casting techniques [23, 67], sweep-based

algorithms [81, 61], and projective methods [76, 14]. This large body of work,

CHAPTER 3. TIME-CRITICAL RENDERING 37

mostly done in the past decade, has dramatically increased the efficiency with
which we can render irregular grids. In studying the computational complexity
of these techniques, one finds a wide range of tradeoffs. Consider an irregular
grid composed of n cells (b of the cells being in the boundary), and a given
screen (image) of size k-by-k pixels. Projective techniques work by projecting,
in visibility order, the polyhedral cells that comprise the mesh onto the image
plane, and incrementally compositing the cell’s color and opacity into the final
image. Regardless of the screen resolution, an image is only complete once each
of its n cells have been correctly depth-sorted and projected onto the screen.
This does not take into consideration the fact that some of the cells may be
too small to make a significant contribution by themselves. In contrast, in
ray casting techniques, for each pixel potentially only the cells that actually
intersect a ray cast through that pixel need to be touched. This effectively is
the case for the technique proposed in [6], which, if r is the average number of
cells intersecting a given ray, takes time O(b + rk?).

Our focus in the work presented in this Chapter is on achieving real-time
exploration, while possibly trading accuracy for speed. For real-time explo-
ration, there are usually hard bounds on the overall rendering time 7'; e.g.,
for 30Hz, T = % sec. Here, we explore tradeoffs necessary to design such
time-critical irregular grid rendering systems. We utilize algorithms, based on
extensions to existing techniques, which are scalable, allowing them to run on
a wide range of machines. Our goal is to provide essentially the same level
of interactivity, regardless of the machine speed, while trading accuracy for

speed in a consistent way.

CHAPTER 3. TIME-CRITICAL RENDERING 38

3.2 The Rendering Algorithm

At the core of our time-critical volume rendering system is a variation of the

ray-casting algorithm proposed in [6]. The algorithm is outlined as follows:

(1) We transform each of the n cells into screen space.

(2) For each pixel, we compute a (sorted) list containing the boundary cells

that intersect the ray through the pixel center.

(3) For each pixel, we perform ray casting incrementally by computing cell
intersections, one cell at a time, in front-to-back order along the ray,

using a traversal of the cell adjacency information (similar to [23]).

This algorithm is very simple to implement, and quite fast in practice.
Step (1) takes O(n) time. Step (2) takes O(X; ; b logb; ;) time, where b;
is the number of boundary faces that project onto pixel (¢, 7). Step (3) is an
output-sensitive step, depending linearly on the total number of ray-cell inter-
sections. We note that a straightforward method for obtaining a time-critical
performance is simply to sample a regular subimage (performing [-by-l ray
casts instead of k-by-k, for [< k), then rescale to the full-size image (which
can be efficiently performed in hardware using OpenGL). Another feature of
this ray-casting method is the fact that the computation is “embarrassingly
parallel” ([67]) in the shared-memory model, allowing for a readily imple-
mented parallel version. In order to understand better how the rendering
algorithm works and why our optimizations were necessary, we now discuss in

more details steps (2) and (3).

CHAPTER 3. TIME-CRITICAL RENDERING 39

X
pu-l
c
()
(&)
3]
n RayCast
P
z

Figure 12: In this cross section of the volume to be visualized, the indices p;
and p;;1 represent two neighboring pixels through which two rays are cast.
The visible boundary faces are highlighted, while the intersected faces are
represented in red. Notice that in the middle of the mesh there is a set of
cells, not stabbed by any of the rays, which do not need to be transformed.

Boundary Projection. The algorithm projects each “visible” boundary
face onto the screen, creating for each pixel in the projection a list with the
intersected “visible” faces. (Visible faces are the ones whose outward normal
makes an angle greater than 90 deg with the viewing direction.) Assuming
that the boundary is generally not highly erratic, these lists should be short;
in practice, we expect that the maximum boundary-list complexity (max; ; b; ;)
to be constant (i.e., O(1)). Thus, while we could sort the lists (each in time
O(bi,jlogb; ;)) as we create them, we do not bother to do so in practice; instead,
each time we need to know the next visible boundary face that occurs along
a ray, we simply step through the short list to find the one remaining with

lowest z-coordinate.

CHAPTER 3. TIME-CRITICAL RENDERING 40

Ray Casting. The current face is initialized to be the first boundary face
intersected along the ray through a given pixel. We then compute where
the ray exits the cell (on the next face) it just entered, and we compute the
scalar value at both the entry point and exit point of the cell (using bilinear
interpolation). We then compute the contribution of the current cell to the
pixel’s color and opacity, adding this to the running sum that represents the
integration. If the next face is a boundary face, the computation continues
only if the remaining list of visible boundary faces is nonempty; the current
face is then advanced to the next visible boundary face in the list, and we
continue along the ray. If the next face is an interior face, we determine the
neighbor cell on the other side of the next face, set the current face to the
next face, and compute the new next face based on where the ray exits the
neighbor cell. (Each face has pointers to its neighboring cells. A boundary

[4

face has only one neighboring cell.) This “walking” along rays is simple, in
principle; however, we note that special care must be taken for the degenerate

situations when the ray hits an edge or a vertex of the mesh.

Optimizations. In order to use this algorithm in a time-critical setting, we
modify step (1) to have running time dependent on image-quality. Instead
of transforming all the vertices and faces in the mesh, we transform only the
ones on the boundary. Then we project them on the screen, and from then
on, we incrementally transform the interior faces (and their defining vertices)
that are intersected by the rays cast. Once transformed, we tag them as
such to avoid duplicate transformations. Depending on the image resolution,

which determines the number of rays to be cast, and on the viewing position,

CHAPTER 3. TIME-CRITICAL RENDERING 41

only a fraction of the data is actually touched. See Fig. 12. While there is
some overhead in testing whether a primitive (vertex or cell) has already been
transformed, we have found, in all data sets tested, that this optimization
decreases the rendering time.

(Below, we discuss a parallelization of step (2).)

3.3 Time-Critical Algorithm

Our goal is to achieve the highest frame rate possible by using a highly opti-
mized rendering algorithm (discussed in the previous section), together with
both image-space and object-space approximations. Beyond improvements in
speed, these techniques will allow us to have greater control over the rendering
procedure, giving us the flexibility to trade off between the image generation
time and its accuracy. Such a trade-off will heavily depend on the machine’s
speed and the maximum acceptable simplification, to be controlled by the
user.

In this section we discuss the image-space and object-space approximations
we employ in our system. An alternative technique for the simplification of

irregular grids is presented in [24].

Multi-Resolution Images

To generate multi-resolution images, we choose the simplest image-space sim-
plification algorithm possible, to avoid spending time with both expensive
computations and boundary constraints. We render the exact color for one

pixel and duplicate it over a p-by-p pixels square, for a small value of p. (In

CHAPTER 3. TIME-CRITICAL RENDERING 42

our tests, we allow p to range from 1 to 9.) As will be shown later, the
multi-resolution approximation has a narrow limit of its effectiveness for both
speed-up and inversely for its error. For a 3-by-3 resolution, the gain in the
rendering speed is high, while the visual impact is acceptable, still allowing
the user to distinguish small details in the approximated image. Depending
on the data set, larger values of p will only decrease the render time by a small

amount, while resulting in very crude images.

Mesh Simplification Algorithm

To further improve the rendering time, we made use of object-space levels of
detail, creating simplified meshes that are cheaper to render. We employ a
method that is relatively simple, based on ignoring mesh connectivity, simpli-
fying the point data (scalar values at mesh vertices), and then reconstructing
an approximating mesh by re-triangulating the simplified point data. Special
care is given to approximating the mesh boundary, while ensuring that the
retriangulation of the interior point data does not induce artifacts from con-
cavities in the boundary. We now elaborate on the steps of the algorithm: (1)
interior mesh simplification; (2) boundary mesh simplification; (3) preserv-
ing concave boundary regions; (4) re-triangulating the simplified mesh; and

elimination of transparent cells.

Interior Mesh Simplification. We propose a simple and very fast algo-
rithm for volumetric data simplification based on the use of a kd-tree. The
criteria for internally arranging the vertices inside the kd-tree is as follows. A

vertex inserted into the kd-tree will lie inside an existing region if its distance

CHAPTER 3. TIME-CRITICAL RENDERING 43

to the center of a region is smaller than a given value, called the radius of
the region. (The radius is obtained from the user-specified simplification rate;
see below.) If the current vertex does not lie inside any existing region, it
will define a new region and its coordinates will determine the center. Af-
ter inserting all vertices into the kd-tree, the new (simplified) mesh will have
one vertex corresponding to each region of the final kd-tree. These vertices
will have coordinates and scalar values equal to the averaged coordinates and
scalar values of all vertices inserted into the region. See Fig. 13.

One way around the problem of loss of boundary information if the kd-tree
is used to simplify the entire mesh is to send only the interior points to the
kd-tree and at the end, merge the simplified set of points with the boundary
points. See Fig. 14.

The algorithm computes the radius for the regions in the following way. It
computes the number of vertices equivalent to the percentage of simplification
input by the user (say S). Now it remains to be found the radius for the regions
that will result in a number of regions approximately equal to the number S.
The algorithm starts by computing the diagonal (D) of the data set and then
generates the kd-tree with half this value, or R = D/2. If the resulting number
is greater than S the algorithm updates R as R = R + R/2; otherwise, if the
number of regions is less than S, the algorithm updates R as R = R— R/2 and
regenerates the kd-tree for the new region radius. This procedure is repeated
until the desired number S of regions is obtained. Note that this search for
the radius is a binary search, requiring at most O(log(n)) steps. Once we find
a mesh with the desired number of points, the algorithm proceeds to simplify

the boundary.

CHAPTER 3. TIME-CRITICAL RENDERING 44

This algorithm can be used to simplify the whole mesh, but it can cause
undesired loss of boundary information. We choose alternatively to use a
surface simplification algorithm to obtain the approximation of the boundary

of the data set. This is discussed in the next section.

Boundary Mesh Simplification. In our first approach, we did not consider
surface simplifications. However, we noticed that the surfaces of some data
sets can contain a significant fraction of the total number of the data set
vertices, so we devised a way to make it available as an option. This flexibility
is necessary because some data sets in our tests presented problems with the
surface simplification even if the rate of simplification was very small, of the
order of 10%.

As we mentioned above, the simplification of the boundary requires a dif-
ferent approach because care must be taken to avoid destroying the form of the
data set and still preserve its topology. Changes in the shape will be noticed
more immediately then errors introduced to the color of the data set. In our
current system we use the popular algorithm presented in [22], which allows
not only surface simplification taking into account an expected error, but also
allows the simplification to be performed over surface meshes whose vertices
possess colors?.

In the preprocessing phase, the algorithm tags all faces and vertices belong-
ing to the boundary and make sure that each face has its vertices in counter-
clockwise order with respect to the exterior of the data set. (It is mandatory

that the face normals are pointing outwards.) We then send these faces and

2Remember that each vertex has a scalar value associated with it, requiring the simpli-
fication algorithm to be able to handle colored surfaces.

CHAPTER 3. TIME-CRITICAL RENDERING 45

vertices, with the desired rate of simplification, to QSlim?.

All vertices of the new simplified mesh will be retrieved from the kd-tree
and from @Slim. We expect that the vertices retrieved from the kd-tree will
still be interior vertices. If any vertex retrieved from the kd-tree becomes
exterior due to the boundary simplification, it will be eliminated in a future

step; we note that this can cause holes in the simplified data set.

Preserving Concave Boundary Regions. After retrieving all vertices
from the kd-tree and from @Slim, we have to rebuild the mesh connectivity,
which will be explained in the next section. We use a Delaunay triangulation
for rebuilding the mesh connectivity.

This scheme works fine for convex data sets; however, for data sets that
possess concave regions, further precautions must be taken. When the ver-
tices are sent to the ghull* code, to generate the Delaunay triangulation, all
concavities in the boundary disappear, since we obtain a triangulation of the
convex hull of the points. In order to avoid losing this important information,
in the preprocessing phase we identify all vertices belonging to boundary con-
cavities. This identification is done by (a) marking all points belonging to the
boundary; (b) using ghull to create the convex hull of the boundary; and (c)
tagging the points that belong to the boundary but are not on the convex hull.

Each concave point will have an associated ghost vertex, very close to
it, but just outside the boundary (in the direction of the averaged outwards

normal). These ghost vertices will have a special associated scalar value that

3QSlim code is available at Michael Garland’s Home Page:
graphics.cs.uiuc.edu/ ~garland/
4Qhull code is available at www.geom.umn.edu/software/download/qhull.html

CHAPTER 3. TIME-CRITICAL RENDERING 46

‘ Data Set H Vertices ‘ Faces ‘ Tetrahedra ‘ Memory ‘
SPX 2,896 27,252 12,936 11M
Blunt Fin 40,960 | 381,548 187,395 75M
Combustion 47,025 437,888 215,040 86M

Post || 109,744 | 1,040,588 513,375 | 191M
Delta | 211,680 | 2,032,084 | 1,005,675 | 370M

Table 1: Information about the data sets used in our experiments. The mem-
ory usage is reported to render an image at resolution of 1282

indicates to our ray casting function its transparency. See Fig. 15.
The distance between the ghost vertex and its related concave vertex is
another parameter that can be controlled by the user (by default, we use 3%

of the length of the data set’s diagonal).

Re-triangulating the Simplified Mesh. After the simplification, the new
set of points (which may contain up to 2b points in addition to the vertices
in the simplified set) is sent to ghull [5], which returns a (Delaunay) tetra-
hedralization. The problem now is that any face that contains (at least) one
ghost vertex must be considered to be transparent; there can be a significant

number of such faces.

Eliminating Transparent Cells. At first, our code treated transparent
faces individually, disregarding the contribution for any pair of faces in which
at least one of them was transparent. This, however, was very inefficient and
slowed the rendering function. Instead of thinking about transparent faces, one
can think about transparent cells. Any tetrahedron which contains at least

one transparent face, can be considered transparent and can be completely

CHAPTER 3. TIME-CRITICAL RENDERING 47

‘ Data Set H Resolution ‘ Bunyk et al. ‘ Optimized ‘

1282 2s 1s

Blunt Fin 2562 8s 4s
5122 27s 13s

10242 104s 50s

1282 4s 2s

Combustion 2562 10s 5s
5122 37s 14s

10242 141s 52s

1282 5s 3s

Oxygen Post 2562 19s 8s
5122 72s 27s

10242 271s 100s

1282 4s 2s

Delta Wing 2562 13s 6s
5122 43s 23s

10242 157s 72s

Table 2: Optimization time results. Our optimized version is consistently
faster than the previous implementation.

eliminated from the tetrahedra set. This criterion enormously reduces the
number of tetrahedra in the resulting simplified mesh, restoring the shape of
the original mesh very accurately, while simplifying our rendering code, since

faces no longer require special treatment for been transparent.

3.4 Experimental Results

We report our results on an SGI machine (with a single 300MHZ MIPS R12000
processor and 512 Mbytes of memory). Table 1 lists the data sets we used in

our experiments and measurements and all its relevant information, such as

CHAPTER 3. TIME-CRITICAL RENDERING 48

Data Set || Resolution Vertices Cells
Transformed | Transformed

1282 25K 160K

Blunt Fin 2562 30K 215K
5122 35K 270K

10242 39K 319K

1282 47K 433K

Combustion 2562 47K 437K
5122 47K 437K

10242 47K 437K

1282 53K 315K

Oxygen Post 2562 66K 431K
5122 83K 588K

10242 96K 770K

1282 83K 450K

Delta Wing 2562 114K 708K
5122 148K 1040K

10242 169K 1398K

Table 3: Speed up from lazy transformations. Compare the number of vertices
and cells transformed for each resolution; it becomes clear the source of the
speed-up.

number of vertices, faces and cells. In Table 2 we compare the times obtained
by the original algorithm [6] with the times we obtained with our optimized
version. Our optimized version of Bunyk et al’s algorithm, is, by itself, a factor
of two improvement. Our changes to step (1), utilizing a lazy transformation
of the vertices, is shown to be very effective. See table 3.

The first approximation we use is to render the data set at a lower resolution
and use OpenGL efficient interpolation to show the image in a larger resolution.
In Fig. 16 we show the exact image of Liquid Ozygen Post at the resolution of
300% (Fig. 16(a)) and the image interpolated (Fig. 16(b)) from 1282 to 3002.

CHAPTER 3. TIME-CRITICAL RENDERING 49

| Pixelsize | 1] 22| 3] 5[7] 97|
Blunt Fin || 2.8s | 1.6s | 1.2s | 0.7s | 0.5s | 0.4s
Combustion 5.1s | 2.9s | 2.0s | 1.2s | 0.9s | 0.8s
Oxygen Post || 11.9s | 5.1s | 4.1s | 3.0s | 1.9s | 1.7s
Delta Wing 34s | 13s | 14s | 14s | 11s | 4.4s

Table 4: Down sampling time speed up. The times are all in seconds. The top
row has the effective pixel size used.

The error, measured as the mean difference for all three color components of
the RGB equal (3.53%,2.43%, 23.38%). Note that even for a difference of 23%
on the blue component, the interpolated image looks just a little bit brighter
than the exact one.

A two-time speed-up in running time is not enough, our goal is to achieve
much faster frame-rates in a scalable framework. We basically explored two
different ways to achieve this goal: multi-resolution image generation and hi-

erarchical mesh simplification.

Multi-resolution Image Generation

Table 4 summarizes the rendering times to generate images for the four bigger
data sets, for different image resolutions, obtained by running the code on a PC
computer. We can see that the running time continues to drop as we effective
increase the pixel size from 1-by-1 to 9-by-9. Unfortunately, the larger the
pixel size, the smaller the speed up, and the improvement is negligible after
7-by-7. As the pixel size increases, the image quality decreases accordingly.
In Fig. 17, we show a typical set of images computed under these different

approximations.

CHAPTER 3. TIME-CRITICAL RENDERING 50
Mesh Simplification

By introducing mesh simplification in our algorithm, we ended up with a large
number of possible combinations between all these approximation algorithms;
we include only a sample of the results here. Taking into account the opti-
mization we made to the original Bunyk et al’s algorithm and by combining
all approximations we introduced in this work, we were able to raise the frame
rate from 0.35 Hz (original data set at full resolution) to 3.5 Hz (with 90%
of mesh simplification at 92 pixel resolution. A speed up factor of about 20
(remember that our optimized version of the render algorithm is twice as fast
as Bunyk’s original algorithm). To conclude this section we include in Fig. 18
some pictures of the Ozygen Post data set in full resolution and mesh simpli-
fication of 0%, 25%, 50%, 75% and 90%. Each row of image shows the image
generated using each of these simplification. On the right column the image
was generated on full pixel resolution, while on the right column we show the
image for 9 x 9 pixels approximation. The error noticed on the edges the image
is due to losses of detail of the boundary of the original data set. This can
be avoided if one trades the simplification of the boundary that is performed
separately from the interior simplification. For instance, see Fig. 19. The loss
of information on the edges is due to the fact that for larger simplification rates
the surface simplification algorithm generates meshes that contain some faces
whose normals point inwards. Thus, depending on the data set characteristics
and the desired rate of compression, one must trade between between opting
or not for boundary simplification. Leaving the boundary unsimplified, even
for 75% simplification of the interior points, the image looks almost the same.

The errors measured between the image of Ozygen Post with simplification

CHAPTER 3. TIME-CRITICAL RENDERING ol

in (Fig. 18(a)) and its image for 75% of simplification only for the interior
points in (Fig. 19(b)) led to an error, for (7,9,b) colors, respectively equal to
(1.86%,1.18%,9.06%). Note that the error for the blue color is the only one
to present a considerable value. But as the predominant color in the image
depends on red and green, the error introduced by the simplification, led just

to a slightly brighter image.

3.5 Conclusion

In this Chapter, we started exploring time-critical techniques for rendering
irregular grids. We are primarily interested in developing techniques that
are scalable, in the sense of being able to trade accuracy for rendering time,
while achieving acceptable image quality in most reasonable cases. We have
proposed a variation of the algorithm of [6]. Our technique differs from his in
that it performs lazy transformations, it is able to generate images at multiple
resolutions, and it works in parallel, using both an image-space and object-
space technique. Our results are preliminary and expected to continue to
improve. We have developed a simple GUI for our rendering code which allows
the user to rotate moderately large data sets, including the Blunt Fin and
Combustion Chamber, and even the Delta Wing. See Fig. 20.

Exploiting pixel coherence, we were able to obtain a frame rate of 3.5 Hz;
this is to be compared with 3.5 seconds per frame to generate the exact image.
Even though this result is far from the desirable 10-30 frames per second, it
already allows us to rotate the data sets while keeping a decent amount of

detail.

CHAPTER 3. TIME-CRITICAL RENDERING 52

Much work remains, particularly on the parallelization. We are working
to apply coherence to accelerate the ray casting step, noting that neighboring
pixels are likely to be similar. Hence, if there is little time to compute a
ray (say, during a fast rotation), it is reasonable to assume a filtered down-
sampled version of the image might be a visually accurate representation. We
are currently exploiting extensions of these ideas further, in particular as it
relates to time coherence. For instance, in an environment where the image is
being computed at a lowered resolution, it might not be necessary to perform
step 2 (boundary face projection) all the time. The set of visible boundary
cells computed in the frame ¢ may still be visible in frame 7 4+ 1, albeit they
might not intersect the ray emanating from the middle of the pixel from which
it was originally visible. But, if the resulting image will be filtered anyway,
simply a reprojection of those faces, and the ray integration from them might
give a reasonably accurate picture. In fact, it might even be possible to reuse

the intersection calculations.

CHAPTER 3. TIME-CRITICAL RENDERING 93

(a) Original Mesh (b) KD-Tree

(c) Remaining Vertices (d) Bad Resulting Boundary

Figure 13: Loss of boundary information. It happens if the kd-tree is used
to simplify the entire mesh. (a) Original mesh. (b) All points are sent to the
kd-tree. (c) The averaged center for each region, or the result points for each
region. (d) The final simplified mesh, where the dotted line represents the
original contour detail that was lost.

CHAPTER 3. TIME-CRITICAL RENDERING 04

(c) Remaining Vertices (d) Correctly Resulting Boundary

Figure 14: Interior points simplification scheme. (a) The original mesh. (b)
Only interior points are inserted into the kd-tree. Note that the sequence in
which the points are sent to the kd-tree is the same regardless of whether or
not we choose to preserve the boundary. That is true once the code scans the
points and just skips the points labeled as boundary. (c¢) The averaged center
for each region, or the result points for each region. (d) The final simplified
mesh.

CHAPTER 3. TIME-CRITICAL RENDERING 95

(a) Boundary (b) Naive Triangulation

(c) Ghost Vertices (d) Correctly Simplified boundary

Figure 15: Using ghost points to preserve boundary information. (a) The
vertices from «a to e are tagged as belonging to a concave region of the boundary.
(b) This is the final triangulation if we naively triangulate the data set without
taking precautions to preserve concave regions. (c¢) Ghost vertices are inserted
in the direction of the averaged normal for each concave vertex. (d) After the
triangulation we can retrieve the concavity of such regions by eliminating any
face that contains at least one ghost vertex.

CHAPTER 3. TIME-CRITICAL RENDERING o6

(a) Exact Image (b) Interpolated Image

Figure 16: Speeding up by scaling the resulting images. (a) Exact image of
Liquid Oxygen Post rendered at 3002 pixel. (b) Image rendered at 1282 and
interpolated to 3002 pixels.

CHAPTER 3. TIME-CRITICAL RENDERING o7

(a) (b)

(c) (d)

() (f)

Figure 17: Image down-sampling on the Blunt Fin. (a) exact image (1-by-1
pixel size); (b) 2-by-2; (c) 3-by-3; (d) 5-by-5; (e) 7-by-7; (f) 9-by-9.

CHAPTER 3. TIME-CRITICAL RENDERING o8

(a)

(b)

Figure 18: Applying all simplification schemes. (a) One pixel (full resolution)
images for mesh simplification of 0%, 25%, 50%, 75% and 90%. (b) Same
mesh simplification for 9 x 9 pixels image resolution.

CHAPTER 3. TIME-CRITICAL RENDERING 99

(a) (b)

Figure 19: Liquid Ozygen Post simplification. (a) Both interior and boundary
points were simplified resulting in 26K points and 328K faces. (b) Only interior
points were simplified, resulting in 37K points and 494K faces.

CHAPTER 3. TIME-CRITICAL RENDERING 60

ical Rendering

hile Integration Rotation

Set Mode of Rendering 112 Set Mode of Wired Display
~ Full Rendering | J ~ Misible faces
~ Layer Rendering ¥ Axis - Extemal faces
“# Integral Rendering 34 # All faces
A

Quit

Figure 20: A screen shot of the time-critical system GUIL On the left window
is shown the rendered image and on the right window is shown the grid of the
data set. The user can rotate up, down, left and right, and zoom in and out.

Chapter 4

ZSweep Algorithm

! In this Chapter we present a simple new algorithm that performs fast and
memory-efficient cell projection for (exact) rendering of unstructured datasets.
The main idea of the “ZSweep” algorithm is very simple; it is based on sweep-
ing the data with a plane parallel to the viewing plane, in order of increasing
z, projecting the faces of cells that are incident to vertices as they are encoun-
tered by the sweep plane. The efficiency arises from the fact that the algorithm
exploits the implicit (approximate) global ordering that the z-ordering of the
vertices induces on the cells that are incident on them. The algorithm projects
cells by projecting each of their faces, with special care taken to avoid double
projection of internal faces and to assure correctness in the projection order.
The contribution for each pixel is computed in stages, during the sweep, using
a short list of ordered face intersections, which is known to be correct and

complete at the instant that each stage of the computation is completed.

1This Chapter is based on work published: ZSWEEP: An efficient and exact projection
algorithm for unstructured volume rendering. R. Farias, J. Mitchell, and C. Silva. In 2000
Volume Visualization Symposium, pages 91-99. October 2000.

61

CHAPTER 4. ZSWEEP ALGORITHM 62

The ZSweep algorithm is simple enough to be readily adaptable to gen-
eral (non-tetrahedral) cell formats. It is memory efficient, since its auxiliary
data structures have only to store partial information taken from a small num-
ber of “slices” of the dataset. We also introduce a simple technique of data
sparsification, which may be of interest in its own right.

Our implementation is hardware-independent and handles datasets con-
taining tetrahedral and/or hexahedral cells. We give experimental evidence
that our method is competitive, up to 5 times faster than the best previously-
known exact algorithms that use comparable amounts of memory, while using

much less memory than ray-casting.

4.1 Introduction

We study the problem of rendering unstructured grid volumetric data. In
this Chapter, our focus is on direct volume rendering, a term used to define
a particular set of rendering techniques which avoids generating intermediary
(surface) representations of the volume data. Instead, the scalar field is gen-
erally modeled as a cloud-like material, and rendered by computing a set of
lighting equations. In general, while evaluating the volume rendering equa-
tions [47], it is necessary to have, for each line of sight (ray) through an image
pixel, the sorted order of the cells intersected by the ray, so that the overall
integral in the rendering equation can be evaluated.

Our main contribution in this Chapter is a very fast and memory-efficient
algorithm for rendering unstructured grids. In particular, we propose a novel

solution to the computation of the sorted order of the cells intersected by

CHAPTER 4. ZSWEEP ALGORITHM 63

all the rays in a given image. The algorithm is simple and is based on the
sweep paradigm. The algorithm has been fully implemented; our experiments
show that we obtain significant improvements in speed, by up to a factor
of 5 over the prior state-of-the-art. Further, with some new optimizations
we introduce, based on an idea of “data sparsification” in storing the main

dataset, we improve on the memory usage of prior sweep-based algorithms.

Related Work

Early work in adapting ray tracing techniques for rendering unstructured grids
is described in Garrity [23] and Uselton [67]. These techniques are “exact”,
in the sense that in principle (i.e., without accounting for degeneracies), for
each pixel, a correct cell stabbing order is computed. Unfortunately, these
techniques tend to be relatively slow, despite the optimizations proposed in
the respective articles.

Shirley and Tuchman [59] show how to exploit polygon-based graphics
hardware in the volume rendering equations for one tetrahedron. By using
the MPVO technique of Williams [76] to visibility sort the cells in back-to-
front order, they propose a “projective” method for rendering unstructured
grids. This particular projective technique had several limitations, includ-
ing the fact that the MPVO technique of Williams is only able to generate
“correct” visibility order for certain types of datasets, and the actual approx-
imation proposed in [59] generates visual artifacts. Improving on the Shirley
and Tuchman technique, Stein et al. [63] propose techniques to explore texture
mapping to improve the visual quality, and an O(n?) sorting algorithm which is

able to compute correct visibility order for general acyclic unstructured grids.

CHAPTER 4. ZSWEEP ALGORITHM 64

Their work is further improved by Williams et al [78], Silva et al [62], and
Comba et al [14], leading to almost linear-time (in practice) “exact” visibility
sorting techniques. Max et al[48] proposed a different sorting technique based
on “power” sorting. This technique is more restricted than the MPVO-sorted
grids, in fact, it is only guaranteed to produce correct sorting results for acyclic
complexes (triangulations). Despite its shortcomings, this technique is quite
useful, and has been used extensively in practice, leading to excellent render-
ing times (see Cignoni et al [13, 11], and Wittenbrink [80]). Recently, Cignoni
and De Floriani [12] have proposed a more general extension of power sorting,
but provide little experimental results.

Since “projective methods” work by projecting, in visibility order, the poly-
hedral cells of a mesh onto the image plane, and incrementally compositing
the cell’s color and opacity into the final image, it is crucial to these methods
to compute a correct visibility ordering of the cells. Strictly speaking, the pro-
jective methods that do not use a provably correct visibility order algorithm
are not exact, since incorrect projection leads to wrong images. Because these
techniques render each tetrahedron one at a time, it is not possible to correctly
handle grids that contain cycles. (Note that this is not a problem for ZSweep,
and in general for ray casting based techniques.)

The plane sweep paradigm, which is based on processing geometric entities
in an order determined by passing a line or a plane over the data, has been
used widely in computational geometry for the design of efficient algorithms;
see [56]. It has also been used in devising efficient volume rendering algorithms.

Giersten [25] pioneered the use of sweep algorithms in volume rendering.

CHAPTER 4. ZSWEEP ALGORITHM 65

His sweep algorithm is based on a sweep-plane that is orthogonal to the view-
ing plane (in particular, orthogonal to the y-axis). Events in the sweep are
determined by vertices in the dataset and by values of y that correspond to
the pixel rows. When the sweep plane passes over a vertex, an “Active Cell
List” (ACL) is updated accordingly, so that it stores the set of cells currently
intersected by the sweep-plane. When the sweep plane reaches a y-value that
defines the next row of pixels, the current ACL is used to process that row,
casting rays, corresponding to the values of x that determine the pixels in
the row, through a regular grid (hash table) that stores the elements of the
ACL. This method has three major advantages: It is not necessary to store ex-
plicitly the connectivity between the cells; it replaces the relatively expensive
operation of 3D ray-casting with a simpler 2D regular grid ray-casting, and it
exploits coherence of the data between scanlines. The main disadvantage of
the method is that the regular grid utilized in the 2D ray-casting may cause
a loss of resolution in the rendering, while leading to possible aliasing effects
(both spatial and temporal).

Following the same basic idea of sweeping the data, Yagel presented a
different approach to rendering unstructured grid data, which also allowed
some further speed-up using hardware support, as he shows in [81]. His sweep
algorithm is based (as is ours) on a sweep with a plane parallel to the viewing
plane. Just like Giertsen’s algorithm, Yagel’s does not need to compute and
keep explicit cell adjacency information, allowing it to be memory-efficient
in its basic data structures. Graphics hardware can be used to accumulate
the contributions of each slice to the final image. The main drawback of

this algorithm is its memory consumption, which can be substantial, since it

CHAPTER 4. ZSWEEP ALGORITHM 66

must store the polygons resulting from each slice. Also, its accelerated version
requires graphics hardware support.

The Lazy Sweep algorithm [61] is the most recent algorithm based on the
sweeping paradigm. It was shown to be faster and more memory efficient
than its predecessors. Besides the array of vertices and the array of cells, the
only other adjacency information used is a list (the “vertex use set”), for each
vertex, that keeps the indices of all cells that are incident on the vertex.

Two other papers by Westermann and Ertl [68, 69], describe techniques
to exploit the graphics hardware to achieve fast rendering, also based on the
sweep paradigm.

We also briefly discuss the ray-casting algorithm of Bunyk et al. [6], which
we use in our experimental comparisons. This is a fast algorithm, but it

requires a lot memory. It’s basic idea is as follows:

e In preprocessing, identify all cells and faces that touch each vertex and

identify all boundary faces.
e For the given new rotation angle, rotate all vertices.

— By projecting all boundary faces on the screen, create for each pixel
an ordered list of the boundary faces that a ray cast through the

pixel crosses as it enters and exits the volume.

— For each pixel, starting from the first boundary face intersected,
use the cell adjacency information to find the next face intersected
by the ray. (Each interior face points to its two neighboring cells,
allowing one to go easily from cell to cell while computing the con-

tribution of each cell.) Use the ordered list of boundary faces to

CHAPTER 4. ZSWEEP ALGORITHM 67

determine the entry and exit points of the ray as it passes into and

out of the volume.

One difficulty with the implementation of the algorithm is that when a ray
exactly hits a vertex or an edge of the dataset, it may have difficulty resolving
which the next cell is, potentially leaving the corresponding pixel unrendered.
However, in most cases the implementation produces high-quality images and
does so very quickly, making it a reasonable choice for our experimental com-
parisons.

Recently, Hong and Kaufman [29, 28] proposed a very fast ray casting
technique for curvilinear grids. Their work is similar in some ways to [6], but
optimized for curvilinear grids, which makes it faster and use far less memory
than [6]. It’s restrictions is that it is applicable only for structured datasets.

Finally, we mention that the new algorithm presented in this paper, is also
related in some ways with the A-buffer [7] approach, optimized with the use
of the order of the vertices to assure a quasi-order projection of the faces. The
work the A-buffer has to perform to order the intersections between the ray

cast and the faces projected is very small.

4.2 The ZSweep Algorithm

Our ZSweep algorithm is designed with the intent of combining accuracy and
simplicity with speed and memory efficiency, building on the success of prior
sweep approaches.

The algorithm is a simple sweep with a plane, II, parallel to the viewing

plane, in order of increasing z-coordinate. (This is the only similarity with

CHAPTER 4. ZSWEEP ALGORITHM 68

Yagel et al’s algorithm.) Events occur when II encounters a vertex v, at which
point we project the faces of cells that are incident to v and lie beyond v (in
z-coordinate).

In order to facilitate our further discussion of the algorithm, we introduce

some notation:

e The vertex use set, U(v), associated with vertex v is a list of all cells

that are incident on v.

e We say that vertex v is a swept vertex if it has already been swept over

by II (its z-coordinate, v,, is less that the current sweep value, z.
o A face f is a swept face if at least one vertex of f is a swept vertex.

o A cell cis a swept cell if all of its faces are swept. Since our algorithm
maintains the swept status explicitly only for vertices, we use the follow-
ing observations to determine the swept status of a cell: A tetrahedral
cell is swept if and only if (at least) two of its vertices have been swept;
a hexahedral cell is swept if and only if (at least) five of its vertices have

been swept.

We now describe the steps of the algorithm in greater detail.

The first step is to sort the vertices by z-coordinate into an event list;
this determines the order of the events. We use a heap to efficiently sort the
vertices. The heap keeps only indices to the vertex array. Using a heap, we
can save some memory over quicksort, and, more importantly, it will allow us
to adapt our algorithm to dynamic situations in which new vertices may be

inserted.

CHAPTER 4. ZSWEEP ALGORITHM 69

Optionally, one can choose to sort and store in the event list only the
boundary vertices (on the boundary of the dataset), and then to insert interior
vertices into the event list only as they are discovered during the sweep algo-
rithm. This optimization has the potential to save some memory; however, we
have reported our results based on not using this option, as we have found that
the event list is responsible for only about 4% of the total memory required
for the vertices and cells (including the use sets).

The main loop of the algorithm is the sweep in the z-direction, which is
performed simply by stepping through the event list. When the ith vertex, v;,
of the event list is encountered, we project 2 each face f that is incident on
v; for which v; is the vertex having minimal z-coordinate. (Necessarily, such
faces f have not been swept.) The faces to project are readily determined
by examining the use set of v;. Refer to Figure 21 for an illustration in two
dimensions.

In order to perform face projection, we use a very fast scan conversion for
triangles, which not only determines which pixels lie in the projection, but
also determines the z-coordinate (depth) of each point of the (unprojected)
triangle and computes the interpolated value (via bi-linear interpolation) for
the scalar field data.

To guarantee accuracy in the rendering algorithm, it is important to make
certain that the projection of the faces is done in a correct order for each

pixel. The order in which faces are projected in our ZSweep is according to

2Qur face projection is different from the ones used in projective methods, such as the
Shirley and Tuchman approach. During face projection, we simply compute the intersec-
tion of the ray emanating from each pixel, and store their z-value (and other auxiliary
information). The actual lighting calculations are deferred to a later phase.

CHAPTER 4. ZSWEEP ALGORITHM 70

—>Sweep Direction

YN

Figure 21: When the sweep plane II encounters vertex v;, the cells A, B, and
C are first encountered, so the (highlighted) faces (v;, vy,), (v, viy), (i, Vig),
and (v;, v;,) are projected.

the z-coordinate of the first vertex encountered of the face. This order is
not, however, sufficient to guarantee that faces are projected automatically in
correct depth order for every pixel. For example, in Figure 21, faces (v;,v;,)
and (v, v;,) are each projected when we encounter v;. While a local analysis
of the faces at v; would permit us to project (v;, vy,) before (v, v;,), we would
have to project also face (v;,,v;,) before (v;,v;,) in order to have those pixels
in the projection of (v;,,v;,) have the correct ordering of projected faces. We
do not, however, project face (v;,,v;,) until IT reaches the vertex v;,. While in
two dimensions it is possible to project faces (edges of triangles) in an order
that is consistent in z, in three dimensions it is well known that the precedence
relation induced by depth ordering can have cycles. (Even three triangles in

space can form a cycle.)

CHAPTER 4. ZSWEEP ALGORITHM 71

Thus, our ZSweep algorithm keeps for each pixel a z-order list of inter-
sections, projected on that pixel. Each time that a face is projected on the
screen, we insert for each pixel under the projection, an element (with the
z value of the intersection as well as the interpolated scalar value) into the
corresponding pixel list. The insertions must preserve the correct z-ordering
of each pixel list. If insertions were being made in “random” order, it would
be important to store each pixel list in an efficient data structure (e.g., heap
or balanced binary tree) to permit efficient insertion. However, the order in
which we project faces in our ZSweep is such that the face we are project-
ing will most likely lie at the end of the list, or be “very close” to it. Thus,
we have implemented a doubly-linked list structure for the pixel lists, and we
perform insertion from the end (larger z-coordinate) towards the beginning
of the list. Some experiments showed us that 70% of the insertions are per-
formed at the end of the list. Also, about 12% of the insertions occur in the
next-to-last position, 17% in the position before that. The remaining 1% are
the first insertions, when the lists are empties. Thus, doing a simple insertion,
starting at the end of the list, results in a significant time savings, since the
ordering determined by the ZSweep face projection order is already so close to
the depth order in most cases.

While the pixel lists allow us to ensure that each pixel gets the correct
ordering of all projected faces, it comes at the cost of potentially increasing the
memory requirement substantially. In order to avoid this, we use a technique
we call delayed compositing to flush the pixel lists on a regular basis. In
particular, at any given stage of the sweep we have a z-target, which represents

the value of z at which we will next stop the sweep momentarily and compose

CHAPTER 4. ZSWEEP ALGORITHM 72

the values that are in the pixel lists; the sweep continues beyond the z-target,
after setting a new z-target appropriately.

Initially, we define the z-target to be the maximum z-coordinate among
the vertices adjacent to the first vertex, vy, encountered by II. When the
sweep reaches the z-target (say, corresponding to vertex v), we compose, in
order, the entries of the pixel lists into the accumulated value being kept
for each pixel, starting from the last z-coordinate where composition left off
for that pixel, and ending when we reach the depth of the z-target. (Thus,
we may not compose all entries of the pixel list; those corresponding to z-
coordinates beyond the z-target are not composed yet, as there is a chance
that there are faces not yet projected whose z-coordinates will precede them).
This incremental composition is done for each pixel whose pixel list has more
than one entry. We remove from the pixel lists all of the entries that we
compose, except for the last one (since it will be needed in order to continue
the composition later). After composing the values at all of the relevant pixels,
we reset the z-target to be the maximum z-coordinate of the vertices adjacent
to v, and continue the sweep. In the example of Figure 21, if v; was the
previous z-target, then, when it is encountered, the new z-target is set to the
z-coordinate of vj,.

Our choice of z-target allows us to prove that the composition is always
done in the correct order for each pixel; i.e., we never compose a face f at a
pixel for which there is an unprojected face f' preceding f in the depth order
at the pixel. For, if to the contrary such an f’ existed, then f’ must have a
vertex with z-coordinate less than that of its depth at the pixel, and therefore

less than that of the z-target. However, then the face f’ would have been

CHAPTER 4. ZSWEEP ALGORITHM 73

projected prior to reaching the z-target (by the invariant maintained by our
ZSweep), giving us a contradiction.

There is another issue in our delayed compositing method: If the dataset
has highly nonuniform cell sizes (and therefore edge lengths), it could be that
the z-target is set to be “very far” away from the prior z-target, leading to
some pixel lists growing quite large before we reach it. To avoid this, we set
a second criterion for stopping the sweep and performing incremental compo-
sition: When any pixel list reaches a user-specified threshold K (the current
default is K = 16) in size, we stop and do incremental compositing. In some
rare cases, it may be that some of the pixel lists need to grow beyond any
prespecified threshold before compositing can be done while guaranteeing cor-
rectness of the order (as we insist in our exact algorithm). (Such examples are
purely contrived, having cells that are “slivers” or “needles”, and have never
been observed to exist in our experiments.) In order to address this rare (but
possible) event, we allow the size of the threshold K to increase (to 2K, 4K,
etc.), as needed, in case the pixel lists cannot be even partially flushed (as in
pathological cases). (The need to increase the threshold has not arisen in any

of our experiments so far.)

4.3 Implementation Details

Our implementation of the ZSweep algorithm is in C++, consisting of less
then 4500 lines of code.
While our algorithm permits datasets having general cell formats, our im-

plementation currently handles only tetrahedral and hexahedral cells (as well

CHAPTER 4. ZSWEEP ALGORITHM 74

as datasets having a mixture of the two), since these are by far the most

popular unstructured cell formats.

4.3.1 Preprocessing and Basic Structures

There are two main arrays that store the data: the vertex array and the cell
array. Most often, these two arrays are responsible for 90% of all memory
used by our code. To make the connectivity faster and easier we build the
use set for each vertex, which gives a list of all cells that use the vertex. The
use set can be built in linear time by a pass over the data. Another step in
the preprocessing phase is to mark the boundary faces and vertices. This is
currently performed in time quadratic in the length of the use sets k, or O(nk?)
where n is the number of vertices in the data set; since the value of k is very
small for well behaved data sets (the longest we observed was 32) this cost can

be considered linear in the number of vertices.

4.3.2 Sweep

The sweep function expects the vertices to be in depth (z) order in the vertex
array. We used a heap to order the vertices by their z-coordinates. The heap
keeps the array indices for the vertices, instead of pointers, which makes it
straightforward to modify our code to obtain a shared-memory version of our
code that is memory-efficient.

Now we consider how the sweep function identifies which face must be sent
to the projection function. If vertex v; is the vertex with smallest z-coordinate

(there can be many of them in degenerate cases), we know that this vertex

CHAPTER 4. ZSWEEP ALGORITHM 75

does not have any cell in its use set that has already been projected. But this
case is a special case of the general case, so we will only discuss the general
case, as depicted in Figure 21. Suppose vertex v; has just been obtained from
the heap. We scan v;’s use set to visit all of its touching cells. Notice that
all cells represented by dashed lines in the figure are considered swept cells
(by our definition). Suppose that we find the cell B; we can project both
faces, between cells A — B and between cells B — C. Then suppose we now
find cell A. To avoid projecting twice all the interior faces of the dataset, we
make use of a very small hash table. (Below, we discuss a further optimization
(“sparsification”) that we perform in order to minimize, but not eliminate,
such occurrences.) In practice, we have observed that the hash table holds at
most 15 faces per vertex, for data sets up to half a million cells.

If the current cell is hexagonal the only extra care that must be taken is to
create two triangular faces and send them to the hash table. (The projection
function will not even know if the face came from a tetrahedral or hexahedral
cell.) We have used some connection information to avoid generating inter-
secting triangular faces; see Figure 22. One problem that will happen if we
have intersecting faces is that once the hash key is built based on the indices
for the vertices, 4 different faces will be included into the hash table. This will
not cause the code to fail, but it can cause undesirable artifacts in the final
image if the four vertices are not coplanar, which is true in general.

To address this issue, we use the connection between the global index and
relative indices for the points. The point p; in the global array of points can
appear as any of the L vertices of a given L-vertex cell. Given a point we can

easily find out the faces of the cell that use it. Each internal face will be found

CHAPTER 4. ZSWEEP ALGORITHM 76

(a) (b)

Figure 22: (a) The two triangular faces created when the current vertex vy, is
the local vertex 0 for this face. (b) A case in which the current vertex is the
second vertex for this same face, when found for the other cell that shares this
face. This will happen if one always creates the faces starting from the local
vertex 0 for all faces. Remember also that the hash key is generated based on
the indices values, and that in this case four different faces will be included
into the hash table.

twice by the algorithm. We use the unique global index as the identification for
the vertices. Consider the face shown in Figure 22. Assume that the cells CY
and C), are the ones that share this face. Suppose that for cell C}, the current
vertex appears as its first local vertex (vy). This will lead us to find the two
triangular faces shown in Figure 22(a). When we find the same face on another
cell, suppose that the current vertex appears as its second local vertex. To
find the same combination for the three vertices independent of their relative
local position for both neighbor cells, we used a “wrapping” computation to
find the global index of each vertex, starting with the current vertex. So if
the current vertex is the first vertex in the hexahedral face of the cell C, the

indices for the two triangular faces are given by:

Triangle 1 = (vk0%47 Uk154 Uk2%4)

CHAPTER 4. ZSWEEP ALGORITHM 7

Triangle 2 = (Vkyy,s Vkyops> Vksops)

When the cell C, is found, to assure that the same two triangles will be
generated we first find the relative position for the current vertex of the face
for the other cell (it is 1 now). Then, we start getting the global vertex indices

by the same integer division:

Triangle 1 = (Vkyo,s Vkyops> Vksoss)

Triangle 2 = (vk1%4’ Vksgas Uk4%4)

4.3.3 Projection

Before projecting, the code calls the composite function if either the current
z-coordinate of the sweep plane has reached the target-z or if there is at least
one pixel list with a length greater than a given threshold size.

This phase of the algorithm is simple. It gets the faces from the hash table,
one by one, and projects them onto the screen. The projection is done by
means of optimized intersection formulas. One detail is worth a remark: As
the projections take place, the program keeps track of the bounding box of
the screen region that contains pixels whose lists had some insertion. The
composite function does not need to scan the entire screen looking for pixel

lists to compose; it scans only the current bounding box.

4.3.4 Delayed Compositing

Now the last phase of the algorithm computes the color and brightness contri-
bution from all faces projected so far. As the pixel lists contain the depth (z)

and the interpolate scalar value of all faces that correspond to this pixel, the

CHAPTER 4. ZSWEEP ALGORITHM 78

code must only go through each list and integrate the color and the opacity
contributions; intersections that are summed to the pixel are removed from

the pixel lists.

4.3.5 Optimizations

Two other optimizations were included in our implementation and brought

further efficiency in both speed and memory usage.

Sparse Data Representation

Since our algorithm ultimately performs face projections, it will project twice
those faces that are shared by two face-neighboring cells. In order to avoid
this as much as possible, we perform a “sparsification” step in which we keep
only a subset of the cells that is sufficiently large to contain the set of all faces.
In particular, we can “throw away” a large set of cells, provided that we do
not throw away both cells that contain a given face. In the terminology of
graph theory, we seek to find a maximum independent set in the dual graph
of the cells. (Nodes correspond to cells and two cells are adjacent in the graph
if the corresponding cells share a common face.) While finding maximum
independent sets in graphs is a hard problem, we apply a greedy heuristic that
works well in practice to eliminate a substantial fraction of the cells, leading to
a substantial decrease in memory requirements (and some decrease in running
time t00).

In particular, we do the following. We keep all cells that have faces on

the boundary, since they are essential for those boundary faces. We then

CHAPTER 4. ZSWEEP ALGORITHM 79

] Kept Cells
1 Deleted Cells

Figure 23: Over the mesh, it is shown the equivalent graph with a edge cov-
ering. In the graph the nodes represent the cells and the edges represent the
face between the cells. A ghost node must be included for each boundary face,
to make it possible their representation in the graph.

iteratively mark cells for deletion. Each time we delete a cell, we mark its
neighboring cells as “essential” (they are not permitted to be deleted. We
continue until all cells are either deleted or marked “essential.”

Our “sparsification” technique is related to the “chess-boarding” technique
of Cignoni et al [11]. In [11], they save memory by avoiding the duplication of

the “edges” of a regular grid dataset during isosurfacing.

Use of Previous Heap Result

This optimization is only important if one wants to use the code to generate a
sequence of images. Once the first image has been rendered, the heap class is
able to keep a integral copy of itself. So supposing that the dataset is rotated

by a small angle, it is usually true that the vertices are likely to have almost

CHAPTER 4. ZSWEEP ALGORITHM 80

[Dataset Information |

Boundary Boundary Cells
Dataset H Vertices ‘ Vertices ‘ Faces Faces ‘ Cells in Sparse ‘
Blunt Fin 41K 6.7TK 382K 13.5K 187K 105K
Comb.Chamber 47K 7.8K 438K 15.6K 215K 121K
Oxygen Post 109K 27.7TK 1040K 27.7K 513K 282K
Delta Wing 212K 20.7K 2032K 41.5K 1005K 541K
SPX 3K 1.4K 27K 2.8K 13K 8.6K
Hexahedral 2.7TK 1.3K 6.4K 1.3K 1.9K —_

Table 5: This table shows the number of cells (tetrahedra/hexahedra), the
total number of vertices and faces, as well as the number of boundary vertices
and faces for all datasets. The rightmost column shows the number of cells for
each dataset after sparsification, which always results in at most 56% of the
cells being kept.

ZSweep Preprocessing Time and Memory Usage ‘

Required Memory (MB) Preprocess (sec)
K7-PC SGI
Datasets 1282 | 2562 512% | Original | Sparse
Blunt Fin 13 16 24 2 7
Comb.Chamber 15 16 25 3 8
Oxygen Post 34 38 52 6 19
Delta Wing 64 68 80 13 37

Table 6: The first three columns show the total memory required by ZSweep
to render each dataset in different resolutions. The fourth and fifth columns
show the preprocessing times, on the K7-PC, for the original data sets and its
sparse representation. The last column shows the preprocessing time on the
SGI platform measured for the original data sets.

CHAPTER 4. ZSWEEP ALGORITHM 81

the same order than in the previous order. If instead of sending the vertices
every time from the original global array, they are inserted into the heap in the
order they had in the previous sweep, then the next ordering will be performed
in linear time (in practice), since the vertices will be almost in order already.
(A similar optimization is used in [80].)

Recall that the heap keeps only the indices for the points and the memory
that it uses is very small compared to the memory used by the points and the
cells. But if the amount of memory available is very small, this optimization

can be omitted.

4.4 Experimental Results

As a first step in the experimental investigation of the ZSweep algorithm, we
implemented a version that handled only tetrahedral grid datasets. Then, the
simplicity of the algorithm allowed us, by a very simple modification, to make
it handle also hexahedral grids data and mixed (tetrahedral and hexahedral)
data. All of our experiments were conducted with this enhanced version of the
software.

The data input may represent disconnected, concave datasets, even with
“holes,” consisting of tetrahedral and hexahedral cells. The code reads the
data from a file similar to the Geomuview’s off format and is able to determine
the type of each cell by its number of indices. The resulting image can be
saved in ppm file format.

We ran our experiments on several popular datasets available from NASA,

including Blunt Fin, Combustion Chamber, Liquid Ozygen Post, and Delta

CHAPTER 4. ZSWEEP ALGORITHM 82

Wing. We use the tetrahedralized versions of these datasets, since our algo-
rithm is intended to visualize unstructured grids. (For structured datasets one
should opt for algorithms designed specifically to exploit the implicit represen-
tation of the grid, which allows for fast and highly memory-efficient algorithms;
e.g., see [28].) We also perform our experiments on two other datasets, selected
in order to verify the functionality of our implementation in the case of holes
and hexahedral cells: SPX, which is a small tetrahedral dataset having holes,
and Hezahedral, which is a small hexahedral dataset.

Table 5 gives basic information about all six datasets used in our experi-
ments. In the rightmost column is shown the size of the data after sparsifica-
tion, which eliminates, on average, about 53% of the cells. This savings allows
the algorithm not only to reduce its total memory consumption, but also to

reduce considerably the reading and preprocessing time.

4.4.1 ZSweep Performance

In this section we present the performance of ZSweep on two different plat-
forms: an SGI machine (with a single 300MHZ MIPS R12000 processor and
512 Mbytes of memory) and a K7-PC (with a 900MHZ AMD K7 Athlon and
768 Mbytes of memory).

Table 6 shows ZSweep’s preprocessing times, which include reading and
generating the use set for all vertices and memory usage required to create
different image sizes. When larger images are required to be generated, more
memory is necessary, since for each pixel the algorithm has to keep an ordered
list (the pixel list) of intersected faces. The required memory grows sublinearly,

however, since for an image 16 times larger, the memory goes up by less than

CHAPTER 4. ZSWEEP ALGORITHM 83

‘ ZSweep Rendering Time on the SGI ‘

| Datasets | 1282 | 256° | 5122 |
Blunt Fin 2s | 4453 | 6s | 17858 | 33s | 71508
Comb.Chamber | 4s | 5032 | 7s | 20234 | 32s | 81544
Oxygen Post 7s | 6254 | 16s | 25160 | 62s | 101034
Delta Wing 14s | 4396 | 23s | 17684 | 76s | 71062

Table 7: Render time (in seconds) and the number of pixels processed for each
dataset and each image size.

‘ ZSweep Rendering Time on the K7-PC ‘
| Datasets | 1282 | 256° | 5122 |
Blunt Fin 2s | 4453 | 5s | 17858 | 20s | 71508
Comb.Chamber || 2s | 5032 | 6s | 20234 | 21s | 81544
Oxygen Post 5s | 6254 | 11s | 25160 | 40s | 101034
Delta Wing 9s | 4396 | 16s | 17684 | 43s | 71062

Table 8: Render time (in seconds) and the number of pixels processed for each
dataset and each image size.

a factor of 2.

Table 7 shows ZSweep rendering times on the SGI platform. The reso-
lutions were chosen to allow us to compare our results with previous works.
The compilation was performed in 32 bits with highest possible optimization
(“-O3”). Table 7 shows the equivalent tests performed on the K7-PC platform.

The increase in the observed render time as the size of the image grows,
particularly with larger datasets (e.g., delta wing), is largely due to time spent
by the algorithm in keeping the pixel lists. Further care must be taken to

avoid the render time to grow faster, if it is desired to visualize even larger

CHAPTER 4. ZSWEEP ALGORITHM

Blunt Fin dataset comparison

‘ Time(s) ‘ Memory (MB)

ZSweep Results

Method H Image Size | Time(s) | Memory (MB) |
Lazy Sweep 530x230 22 8 5 16
Bunyk et al. 1282 2 76 2 13
Bunyk et al. 2562 8 77 6 16
Bunyk et al. 5122 27 81 33 24

Table 9: While ZSweep uses about twice the memory that Lazy Sweep requires,
it is 4.4 times faster. As the image size grows, Bunyk et al. becomes slightly
faster than ZSweep, but at the cost of much higher memory consumption.

Combustion Chamber dataset comparison

Method H Image Size

‘ Time(s) ‘ Memory (MB)

ZSweep Results

| Time(s) | Memory (MB) |
Lazy Sweep 300x200 19 9 5 16
Bunyk et al. 1287 4 88 4 15
Bunyk et al. 2562 10 89 7 16
Bunyk et al. 5122 37 93 32 25

Table 10: In this case ZSweep is about 4.75 times faster than Lazy Sweep,
while again using about twice the memory. For this dataset, ZSweep was
faster than the Bunyk et al. method for all image sizes considered, while using

substantially less memory.

Liquid Oxygen Post dataset comparison

Method H Image Size

‘ Time(s) ‘ Memory (MB)

ZSweep Results

|
| Time(s) | Memory (MB) |

Lazy Sweep 300x300 37 22 22 35
Lazy Sweep 600x600 82 22 87 54
Bunyk et al. 1287 5 208 7 34
Bunyk et al. 2562 19 209 16 38
Bunyk et al. 5122 72 214 62 52

Table 11: To create an image of size 300? ZSweep requires 60% more memory
than Lazy Sweep. But, while Lazy Sweep maintains its memory requirements
essentially the same even for larger images, ZSweep needs to allocate more
and more memory, because of the pixel lists. Again ZSweep is comparable to
Bunyk et al. in speed, but much more memory efficient.

CHAPTER 4. ZSWEEP ALGORITHM 85

[Delta Wing dataset comparison |
ZSweep Results |

‘ Method H Image Size

Time(s) Memory (MB) |[Time(s) | Memory (MB) |
Lazy Sweep 300x300 64 44 27 67
Bunyk et al. 1282 4 406 14 64
Bunyk et al. 256> 13 407 23 68
Bunyk et al. 5122 43 411 67 80

Table 12: Delta Wing is a medium-size dataset with over a million tetrahedra.
For this dataset it becomes clear that the pixel lists are slowing down the
algorithm. But it is still 2.4 times faster than Lazy Sweep. And even though
ZSweep became slower than Bunyk et al. algorithm, the memory this last one
needs is still a big problem nowadays.

datasets.

4.4.2 Comparison with Other Methods

We compare our results with two fastest and most recent algorithms available
for unstructured grids, Lazy Sweep [61] and the ray-casting algorithm of [6].
(We do not compare here with hardware-accelerated algorithms, as we are
studying the performance here of pure software implementations.) We compare
the render costs, both in rendering time and total memory consumed for each
of the three methods, for all four NASA datasets (those on which the other
two methods apply); see Tables 9-12.

One last note we make is that ZSweep, just like Bunyk et al., was imple-
mented using a lighting model that, although simple, is computationally more
expensive than the model used on the lazy sweep work. So even in the cases
where Lazy Sweep compares in speed with ZSweep, keep in mind that the final

image generated by ZSweep will be more accurate in terms of the lighting. 3

30ur lighting model is the same as that used in Bunyk et al., based on integration of

CHAPTER 4. ZSWEEP ALGORITHM 86

4.5 Conclusion

The unstructured grid volume rendering algorithm (ZSweep) we presented in

this Chapter has proven to be a very competitive option for both general and

linearly-interpolated color and opacity values along each ray. Scalar values in the input
dataset are shifted and scaled to fit the [0,255] range. A user-specified piecewise-linear
transfer function is read from a file; it specifies the mapping from this range to the set
of opacity and RGB values. During ray casting, we calculate the z and interpolated scalar
field values of the ray intersection points with the current and the next triangle and pass
these values to the transfer function calculation module, which updates the RGB values of
the current pixel.

The exact integration formulas follow. The following variables are used: z., z,, 2z coordi-
nates of intersection with the current and nezt triangles; Az, distance between 2. and zy;
Ce, Cn, linearly-interpolated color component value in z. and z,; 0., 0,, linearly-interpolated
opacity in 2. and z,; C., O., accumulated on the previous steps color and opacity values,
initially 0; C),, O,, updated color and opacity values.

Color and opacity are linearly interpolated between their values in 2. and z,:

0c(2n — 2) + on(z — 2¢)
Az

o(z) =

_ce(zn —2) +enlz — 20)
o(z) = Az

These linear functions must be integrated from z. to z, to obtain O,, C,. We also need
the opacity value in all intermediate points to use it in color computation:

0(z) =0, + /z o(z)dz

e

z
Cz)=C.+ / c(z)(1 — 0(2))dz.
Ze

After computing these integrals analytically, we obtain the following values for O,, and
Ch:

O, =0,+ %(oc +on)Az

1 1
C,=0C,— §(cc +¢,) (0. —1)Az — ﬂ(3ccoc + 5¢p0c + €c0n + 3cn0n)AZ%

As a comparison, the lighting model used in Lazy Sweep amounts to a table lookup
for each color channel, and multiplication by the transparency. It is possible to make the
lighting model considerably more accurate and complex. A good example is the one used in
the HIAC system, described in Williams et al [78]. Max [47] gives a good survey of optical
models for volume rendering.

CHAPTER 4. ZSWEEP ALGORITHM 87

specific applications due to its relatively low memory requirements, high speed,
accuracy and simplicity. It is considerably simpler and faster than the previous
sweep-based rendering algorithms (without hardware assistance). As with the
previous algorithms of [61] and [6], the accuracy of the final image does not
depend on the characteristics of the dataset grid.

Also, as with the Lazy Sweep method of [61], ZSweep is memory efficient,
even though a highly anomalous dataset could cause the pixel lists, maintained
for each pixel of the screen, to become lengthy, making it necessary for further
precautions (e.g., partitioning of the viewing plane into subimages) to be taken
to avoid having these lists consume too much memory. We note, however,
that for all tests on all datasets mentioned on Table 5, we did not notice an
unexpected increase of memory usage. We did expect the memory allocation to
increase for larger images, since as the image size increases, each face projected
will insert intersection units into more and more pixel lists. While ZSweep is
more than twice as fast as [61], it uses from 20% to 60% more memory, which is
not enough even to slow down the reading/preprocessing step compared to the
Lazy Sweep method. We have methods of reducing the memory requirements
that we are exploring in our continuing investigations.

A possible parallelization can be obtained by dividing the image plane in
a grid of rectangles, identifying all points of the data that lay inside each the
parallelogram defined by a rectangle, as its base, and the depth as its height,
and distribute the parallelograms to each processor to perform the ZSweep on
its points.

On the other hand, even though ZSweep is slower than [6] in some cases,

it uses considerably less memory and ZSweep does not have the difficulty that

CHAPTER 4. ZSWEEP ALGORITHM 88

arises from having ray casts that hit degenerate points at vertices or edges of
the grid.

We finally note that our current implementation suffers a small overhead of
checking for the type of each cell to decide how to proceed, since it can handle
tetrahedral and hexahedral cells together in the same dataset. Most other
algorithm implementations do not offer this flexibility (two notable expections
are the implementation of LSRC and HIAC). Due to the extreme simplicity
of the ZSweep basic concept, this was easy to accomplish.

Besides parallelization, we are also exploring other improvements on ZSweep,
including (1) further reducing the memory requirements by partitioning the
image space and running the algorithm separately on subimages; (2) adapt-
ing ZSweep for walkthrough applications; currently, we assume that views are
from outside the datasets, and clipping the outside can be performed efficiently
within our framework; (3) exploring the development of a hardware-assisted

version of the ZSweep; (4) add other cell formats (including nonconvex cells).

CHAPTER 4. ZSWEEP ALGORITHM

Figure 24: Image of Blunt Fin created in 512z2512.

Figure 25: Image of Combustion Chamber created in 512x512.

89

CHAPTER 4. ZSWEEP ALGORITHM 90

Figure 26: Image of Liquid Oxygen Post created in 512x512.

Figure 27: Image of Delta Wing created in 512x512.

CHAPTER 4. ZSWEEP ALGORITHM 91

Figure 28: Not as famous, this is spx.off. It contains holes what makes it more
challenging to visualize. Image created in 512x512.

CHAPTER 4. ZSWEEP ALGORITHM 92

Figure 29: This file is a very small hexahedral grid data set that we used to
test the part of our implementation that handles hexahedral cells data sets.
Image created in 512x512.

Chapter 5

Parallelizing ZSweep

! In this Chapter we describe a simple parallelization of the ZSWEEP algo-
rithm for rendering unstructured volumetric grids on distributed-shared mem-
ory machines, and study its performance on three generations of SGI multi-
processors, including the new Origin 3000 series.

The main idea of the ZSWEEP algorithm is very simple; it is based on
sweeping the data with a plane parallel to the viewing plane, in order of
increasing z, projecting the faces of cells that are incident to vertices as they are
encountered by the sweep plane. Our parallel extension of the basic algorithm
makes use of an image-based task partitioning scheme. Essentially, the screen
is divided in more tiles than the number of processors, then each processor
performs the sweep independently on the next available tile, until no more

tiles are available to render.

!This Chapter is based on work to appear: Parallelizing the ZSWEEP algorithm for
distributed-shared memory architectures. R. Farias and C. Silva. To appear in the Interna-
tional Workshop on Volume Graphics, VG01, June 2001.

93

CHAPTER 5. PARALLELIZING ZSWEEP 94

Here, we detail the modifications necessary to efficiently extend the sequen-
tial algorithm to work on shared-memory machines. We report on the perfor-
mance of our implementation, and show that the tile-based ZSWEEP is natu-
rally cache friendly, achieves fast rendering times, and substantial speedups on
all the machines we used for testing. On one processor of our Origin 3000, we
measure the L2 data cache hit rate of the tile-based ZSWEEP to be over 99%;
a parallel efficiency of 83% on 16 processors; and rendering rates of about 300

thousand tetrahedra per second for a 1024 x 1024 image.

5.1 Introduction

In this Chapter, we describe a parallel extension of our ZSWEEP [20] algorithm
for rendering unstructured grids on distributed shared-memory machines. De-
spite the substantial progress on the state-of-the-art in rendering of irregular
grids, high-quality renderings of very large grids still take a substantial amount
of time. Our goal is to explore the availability of small and mid-size parallel
machines for rendering (and also to provide a path for exploring much larger
machines). We focus on distributed-shared memory hardware, since these ca-
pabilities are quite common in servers sold by major vendors, including SGI,
SUN, and IBM.

Although the programming model for shared-memory parallelization is
quite trivial, achieving good performance on actual machines is usually hard.
Even embarrassingly parallel algorithms, such as ray casting irregular grids
[31] usually do not scale well beyond a few processors. Several issues such as

proper load balancing need to be taken into account for good performance.

CHAPTER 5. PARALLELIZING ZSWEEP 95

Quite possibly, the hardest issue to deal with in distributed-shared memory
machines is memory coherence and related issues. The problem comes from the
fact that access to memory is non-uniform, since often the data one processor
needs actually resides in physical memory that belongs to another processor.
Hardware designers have developed intricate techniques for optimizing mem-
ory access (such as the deployment of large caches and aggressive memory
prefetching strategies) but still software has to be carefully developed to col-
laborate with the hardware, and avoid performance killers such as unnecessary
sharing of data. In general, one needs algorithms with a high degree of cache
coherence to perform well on distributed shared-memory machines.

Direct volume rendering is a term used to define a particular set of render-
ing techniques which avoids generating intermediary (surface) representations
of the volume data. Instead, the scalar field is generally modeled as a cloud-like
material, and rendered by computing a set of lighting equations. In general,
while evaluating the volume rendering equations [47], it is necessary to have,
for each line of sight (ray) through an image pixel, the sorted order of the cells
intersected by the ray, so that the overall integral in the rendering equation
can be evaluated.

ZSWEEP [20] is an algorithm for the computation of the sorted order of
the cells intersected by all the rays in a given image. The main idea of the
ZSWEEP algorithm is very simple; it is based on sweeping the data with a
plane parallel to the viewing plane (shown in blue on Fig. 30), in order of
increasing z, projecting the faces of cells that are incident to vertices as they
are encountered by the sweep plane. ZSWEEP’s face projection is different

from the ones used in projective methods, e.g. [59]. During face projection,

CHAPTER 5. PARALLELIZING ZSWEEP 96

Figure 30: The plane sweep is shown in blue while the plane determined by the
target Z is shown in light-gray. The sweeping direction is from the right to the
left and the swept vertices are shown in black while the still untouched vertices
are shown in red. Faces in the use set of the current vertex are identified and
shown as previously projected faces (light-blue) and faces to be projected
(yellow), the ones that lie ahead of the plane sweep.

we simply compute the intersection of the ray emanating from each pixel, and
store their z-value, and other auxiliary information, in sorted order in a list
of intersections for the given pixel. The actual lighting calculations [47] are
deferred to a later phase (b). Compositing is performed as the “target Z” plane
(shown in gray on Fig. 30) is reached. The efficiency arises from: (1) the fact
that the algorithm exploits the implicit (approximate) global ordering that
the z-ordering of the vertices induces on the cells that are incident on them,
thus leading to only a very small number of ray intersection are done out of

order; (2) the use of early compositing which makes the memory footprint of

CHAPTER 5. PARALLELIZING ZSWEEP 97

the algorithm quite small. The key properties for the efficiency of ZSWEEP
is the fact that given a mesh with v vertices and ¢ cells, the amount of sorting
ZSWEEP does is O(vlogwv) (in practice), i.e., depending on the number of ray
intersections, this is substantially lower than the amount of sorting necessary

to sort all the intersections for each pixel.

Contributions:

— We propose a simple parallel extension of the basic algorithm using
an image-based (i.e, tiling) task partitioning scheme. Following Nieh
and Levoy [54], our algorithm is based on an adaptive image-based task
scheduling scheme. Basically, we divide the screen into tiles, which are

dynamically assigned to the processors.

— We describe the changes that need to be performed to the original algo-
rithm to efficiently implement a tile-based ZSWEEP.

— We perform a detailed analysis of the memory characteristics of the tile-
based ZSWEEP. In particular, we show that the image tiling strategy
improves the memory coherency of ZSWEEP, and can lead to the whole
set of ray intersections fitting in the secondary level (L2) cache. On the
Origin 3000 this leads to better than 99% hit rate and greatly improved

rendering rates.

Even on single-processor machines the tile-based ZSWEEP is consider-

ably more efficient than the original algorithm.

— Finally, we study load balancing and efficiency of the parallel ZSWEEP

CHAPTER 5. PARALLELIZING ZSWEEP 98

on three generations of SGI multiprocessors, including the new Origin

3000 series.

The Chapter is organized as follows. In Sec. 5.2, we briefly describe re-
lated work. In Sec. 5.3, we present the parallel algorithm. Then in Sec. 5.4,
we present our experimental results on three different kinds of SGI multipro-

cessors. Sec. 5.5 ends the Chapter with final remarks, and future work.

5.2 Related Work

We keep our related work section short and focus on parallel rendering algo-
rithms for irregular grids and other work directly relevant to our work. The
Chapter on ZSWEEP 4[20] contains references to previous work in volume ren-
dering of irregular grids. For a discussion of computational complexity issues
in rendering of irregular grids, we point the reader to [61].

As we said before, for evaluating the volume rendering equations, it is
necessary to have, for each line of sight (ray) through an image pixel, the
sorted order of the cells intersected by the ray, so that the overall integral in
the rendering equation can be evaluated.

One solution to this problem is to compute the intersections of rays with
each cell in the mesh independently, then sort each list of intersections be-
fore compositing is performed. This is essentially the approach proposed by
Ma and Crockett [44]. In more detail, their technique distributes the cells
among processors in a round-robin fashion. For each viewpoint, each proces-
sor independently computes the ray intersections, which are later composited

in a second phase of the algorithm. One of the potential shortcomings of this

CHAPTER 5. PARALLELIZING ZSWEEP 99

technique is that it requires the storage of a very large number of ray intersec-
tions. Ma and Crockett cleverly avoid this potentially crippling shortcoming
by scheduling the computation using a k-d tree. As shown on [44, 45], their
algorithm has been shown to be very scalable on message-passing machines,
including the IBM SP-2 and the Cray T3D. Recently, Hofsetz and Ma [30]
have developed an efficient shared-memory version of this algorithm, which
they demonstrate on a 16-processor SGI Origin 2000. They showed that a
naive port of the original algorithm lead to poor performance, but with sub-
stantial changes to the original implementation, very good performance was
achieved.

One of the advantages of the Ma and Crockett technique is that no mesh
connectivity is necessary. At the same time, by completely ignoring connectiv-
ity, this algorithm does not exploit a lot of the coherence intrinsic in the mesh,
which both raises its memory requirements, and forces it into having to sort
potentially very large lists. Most other algorithms for rendering irregular grids
actually attempt to use mesh coherence (in the form of connectivity among
cells), and try to get the sorting cost as close to linear as possible.

Hong and Kaufman [31] proposes a very efficient ray-casting based ren-
dering algorithm for curvilinear grids. Their work is similar in some ways to
[6], but optimized for curvilinear grids, which makes it faster and use far less
memory than [6]. Our interest in their work is the fact that they parallelized
their fast ray caster on a 16-processor SGI machine using an image-based task
scheduling scheme similar to the one we use in this Chapter. The speedups
achieved were on the order of 11.88 on 16 processors, or 74% efficiency. The

parallelization of a ray casting technique has also been studied by Uselton [67]

CHAPTER 5. PARALLELIZING ZSWEEP 100

(a) (b)

Figure 31: In (a) we show the shafts generated by each tiling region. In (b), we
give a close up of the decomposition on the dataset. Each region was computed
by intersecting the octree with the shafts shown in (a).

with very good results.

Challinger [8] and Wilhelms et al [74] propose similar scanline rendering
algorithms (similar in several respects to [61]). Both papers report on paral-
lelizations, which is the main focus of [8]. Challinger also uses an image tiling
scheme for parallelization with very good results, which are reported separate
for different phases of the algorithm, and when taken all into account, amount
to impressive speedups of a little over 70 on 100 processors of a BBN TC2000.

Still on shared-memory machines, Williams [77] reports parallelizing his
rendering algorithm for an 8-processor SGI 4D/VGX. Other notable papers
(which focus on rendering regular grids) include Nieh and Levoy [54] and
Lacroute [37, 38]. We would like to note that irregular grid rendering algo-

rithms tend to be hard to parallelize with screen-space parallelism because of

CHAPTER 5. PARALLELIZING ZSWEEP 101

their object-space disparate resolution. That is, possibly, a large number of

cells project into a small area of the screen.

5.3 The Parallel ZSWEEP Algorithm

In this section we describe our parallelization of the ZSWEEP algorithm. The
sequential algorithm is highly efficient, and uses little extra memory on top of
the original dataset. It is based on computing ray intersections with the faces
of the cells, which are “roughly” pre-sorted in depth by using a sort of the
vertices of the cells. Each time a vertex is found during a z-sweep, the faces
incident on it are marked, and the ray intersections for the pixels that overlap
with the faces are computed, and inserted on intersection lists. In order to
avoid having the lists get arbitrarily large, ZSWEEP employs a scheme for
early compositing. See [20] for full details.

Following previous works, including Nieh and Levoy [54] and Hong and
Kaufman [31], our parallelization is based on breaking the screen into tiles.
Then placing the tiles into a work queue which processors compete for work.
Each processor continously fetches a tile from the work queue, and computes
the subimage corresponding to that tile until all the tiles have been rendered.
In order for a given processor to compute the image for a tile using ZSWEEP,
we must determine all the vertices from any face that intersects the “shaft”
emanating from that tile. This is similar to the parallel view sort of Challinger
[8], and is primarily the main difference between the sequential and parallel
ZSWEEP, since in the sequential algorithm the vertices are known apriori

(that is, all of them are sorted in depth).

CHAPTER 5. PARALLELIZING ZSWEEP 102

For efficiency purposes, we made a small data structure change. While in
the sequential ZSWEEP implementation the use set of a vertex is the list of
cells incident on it, in the parallel version we decided to break the cells into its
faces and keep them in the use set of the vertices. The reason for the modifi-
cation comes from the fact that the projection of a face requires a somewhat
expensive setup (see [6] for details). Since faces might intersect multiple tiles
of the screen, the setup time would be replicated multiple times. By actually
having a list of the faces, we are able to parallelize these computations as a
first phase in the parallel render.

We separate the computation of the vertices that belong to an image tile
into a view independent phase which is performed only once when the data
is first loaded, and a view dependent phase which is performed by each pro-
cessor when rendering a given tile. The view independent phase consists of
(1) constructing an octree of the vertices of the mesh; (2) computing for each
octree “leaf” the faces which intersect that leaf (in the implementation we use
the bounding box of the faces, which is a conservative estimate); (3) record
for each leaf the list of faces which have non void intersection. From such list
we are able to determine the vertices that must be considered in the sweeping
phase, for each leaf. The view dependent phase uses the octree to find which
leaves intersect the shaft corresponding to the tile, then uses the union of all
the vertices assigned to those leaves as the input for the rendering routine.
(See Fig. 31.)

The actual rendering algorithm is fairly simple. Given p processors and f

faces, each processor transforms 1—’: faces. The image is divided into tiles, and

CHAPTER 5. PARALLELIZING ZSWEEP 103

120 T T T T ; T 0.5

frodo —— . frodo ——
110 | bilbo ——x— 1 0.45 ™ bilbo ——x— 1
100 0.4 A
2 0.35
; 90 - % 03l
o
S 80 @ 025
°© X, s L
2 0l S 02
x 0.15
60
e 0.1
50 - P 0.05L
40 ‘ ‘ R o] ‘ 0 ‘ :
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Number of Tiles Number of Tiles
(a) (b)

Figure 32: Rendering the small SPX dataset at 1024 x 1024 resolution under
different tiling. In (a), we see the rendering times. In (b), the L2 data cache
miss rate. By using tiling, the miss rate drops considerably to under 1% on
frodo.

each processor will incrementally grab a tile, and render the subimage corre-
sponding to that tile. Rendering a tile is performed by (a) finding the leaves of
the octree which project inside the particular tile, (b) computing vertices of all
the faces which intersect any of the leaves found, and (c) projecting the faces
in order (that is, the last phase is simply the sequential ZSWEEP applied to
the subset of the vertices which have faces projecting inside the tile). In our
implementation, we are careful to clip the projection of the faces to within the
tile being computed.

As shown in Sec. 5.4, we achieve very good load balancing with this simple
scheme. The cost of rendering a tile is dependent both on its area, and the
number of points which project into it. Experimentally, we have found that

the area cost is considerably larger than the cost associated with the number

CHAPTER 5. PARALLELIZING ZSWEEP 104

of points. The number of points can vary as much as by a factor of five, and

have little impact on the running time of the region.

5.4 Experimental Results

In this section we summarize our findings about the performance of our algo-
rithm. We ran our experiments on three difference machines, all manufactured

by SGI:

— bilbo: 12-processor SGI Onyx. The processors are 194Mhz MIPS R10000.
Eight of them have 1 MB of secondary cache, and the other four have
2 MB of secondary cache. Bilbo has 2 GB of memory. This machine is
a snoop-based multiprocessor [17, Chapter 6], a design which is popular

in small parallel machines, but does not scale well.

— smaug: 24-processor SGI Origin 2000. It is equipped with sixteen 250
Mhz MIPS R10000 and eight 300 Mhz MIPS R12000. Each R10000
has a 4MB secondary level cache, while each R12000 has a 8 MB sec-
ondary level cache. Smaug has 14 GB of memory. This machine is based
on a scalable shared-memory system, and it uses directory-based cache

coherence [17, Chapter 8].

— frodo: 16-processor SGI Origin 3000. It is equipped with sixteen 400
Mhz MIPS R12000 and it has 12 GB of memory. This machine is a faster
and more scalable directory-based distributed shared-memory system. In
particular, each parallel “node” has four processors (compared to two for

the O2K), and higher memory bandwidth, and much lower latency.

CHAPTER 5. PARALLELIZING ZSWEEP 105
5.4.1 Sequential Tile-Based ZSWEEP

An interesting fact is that the tile-based ZSWEEP is faster by almost 50% than
the original. This is somewhat counter intuitive, since it actually does more
work: it needs to sort vertices multiple times (the actual number depends on
tiling and resolution of octree), and it definitely touches faces multiple times,
although the actual pixel calculations are quite similar. A potential advantage
of the tile-based approach is that the “target Z” used for early compositing is
likely to be more accurate. But when we first noticed this speedup from tiling,
we suspected that these performance gains actually arise from better memory
coherency.

We used perfex, an SGI IRIX tool which is able to configure and retrieve
the MIPS R10K hardware counters, to validate our hypothesis. In Fig. 32,
we show some of our findings. In particular, we can see that the L2 data
cache hit rate ? is greatly improved with caching, and there is a corresponding
improvement in rendering times. On frodo, we get better than 99% hit rates,
and on bilbo they were improved from just a bit over 50% to over 90%.
Another interesting statistics is the number of TLB misses which changes by
a factor of 300 on some of the runs, thus indicating the considerable better

data locality of the tile-based approach.

CHAPTER 5. PARALLELIZING ZSWEEP 106

x frodo 16x16 ——
s smaug 16x16-—x— i
‘S 40 bilbo 16x16 x|
2 35
(4]
E 30+
'—
o 25+
£
o 20t
k=]
& 15+t
4
10 +
5 .

0 2 4 6 8 10 12
Number of Processors

Figure 33: Running times on up to 12 processors for the Post dataset. Images
of size 512 x 512 with 16-by-16 tiling.

5.4.2 Load Balancing

We ran a battery of tests for studying the scalability of our algorithm on all
these machines. We tried to use the machines when they were free, although
this was virtually impossible for smaug which is used for heavy batch process-
ing of data. We ran jobs on smaug at times of lightest load. Unfortunately,
given the heterogenous nature of the CPUs, it is really not possible to make
very accurate measurements on that machine. The other two machines were
used at idle times. We generated 512 x 512 images under different conditions,
and changing the tiling granularity. We use the term X-by-Y tiling decompo-
sition to mean that the image was subdivided into X times Y regions. That
is, an 8-by-8 tiling decomposition means that the image was divided into 64

tiles.

212 (secondary) data cache hit rate is the fraction of data accesses that are satisfied from
a cache line already resident in the secondary data cache. It is calculated as 1.0 - (secondary
data cache misses divided by primary data cache misses). This is the exact definition from
the perfex man page.

CHAPTER 5. PARALLELIZING ZSWEEP 107

Fig. 33 shows the running times for the Post dataset on the different ma-
chines on up to 12 processors. As can be seen from the picture, the rendering
times are quite fast, and improve as the number of processors increase. As
expected, frodo is considerably faster than the other two machines, and the
parallel efficiency is about 93% with 12 processors (11.2 speedup). It is inter-
esting to note that even on the bilbo, which has considerably inferior memory
system, our parallel algorithm is able to scale quite nicely. Part of the credit
might go to the fact that ZWEEP tends to minimize data movement.

The tiling granurality has an impact on the performance. We use Ma’s
load imbalance metric to study the impact on load balancing of different tiling
sizes. Given a set of processors where the average rendering time is ¢4, and

the maximum rendering time is t,,,,, Ma [43] defines the imbalance to be:

1— ta'ug ;
tmaw

basically, his metric measures the spread of the running times among the
different processors around the mean. In Fig. 34, we plot the imbalance.
As can be seen in the picture, bilbo and frodo behave almost exactly the
same, while smaug, due to its different speed processors, exhibits more load
imbalance. The worst load imbalance happens for 8-by-8 tiling decomposition,
and can be as high as 30%. Part of the problem is that because the dataset
is not uniform, some parts of the screen might have a very large number of
faces, that need to be rendered. With a 16-by-16 tiling decomposition, things
get substantially better, and the load imbalance is lower than 5%.

On frodo, for the Post, using 16-by-16 tiling decomposition, the speedups

CHAPTER 5. PARALLELIZING ZSWEEP

| Rendering Times

| Image Dimension 512 x 512

[[SPX [SPX1] SPX2| SPX3

1 4.51 9.95 | 38.10 | 186.05
2 2.32 5.09 | 19.65 | 97.96
4 1.18 262 | 10.37 | 50.55
8 0.63 1.39 2.60 | 26.63
16 | 1.38 1.93 | 10.30 | 27.56

Image Dimension 1024 x 1024

[[SPX [SPX1] SPX2| SPX3

1 || 15.39 | 27.86 | 73.40 | 267.46
2 778 | 13.97 | 36.85 | 135.13
4 3.99 7.08 | 18.47 | 68.12
8 2.11 3.71 9.71 | 36.27
16 | 1.28 2.17 5.61 | 21.72

‘ Image Dimension 2048 x 2048

‘ H SPX‘ SPX1 ‘ SPXQ‘ SPX3 ‘

1 | 82.89 | 145.74 | 298.78 | 731.99
2 || 41.85 | 73.08 | 150.23 | 375.3
4 || 2117 | 36.71 | 75.65| 188.3
8 || 11.04 | 19.07 | 39.20 | 98.09
16 | 6.50 | 10.96 | 22.07 | 56.27

108

Table 13: On frodo for SPX and its subdivisions, for increasing image size.
Each subdivison contains 8 times more tetrahedra than its previous represen-

tation.

CHAPTER 5. PARALLELIZING ZSWEEP 109

‘ Datasets Information ‘

‘ Dataset H # of vertices ‘ # of cells ‘
Oxygen Post 109K 513K
SPX 2.9K 13K
SPX1 20K 103K
SPX2 150K 830K
SPX3 1150K 6620K

Table 14: The first four are tetrahedralized versions of the well-known NASA
datasets. SPX is an unstructured grid composed of tetrahedra. We have
subdivided each tetrahedron into 8, for each version of the last three, that is,
SPX3 is 512 times larger than SPX. The number of vertices and tetrahedra
are listed in thousands.

are 12.3 for a 512 x 512 image, and 13.5 for a 1024 x 1024 image, or approxi-
mately 84% efficiency. The best rendering times for the Post are 1.5 seconds
for a 512 x 512 image, and 4.44 seconds for a 1024 x 1024 image. In general,
it is possible to improve the load balancing by simply incresing the tiling reso-
lution. In fact, we were able to get efficiencies of almost 90% by tweaking the
parameters. A better solution would be to have an adaptive technique which
automatically fine tunes the load balancing. We have actually implemented

such a scheme, but were not able to make it work consistently yet.

5.4.3 Data and Image Scalability

Finally, we present some results related to the data and image scalability of
our parallel code. We took the SPX dataset and subdivided it multiple times
(by breaking each tetrahedra into eight). For each version of the dataset, we

rendered it ten times along a uniform rotation of the y-axis. The images were

CHAPTER 5. PARALLELIZING ZSWEEP 110

computed at different resolutions, and the full results are reported in Table 13,

and some subset are plotted in Fig. 35.

5.5 Conclusion

In this Chapter we present a simple parallelization of the ZSWEEP algorithm
for distributed-shared memory machines. Other than changes to the actual
code to make it more modular, and to isolate shared variables, we only had to
perform one major architectural change to the algorithm to make it parallel:
the introduction of an octree for the vertices so we can efficiently find which
faces project into a given tile. In this work, we were able to keep all the nice
features of ZSWEEP, i.e., the fact that it is very simple to implement, robust,
and memory efficient.

We were able to achieve a parallel efficiency of 84% on 16 processors on an
SGI Origin 3000 machine. The complexity of rendering a tile is dependent both
on the number of primitives which project on the tile, and the area of the tile.
In order to further speed up the code for more processors, we believe we might
need a more fine grain load balancing scheme which is able to dynamically
partition regions when we discover that we have too many primitives that
project in it.

It would be useful to run our code on larger SMP machines. The reported
results are for a version of the code parallelized with the m_fork calls of SGI
IRIX. We have ported this code to POSIX Pthreads, which runs quite well
on Linux, but we have not performed detail analysis of the Pthread version

performance yet.

CHAPTER 5. PARALLELIZING ZSWEEP 111

0.3 - T 0.25 T T
bilbo 8x8 —+— smaug 8x8———
bilbo 10x10 -
0.25 bilbo 12x12 - 02k
bilbo 14x14 :
3 02l bilbo 16x16 --/=--- 3
S : bilbo 18x18 #-o- S
T bilbo 20x20/-- g 015y
c 015t =
3 ® o1t
S o1t S
005} 0.05¢
[e 0 -
0 2 4 6 8 10 12 0 2 4 6 8 10 12
Number of Processors Number of Processors
(a) bilbo (b) smaug
0.3 - -
frodo 8x8 ——
frodo 10x10 -
0.25 frodo 12x12 -*-/ 1
frodo 14x14 =
3 02l frodo 16x16 =~]
S : frodo 18x18 -~~~
g frodo 20x20 -+~~~
€ 0151
o
©
S o1t
0.05
0 r W e s
0 2 4 6 8 10 12

Number of Processors

(c) frodo

Figure 34: Load imbalance with different tiling parameters. Post dataset for
images of size 512 x 512.

CHAPTER 5. PARALLELIZING ZSWEEP 112

R épx —‘»—
700 ¢ S 1

SPX2 rxer
600 SpX3 -8

Rendering Time

0 2 4 6 8 100 12 14 16
Number of Processes

Figure 35: See data from Table 13 for the 2048 x 2048 image dimension.

Chapter 6

I/O Volume Rendering

1 'We address the problem of rendering large unstructured volumetric grids
on machines with limited memory. This problem is particularly interesting
because such datasets are likely to come from computations generated on su-
percomputers, that is, machines with superior resources than even the most
powerful workstations.

Here, we present a set of techniques which can be used to render arbitrarily
large datasets on machines with very little memory. In particular, we present
two techniques which vary in rendering speed, disk and memory usage, ease
of implementation, and preprocessing costs. The first technique is completely
disk-based, and requires a small amount (actually, constant) main memory. It
works by performing one scan over the file containing the unstructured grid
(assuming this file has been normalized as a pre-processing step), one external-

memory sort, and a final accumulation scan which computes the image. The

L This Chapter is based on work to appear: Out of Core Rendering of Large Unstructured
Grids. R. Farias and C. Silva, To appear in the Special Issue of CG&A — Large-Scale Data
Visualization, July/August 2001.

113

CHAPTER 6. 1/O VOLUME RENDERING 114

second technique is based on our ZSWEEP algorithm, and it is more involved
both in its preprocessing, implementation, and main memory requirements,
but it is substantially faster, in some cases up to an order of magnitude faster.

We have implemented both techniques, and we present results on render-
ing a few large datasets under different conditions (image resolutions, main
memory configurations, etc), and discuss the tradeoffs of using the techniques

presented in this Chapter.

6.1 Introduction

The need to visualize unstructured volumetric data arises in a broad spectrum
of applications including structural dynamics, structural mechanics, thermo-
dynamics, fluid mechanics, and shock physics. One of the most powerful vi-
sualization techniques is direct volume rendering, a term used to define a
particular set of rendering techniques which avoids generating intermediary
(surface) representations of the volume data. Instead, the scalar field is gen-
erally modeled as a cloud-like material, and rendered by computing a set of
lighting equations [47].

In this Chapter, we address the problem of direct volume rendering of large
unstructured volumetric grids on machines with limited memory. This prob-
lem is particularly interesting because such datasets are likely to come from
computations generated on supercomputers, that is, machines with superior
resources to even the most powerful workstations.

Our work nicely complements the recent trend of developing efficient out-

of-core scientific visualization techniques. Given a large unstructured grids,

CHAPTER 6. 1/O VOLUME RENDERING 115

we currently have a number of external memory visualization tools, (e.g.,
streamline computation [66], isosurface computation [10], surface simplifica-
tion [41]), which enable scientists to visualize their large datasets on machines
with limited memory. For instance, by coupling the techniques of [10] and
[41] isosurfaces of arbitrarily large datasets can be computed and simplified,
effectively making it possible to visualize such large datasets on any machine
with enough disk. Our work is adding direct volume rendering algorithms to
this already considerably powerful toolbox.

We present two techniques which vary in rendering speed, disk and memory
usage, ease of implementation, and preprocessing costs. The first technique is
completely disk-based, and requires a small amount (actually, constant) main
memory. The second technique is based on our ZSWEEP algorithm, and it is
more involved both in its preprocessing, implementation, and main memory

requirements, but it can be substantially faster.

6.2 Related Work

In this section we cover the work related to both fields of rendering of unstruc-

tured grids data sets, and out-of-core visualization.

6.2.1 Unstructured Grid Volume Rendering

Here, we consider existing unstructured-grid volume rendering techniques from

a memory-usage point of view, their applicability to render very large grids,

CHAPTER 6. 1/O VOLUME RENDERING 116

and potential extensions for out-of-core rendering. The memory usage of cur-
rent techniques vary widely, and it is not straightforward to classify the dif-
ferent techniques. Among the various characteristics that generally affect the

memory usage of existing techniques, are:

size of the dataset, in terms of its number (and type) of cells and vertices?;

— screen resolution (and image-space “depth” of the dataset) 3;

— use of mesh connectivity information, some techniques explicitly use con-
nectivity information, while others use different means of inferring it
(such as discrete buffers used for determining depth information), or

completely avoid using any kind of connectivity;

— underlying data structures used for efficiency or accuracy, for instance,
some techniques cache extra information per cell, or per face, of the

dataset for efficiency purposes.

A number of efficient algorithms for rendering irregular grids have been de-
veloped. One class of algorithms is based on adapting ray tracing techniques
for rendering unstructured grids, such as in the works of Garrity [23], Usel-

ton [67], Bunyk et al [6]. In general, these techniques require random access

2Given a mesh with t tetrahedra and n vertices, the “bare essential” amount of memory
necessary to hold it is 16(¢ + n) bytes.

3In image space the memory costs depends on the screen resolution, and on the “thick-
ness” of the dataset along the z direction. Some techniques compute “slices” along z com-
puted by intersecting discrete buffers of the same resolution as the screen with the unstruc-
tured grid. Assuming a byte per color channel, for computing an image of size N-by-N,
with s slices, one would need 4sN? bytes. We note that s should vary with the resolution
of the dataset in z, that is, if there exists a ray which intersects the dataset in s,,4; cells,
the closest s gets t0 Sqz, the more accurate the image we (can) obtain.

CHAPTER 6. 1/O VOLUME RENDERING 117

to the cells, connectivity information, and in some cases, e.g., [6], extra mem-
ory to optimize the computation of intersections of rays with faces of the cell
complex. In [82], an optimization for [6] is proposed which attempts to reduce
the memory requirements by compositing samples as early as possible, but the
proposed (view-independent) traversal is not able to limit the overall memory
use. (The work of Hong and Kaufman [31] although similar to [6] is optimized
for curvilinear grids, and uses considerably less memory since it uses the grid
structure, and does not explicitly store cell or connectivity information.)

Other techniques have been developed which use scan-line algorithms,
which sweep the data with a plane perpendicular to the image plane [74, 8].
Some of them, e.g. [61], are designed to be memory efficient, but still use
the connectivity of the mesh. Others, such as those proposed by Giertsen [25]
and Westermann and Ertl [68, 69] use discrete buffers to determine the order
of compositing, and completely avoid the need for connectivity information.
The use of discrete buffers in z have the potential to lower the accuracy of
these techniques, and the buffers themselves can require a substantial amount
of memory.

Some methods [81, 20] employ a different kind of sweep algorithm [56],
and sweep planes in z. Yagel et al [81] samples the irregular grid with a fixed
number (e.g., 50 or 100) of planes which are later composited together. Their
technique does not use connectivity, but the space to keep the planes can be
quite substantial, since it amounts to computing and caching a large number
of images. Farias et al [20] developed ZSWEEP, also based on sweeping a

plane in the z direction.

CHAPTER 6. 1/O VOLUME RENDERING 118

Another approach for rendering irregular grids is the use of projection
(“feed-forward”) methods [73, 48, 76, 59, 13| in which the cells are projected
onto the screen, one-by-one. Most of these techniques exploit the graphics
hardware to compute the volumetric lighting models [59], by first computing
a visibility ordering [48, 76, 63, 14], and incrementally accumulating their con-
tributions to the final image. With respect to memory usage, we can separate
the visibility ordering algorithms into two classes: those that use connectivity
to compute the ordering, e.g. [76, 14], and those that use some form of power
sorting, e.g. [13]. The power sorting techniques only require an extra float-
ing point number per cell, and they do not use connectivity information, but
in general those techniques are not guaranteed to generate “correct” sorting
results for a wide class of grids.

A simple approach (initially discussed in [60]) is to naively compute all in-
tersections between each ray cast with all the cells, and perform a post-sorting
to compute the image. That is, given an N-by-N image, and n cells, for each
of the N? rays, compute the O(n) intersections with cell facets in time O(n),
and then sort these crossing points (in O(nlogn) time). However, this results
in overall time O(N?nlogn), and does not take advantage of coherence in the
data: the sorted order of cells crossed by one ray is not used in any way to as-
sist in the processing of nearby rays. Ma and Crockett [44] used this approach
in the context of parallel architectures. Their technique distributes the cells
among processors in a round-robin fashion. For each viewpoint, each processor
independently computes the ray intersections, which are later composited in a
second phase of the algorithm. To avoid the storage of a very large number of

ray intersections, Ma and Crockett cleverly schedule the computation using a

CHAPTER 6. 1/O VOLUME RENDERING 119

k-d tree.

6.2.2 Out-Of-Core Scientific Visualization

In this section, we briefly review the existing work on out-of-core scientific
visualization techniques. For a general introduction to the theory and practice
of external memory algorithms, we refer the interested reader to Abello and
Vitter [1].

Cox and Ellsworth [15] propose a general framework for out-of-core sci-
entific visualization systems based on application-controlled demand paging.
Leutenegger and Ma [39] propose to use R-trees [27] to optimize searching op-
erations on large unstructured datasets. Ueng et al [66] uses an octree partition
to restructure unstructured grids to optimize the computation of streamlines.
Shen et al [58] and Sutton and Hansen [65] have developed techniques for in-
dexing time-varying datasets. Shen et al [58] apply their technique for volume
rendering, while [65] focusses on isosurface computations.

Chiang and Silva [9] worked on I/O-optimal algorithms for isosurface gen-
eration. An interesting aspect of their work is that even the preprocessing
is assumed to be performed completely on a machine with limited memory.
Though their technique is quite fast in terms of actually computing the iso-
surfaces, the disk and preprocessing overhead of their technique is substantial.
This lead to further research [10] on techniques which are able to trade disk
overhead for time in the querying for the active cells. They developed a set of
useful meta-cell preprocessing techniques.

Recently, external memory algorithms for surface simplification have been

developed by Lindstrom [41] and El-Sana and Chiang [18]. The technique

CHAPTER 6. 1/O VOLUME RENDERING 120

presented in [41] is able to simplify arbitrarily large datasets on machines with

just enough memory to hold the output (i.e., the simplified) triangle mesh.

6.3 Out-Of-Core Rendering Algorithms for Un-
structured Grids

In this section, we present two efficient direct volume rendering techniques for
unstructured volumetric grids. The first technique is completely disk-based,
and requires a small amount of main memory. The second technique is based
on our ZSWEEP algorithm, and it is more involved both in its preprocessing,

implementation, and main memory requirements, but it is substantially faster.

6.3.1 Memory-Insensitive Rendering

In developing efficient external memory algorithms one has to be aware of
some of the characteristics of computer disks, and their difference to the (in-
core) main memory system we are all accustomed to. The basic difference
is that disks are not efficient for random access to locations because “seeks”
require a large amount of mechanical movement (of the heads). For sequential
access, disks are actually quite fast, with a raw bandwidth within a factor
of 20 of the main memory system. Also, disk bandwidth can be increased
quite inexpensively by using several disks in parallel. The appeal of hard
drives is that the cost is much lower, on the order of 100 times cheaper than
main memory. The need for sequential access when using disks has profound

implications for external memory algorithms.

CHAPTER 6. 1/O VOLUME RENDERING 121

First of all, the file formats used for out-of-core algorithms have to be
different, and generally more redundant. Indexed mesh formats are common
for main memory techniques. For instance, it is common to save a list of
the vertices represented with four floats: the position (z,y, z) and scalar field
value; and the list of tetrahedra, referenced by four integers which refer to the
vertices that define the given tetrahedron. Before such datasets can be used
in our algorithm, they need to be “normalized”, a process which dereferences
the pointers to vertices. This process is thoroughly explained in [10]. For
completeness, we briefly explain how to normalize such a file, with v vertices,
and t tetrahedra. In an initial pass, we create two (binary) files, one with
the list of vertices, and another with the list of tetrahedra. Next, in four
passes, we dereference each index of tetrahedral file, and replace it with the
actual position and scalar field values for the vertex. In order to do this
efficiently, we first (externally) sort the current version of the tetrahedra file
in the index we intend to dereference. This takes time O(tlogt) using an
(external memory) mergesort. Then, we perform a synchronous scan of both
the vertex and (sorted) tetrahedra file, reading one record at a time, and
appropriately outputting the deferenced value for the vertex. Note that this
can be done efficiently in time O(v +) because all the references for vertices
are sorted. When we are all done with all four passes, the tetrahedra file will
contain t records with the “value” (not reference) of each of its four vertices.

We can now describe our first out-of-core rendering technique. The algo-
rithm receives as input a transformation matrix, screen resolution, the normal-

ized tetrahedron file, and associated transfer functions for lighting calculations.

(1) The first step in our algorithm is to read each cell (tetrahedron) from

CHAPTER 6. 1/O VOLUME RENDERING 122

the normalized file, transform it with the specified transformation ma-
trix, and compute of all its ray intersections. For each pixel p;, which
intersects the cell in the interval (zp, 21), we output two records (p;, 2o)

and (p;, 21)-

For lighting calculations, we also save an interpolated scalar field value.
This allows for fast re-generation of images with different transfer func-
tions, or (with some changes) the efficient rendering of time-varying

datasets.

The amount of memory necessary to perform this step is minimal, just
enough to hold the description of the cell, and temporary storage to
compute one intersection, since they are written to disk one by one as
they are computed. The amount of disk space required is proportional

to the number of actual ray stabbings between rays and cells.

The second (and generally, most time consuming) step in our algorithm
consists of sorting the file with the ray intersections computed in the
previous step, using an appropriate compare function. The compare
function we use sorts primarily on the pixel id p;, and secondarily on the
depth of intersection z. That is, after the file is sorted, and the records
for a particular pixel are together (i.e., they appear sequentially on the

file), furthermore the records are ordered in increasing depth.

The third, and final step in our simple scheme is to traverse the file
generated in the previous step, use the transfer functions to light and

composite the samples, which are already in the correct order.

CHAPTER 6. 1/O VOLUME RENDERING 123

Our simple algorithm is essentially an external memory version of the tech-
nique previously considered by [60, 44]. We would like to note that [60] dis-
carded the technique as too inefficient because it did not use coherency between
ray. In [44], this technique is used for its good load balancing characterists,
and to make it practical, they had to optimize it to save space. But as an
external memory technique, it is quite useful by itself, since it can render an
arbitrarily large image of an arbitrarily large dataset if enough disk exists to
save the intersection crossings, and it is extremely simple to implement. It
does not use “any” random access to the dataset, and its implementation is
extremely simple, only requiring an external sort routine, and code to perform

ray-cell intersection.

6.3.2 Out-Of-Core ZSWEEP

In this section, we describe a slightly more complex, but often more efficient
out-of-core unstructured grid renderer, based on our ZSWEEP algorithm [20]
(see Figure 36 for an overview).

There are two sources of main memory usage in ZSWEEP: the pixel inter-
section lists, and the actual dataset. (The dataset storage requirements are our
largest memory use, in fact besides the storage for the actual vertices and cells,
we also need to keep the “use set” of each vertex, that is, the cells incident to
each given vertex.) The basic idea in our out-of-core technique is to break the
dataset into chunks of fixed size, which can be rendered independently without
using more than a constant amount of memory. To further limit the amount
of memory necessary, we subdivide the screen into tiles, and for each tile, we

render the chunks that project into it in a front-to-back order, thus enabling

CHAPTER 6. 1/O VOLUME RENDERING 124

Sweep

Direction

(a) (b)

Figure 36: The main idea of the (in-core) ZSWEEP algorithm [20] is very
simple; it is based on sweeping the data with a plane parallel to the viewing
plane (shown in blue on (a)), in order of increasing z, projecting the faces of
cells that are incident to vertices as they are encountered by the sweep plane.
ZSWEEP’s face projection is different from the ones used in projective meth-
ods, e.g. [59]. During face projection, we simply compute the intersection of
the ray emanating from each pixel, and store their z-value, and other auxiliary
information, in sorted order in a list of intersections for the given pixel. The
actual lighting calculations [47] are deferred to a later phase (b). Compositing
is performed as the “target Z” plane (shown in gray on (a)) is reached. The
efficiency arises from: (1) the fact that the algorithm exploits the implicit (ap-
proximate) global ordering that the z-ordering of the vertices induces on the
cells that are incident on them, thus leading to only a very small number of
ray intersection are done out of order; (2) the use of early compositing which
makes the memory footprint of the algorithm quite small. The key properties
for the efficiency of ZSWEEP is the fact that given a mesh with v vertices and
c cells, the amount of sorting ZSWEEP does is O(vlogv) (in practice), i.e.,
depending on the number of ray intersections, this is substantially lower than
the amount of sorting necessary to sort all the intersections for each pixel.

CHAPTER 6. 1/O VOLUME RENDERING 125

(a) (b)

Figure 37: The rendering is performed in tiles, as shown in (a). Basically, for
each tile, we find M the set of the meta-cells which project into it. Then, we
sort the vertices of the bounding boxes of M in depth (front-to-back) order
by inserting them on a queue Q. The queue is used for sweeping the vertices,
which have several marks, in particular, we tag vertices based on whether
they are “bounding-box” or “dataset” vertices. When the first bounding-box
vertex of a meta-cell m is touched, we retrieve all the vertices and cells of
m from disk, transform the vertices, and insert them on Q, tagging them as
“dataset” vertices. The processing of out-of-core ZSWEEP is essentially the
same as the in-core algorithm, but it performs operations lazily. As vertices
are reached, faces are projected, and the overall operation is performed as
shown in Figure 36. As bounding-box vertices are touched, we keep track of
the number of bounding-box vertices of a given meta-cell we have seen so far.
When this number is eight, we can safely deallocate the metacell, i.e., in (b),
when we reach vertex d,, we can free the memory from meta-cell a.

CHAPTER 6. 1/O VOLUME RENDERING 126
Dataset Information |

of vertices | # of cells | Octree | Leaves || Norm-file

Dataset
Blunt Fin 41K 187K | 40 KB | 26 MB | 12.7 MB
Comb. Chamber 47K 215K || 40 KB | 23 MB || 14.6 MB
Oxygen Post, 109K 513K | 110 KB | 82 MB 34 MB
Delta Wing 212K 1005K | 254 KB | 205 MB 68 MB
SPX 2.9K 13K | 2.6 KB | 1.2 MB 0.8 MB
SPX1 20K 103K 15 KB | 12 MB 8 MB
SPX2 150K 830K | 63 KB | 110 MB 71 MB
SPX3 1150K 6620K || 56 KB | 706 MB 641 MB

Table 15: The first four are tetrahedralized versions of the well-known NASA
datasets. SPX is an unstructured grid — see Figure 36(a) and 37(a) — composed
of tetrahedra. We have subdivided each tetrahedron into 8, for each version of
the last three, that is, SPX3 is 512 times larger than SPX. We list the number
of vertices (in thousands), number of tetrahedra (in thousands), the size of the
file that contains the octree information (in kilobytes), the size of the meta-cell
data file that contains the information for each leaf (in megabytes), and the
size of the normalized dataset (in megabytes).

the exact same optimizations which can be used with the in-core ZSWEEP
algorithm. This idea of subdividing the screen into tiles, and the dataset into
chunks which are rendered independently has successfully been applied to a
parallelization of ZSWEEP.

Our algorithm is divided into two parts: a view independent preprocessing
phase, which has to be performed only once and generates a data file on disk
which can be used for all rendering requests; and a (view-depending) rendering

algorithm. We described both of these phases next.

CHAPTER 6. 1/O VOLUME RENDERING 127

Preprocessing. Our preprocessing is simple, and quite similar to the meta-
cell creation of Chiang et al [10]. Basically, we break the dataset file into
several meta-cells* of small (roughly fixed) size. Given a “target” number of
vertices per meta-cell, say m (our of v vertices total), we first externally sort
all vertices by the z-values, and partition them into \3/g consecutive parts.
Then, for each such chunk, we externally sort its vertices by the y-values, and
partition them into \3/g parts. Finally, we repeat the process for each refined
part, except that we externally sort the vertices by the z-values. We take
the final parts as chunks. This is the main step in constructing the chunks,
since it determines its shape and location in space. Observe that chunks may
differ dramatically in their volumes, but their numbers of vertices are roughly
the same. In general, the number of meta-cells is relatively small, can be
safely assumed to fit in memory. In order to render a meta-cell, ZSWEEP
needs to have all the cells that “spatially intersect” that metal-cell, and all
the vertices that belong to those cells. These computations can be efficiently
computed in external memory, for full details, we point the reader to Section
2.1 of [10]. The output of our preprocessing are two files, a small one with
high level description of the meta-cells, including their bounding box, number
of vertices, number of cells, and a pointer to the start of the “data” for the
meta-cell in the main data file. The larger data file essentially has a list of
the vertices and cells for each meta-cell. Note that several vertices and cells

appear repeated (possibly multiple times) in this data file, since each meta-cell

4The meta-cells themselves, and their construction described in [10] are slightly different,
since each cell belongs to a single meta-cell while in our case a cell belongs to as many meta-
cells as it spatially intersects. This is not a substantial difference, and the normalization
techniques described there still apply.

CHAPTER 6. 1/O VOLUME RENDERING 128

‘ Rendering Times for the in-core ZSweep ‘

| Dataset | 512% | 1024 | 2048 |
SPX 7 | 26 118
SPX1 14 | 46 203
SPX2 29 | 93 383
SPX3 | 107 [238 834

Table 16: Rendering times for the in-core ZSweep code running with one
gigabyte of RAM.

is a self-contained unit.

Rendering Algorithm. Our rendering algorithm is quite simple. Basically,
divide the screen in tiles and we render the image tile by tile. For each tile,
we compute the meta-cells which intersect that tile, sort the meta-cells in a
front-to-back order, and render it using the ZSWEEP algorithm. The details

are shown in Figure 37.

6.4 Experimental Results

We report results for our two out-of-core rendering techniques proposed. We
also include results for the in-core ZSWEEP algorithm. When not indicated,
our results were obtained on a PC class machine equipped with an AMD
K7 “Thunderbird” 1GHz processor, one IDE disk, and one gigabyte of main
memory running Linux. In order to limit the amount of main memory available
for testing purposes, we used the capability offered by the Linux kernel to

indicate the amount of main memory to use by means of specifying the boot

CHAPTER 6. 1/O VOLUME RENDERING 129

parameters directly into lilo, i.e., specifying ”linux mem=32M”" at the boot
prompt. A similar methodology was used in [10]. Table 15 has information

about the datasets used in our tests.

Memory Insensitive Rendering. We have generated several images of the
benchmark datasets using our memory-insensitive irregular grid rendering MIR
algorithm. Theoretically, MIR should have no dependency on the amount of
main memory available. See Table 18. In all our experiments, our code never
used more than 5 MB of main memory. It takes the normalized file as its
input. Given a new point of view, it rotates the cells one by one, and projects
their faces on the screen, by a scan conversion which is directly saved in a file,
the projection file. The size of the projection file depends on the the dimension
of the image, and also on the number of segments generated for each pixel.
It can get quite large, but the algorithm works just the same. Note that the
cost of the last step of the algorithm, the compositing, also depends on the
average length of segments. Depending on the dataset and image size, MIR
can use quite a lot of disk space, e.g., for the Delta, the projection file has
304 MB for a 512-by-512 image, 1.2 GB for a 1024-by-1024, and 4.8 GB for a
2048-by-2048.

Large Images. We have ran some tests with a large “cfd” dataset with
roughly 1.5 million vertices, and 8.5 million cells. For generating a 5000-by-
5000 image (which by itself takes up over 70 MB of disk) took MIR a total
of 224 seconds on a SGI Origin 3000 equipped with R12K 400Mhz processors,

and a fast SCSI disk array. The reason this is faster than in our other datasets

CHAPTER 6. 1/O VOLUME RENDERING 130

‘ Out-Of-Core ZSweep Rendering Times ‘
| Dataset | 512* | 1024> | 2048% |
SPX 8 615 | 34| 2615 | 154 | 11846
SPX1 241233 72| 699 | 305 | 2961
SPX2 781 931160 | 192 | 595 716
SPX3 289 | 43| 418 63 | 1157 174

Table 17: Rendering times for the OOC-ZSweep using 128 MBytes of RAM.
We show the time to generate the image and the cost per cell (in us).

is that the number of actual ray intersections is quite small. We also generated
a 10K-by-10K image from the same data set that took 824 seconds. In this

case, the image occupies 300 megabytes of disk.

Out-Of-Core ZSWEEP. Tables 16 and 17 show some results with our
OOC-ZSWEEP code. OOC-ZSweep has essentially constant memory usage
per dataset irrespective of the size of the images being generated, being able
to generate images which the original in-core ZSWEEP could not. For a large
2048-by-2048 image of the Delta, the in-core ZSWEEP would need over 380
MB of memory, while the OOC-ZSWEEP needs about 24 MB.

As we can see from our experiments, MIR and OOC-ZSweep are quite prac-
tical techniques which can be used under different conditions. OOC-ZSweep
is usually more efficient than MIR, sometimes by a factor of 10 or more, but it
requires that we preprocess the files with the meta-cell technique of [10] before
renderings can be performed. Also, OOC-ZSweep definitely uses more memory
than MIR. For generating a few high-resolution images of large datasets, MIR

might be a very good choice. It is particularly simple to implement.

CHAPTER 6. 1/O VOLUME RENDERING 131

‘ MIR Rendering Times with 32 MB RAM ‘

Screen Resolution 512x512

Dataset Proj. ‘ Order ‘ Comp. ‘ Total
Blunt Fin 45 213 44 302
Comb. Ch. 10 19 6 35
Oxygen Post 81 386 75 042
Delta Wing 103 412 79 094

Screen Resolution 1024x1024
Dataset Proj. ‘ Order ‘ Comp. ‘ Total
Blunt Fin 171 | 1030 180 1381
Comb. Ch. 24 82 26 132
Oxygen Post 291 | 1747 316 2354
Delta Wing 338 | 1965 322 2625

Screen Resolution 2048x2048 *
Dataset Proj. ‘ Order ‘ Comp. ‘ Total
Blunt Fin 254 589 233 1076
Comb. Ch. 52 190 55 297
Oxygen Post 435 922 422 1779
Delta Wing 496 | 1062 430 1988

Table 18: The table shows detailed timing information. The four columns for
each image dimension show the time taken to project the cells on the screen,
the time to order the projection file, the time to compose all intersections and
the total render time. * The times for the 2048-by-2048 were obtained on a SGI
R12K 400Mhz system, with a fast SCSI disk array. Although the processor is
slower, the times are improved by the faster disks.

CHAPTER 6. 1/O VOLUME RENDERING 132

The MIR code is considerably slower, since it performs a lot more sorting®
and disk I/O. We would like to point out that MIR might be particularly
useful when trying to render a dataset from the same viewpoint with a different
transfer funcion. Since, the lighting calculations are done during compositing
(usually the least expensive pass), one can effectively generate images with
different classifications very efficiently. Also, it would be efficient to render

time-varying datasets.

SExternal sort algorithms are very important for the design and implementation of 1/O-
efficient algorithms. There are several issues in implementing external memory algorithms,
and these issues can greatly affect the overall performance of a system. A particularly
efficient external sort is rsort written by John Linderman at AT&T Research. We use
rsort for the results presented in this Chapter.

Chapter 7

Conclusions

In this thesis we described our research on techniques for rendering large un-
structured grid data. Our contributions include the development of the new
algorithm, the ZSweep, its parallelization and also an out-of-core version of it.
A simple out-of-core volume rendering is also presented not only for compari-
son purposes, but also as a simpler option.

First, we describe approximation methods to speed up a fast ray casting
rendering algorithm for irregular grids data sets. Such approximation methods
were put together to enable one to trade off between image approximations
and image generation speed. Almost real-time frame rates are achieved for
medium-sized data sets.

We also describe the novel ZSweep algorithm based on the sweep paradigm
for rendering irregular grids data sets that is up to five orders of magnitude
faster than previous algorithms based on the same paradigm. We discuss the

practical and theoretical issues involved in rendering irregular grids.

133

CHAPTER 7. CONCLUSIONS 134

A shared memory parallel implementation and an out-of-core implemen-
tation are presented for the ZSweep algorithm, showing the details of the
implementation and the results obtained.

There are more possible optimizations and implementations to be done.
We mention as future work an implementation of the algorithm for distributed
memory architecture. The ZSweep algorithm should fit well in such architec-
ture, since its simple mechanism allows a small overhead, as we noticed in
the shared memory implementation, where a very good load balancing was
achieved by means of a simple data distribution.

Our ZSweep code is being adapted by Kitware to be included into VTK to
extend its ability to handle irregular grids data sets. In addition, we are work-
ing on an adaptation of the algorithm that will enable it to be incorporated
into graphics hardware.

We consider as the greatest contribution of our research the introduction of
a new rendering algorithm, ZSweep, for unstructured grids data sets, which
brought more insight and new ideas to the field. For instance, our out-of-core
approach evolved naturally from the data partitioning method in our parallel
algorithm, which, in turn, was comparable to prior techniques of partitioning
used in out-of-core mesh simplification and iso-surface extraction.

A future goal is to develop a distributed memory version of ZSweep and

integrate it within a parallel volume rendering system.

Bibliography

1]

2]

3]

[4]

[5]

[6]

J. Abello and J. Vitter. External Memory Algorithms and Visualization.
DIMACS Book Series, American Mathematical Society, 1998.

D. Badouel, k. Boauatouch, and T. Priol. Distributing Data and Control
for Ray Tracing in Parallel. IEEE Computer Graphics and Applications,
pages 69—77, Vol. 14, Number 4. July 1994.

C. Bajaj, V. Pascucci, D. Thompson, and X.Y. Zhang. Parallel acceler-
ated isocontouring for out-of-core visualization. In Proceedings of IEEE

Parallel Visualization and Graphics Symposium, pages 97-104, 1999.

J. F. Blinn. Light Reflection function for simulation of clouds and dusty
surfaces. In Proc. SIGGRAPH’82, pages 21-29, 1982.

C. Bradford Barber, D. Dobkin, and H. Huhdanpaa. The quickhull al-
gorithm for convex hulls. ACM Trans. Math. Softw., 22(4):469-483, De-
cember 1996.

P. Bunyk, A. Kaufman, and C. Silva. Simple, fast, and robust ray casting
of irregular grids. In Scientific Visualization, Proceedings of Dagstuhl 97,
pages 30-36, 2000.

135

BIBLIOGRAPHY 136

[7]

8]

9]

[10]

[11]

[12]

[13]

[14]

L. Carpenter. The A-buffer, an antialiased hidden surface method. In
SIGGRAPH ’84, pages 103-108, 1984.

J. Challinger. Scalable parallel volume raycasting for nonrectilinear com-
putational grids. In ACM SIGGRAPH Symposium on Parallel Rendering,
pages 81-88, November 1993.

Y. J. Chiang and C. Silva. I/O optimal isosurface extraction. IEEE
Visualization °97, pages 293-300, November 1997.

Y. J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core
isosurface extraction. IEEE Visualization °98, pages 167-174, October
1998.

P. Cignoni, C. Montani, D. Sarti, and R. Scopigno. On the optimization
of projective volume rendering. In Visualization in Scientific Computing

’95, pages 58 71. Springer Verlag, 1995.

P. Cignoni and L. De Floriani. Power diagram depth sorting. In 10th

Canadian Conference on Computational Geometry, 1998.

P. Cignoni, C. Montani, and R. Scopigno. Tetrahedra based volume vi-
sualization. In H.-C. Hege and K. Polthier, editors, Mathematical Visu-
alization — Algorithms, Applications, and Numerics, pages 3—18. Springer

Verlag, 1998.

J. Comba, J. Klosowski, N. Max, J. Mitchell, C. Silva, and P. Williams.
Fast polyhedral cell sorting for interactive rendering of unstructured grids.

Computer Graphics Forum, 18(3):369-376, September 1999.

BIBLIOGRAPHY 137

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

M. B. Cox and D. Ellsworth. Application-controlled demand paging for
out-of-core visualization. IEEE Visualization ’97, pages 235-244, Novem-
ber 1997.

T. Crockett. ICASE : Parallel Rendering. NASA, ICASE Report No.
95-31, 1995.

D. Culler, J. Singh, and A. Gupta. Parallel Computer Architecture, A
Hardware-Software Approach. Morgan-Kaufmann, 1999.

J. El-Sana and Y. J. Chiang. External memory view-dependent simplifi-
cation. Computer Graphics Forum, 19(3), August 2000.

D. Ellsworith. A New Algorithm for Interactive Graphics on Multicom-
puters. IEEE Computer Graphics and Applications, pages 33—40, Vol. 14,
Number 4. July 1994.

R. Farias, J. Mitchell, and C. Silva. ZSWEEP: An efficient and exact
projection algorithm for unstructured volume rendering. In 2000 Volume

Visualization Symposium, pages 91-99. October 2000.

R. Farias and C. Silva. Parallelizing the ZSWEEP algorithm for
distributed-shared memory architectures. Submitted for publication, 2001.

Available from http://www.ams.sunysb.edu/~rfarias.

M. Garland and P. Heckbert. Simplifying surfaces with color and tex-
ture using quadric error metrics. IEEE Visualization 98, pages 263-270,
October 1998.

BIBLIOGRAPHY 138

[23] M. Garrity. Raytracing irregular volume data. In Computer Graphics,
pages 35-40, November 1990.

[24] A. Van Gelder, V. Verma, and J. Wilhelms. Volume Decimation of Ir-
regular Tetrahedral Grids. In Computer Graphics International, June

1999.

[25] C. Giertsen. Volume visualization of sparse irregular meshes. IEEE Com-

puter Graphics and Applications, 12(2):40-48, March 1992.
[26] R. Gregory. Eye and Brian. Princeton University Press, 1990.

[27] A. Guttman. R-trees: A dynamic index structure for spatial searching. In
Proc. ACM SIGMOD Conf. Principles Database Systems, pages 47-57,
1984.

[28] L. Hong and A. Kaufman. Fast projection-based ray-casting algorithm
for rendering curvilinear volumes. IFEE Transactions on Visualization

and Computer Graphics, 5(4):322-332, October - December 1999.

[29] L. Hong and A. Kaufman. Accelerated ray-casting for curvilinear volumes.

IEEE Visualization 98, pages 247-254, October 1998.

[30] C. Hofsetz and K. L. Ma. Multi-threaded rendering unstructured-grid
volume data on the sgi origin 2000. In Third Eurographics Workshop on
Parallel Graphics and Visualization, 2000.

[31] L. Hong and A. Kaufman. Accelerated ray-casting for curvilinear volumes.

IEEFE Visualization 98, pages 247-254, October 1998.

BIBLIOGRAPHY 139

[32] J. Huang, R. Crawfis, and D. Stredney. Edge preservation in volume ren-
dering using splatting. 1998 Symposium on Volume Visualization, pages

63-69, 1998.

[33] J. T. Kajiya, B. P. Von Herzen. Ray tracing volume densities. In Proc.
SIGGRAPH’94, pages 165—174, 1994.

[34] R. Kalawsky. The Science of Virtual Reality and Virtual Environments.
Addison-Wesley, 1993.

[35] A. Kaufman. Volume Visualization. IEEE Computer Society Press, ISBN
908186-9020-8, 1990. Los Alamitos, CA.

[36] W. Krueger. The application of transport theory to the visualization of
3D scalar fields. Computers in Physics 5, pages 397-406, 1991.

[37] P. Lacroute. Real-time volume rendering on shared memory multiproces-
sors using the shear-warp factorization. IEEE Parallel Rendering Sympo-

stum, pages 15-22, October 1995.

[38] P. Lacroute. Analysis of a parallel volume rendering system based on
the shear-warp factorization. IEEE Transactions on Visualization and

Computer Graphics, 2(3), September 1996.

[39] S. Leutenegger and K. L. Ma. Fast retrieval of disk-resident unstructured
volume data for visualization. In Ezxternal Memory Algorithms and Vi-
sualization, DIMACS Book Series, American Mathematical Society, vol.
50, 1999.

BIBLIOGRAPHY 140

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

M. Levoy. Efficient ray tracing of volume data. In ACM Trans. Comp.
Graph., vol. 9, no. 3, pages 245-261, 1990.

P. Lindstrom. Out-of-core simplification of large polygonal models. Pro-

ceedings of SIGGRAPH 2000, pages 259-262, July 2000.

W. E. Lorensen, H. E. Cline. Marching Cubes: A High Resolution 3D
Surface Construction Algorithm. ACM Computer Graphics, pages 163
196, Vol. 21, Number 4. July 1987.

K. L. Ma. Parallel volume ray-casting for unstructured-grid data on
distributed-memory architectures. IEEE Parallel Rendering Symposium,
pages 23-30, October 1995.

K. L. Ma and T. Crockett. A scalable parallel cell-projection volume ren-
dering algorithm for three-dimensional unstructured data. IEEE Parallel

Rendering Symposium, pages 95-104, November 1997.

K. L. Ma and T. Crockett. Parallel visualization of large-scale aerodynam-
ics calculations: A case study on the Cray T3E. Symposium on Parallel

Visualization and Graphics, pages 15-20, October 1999.

P. Mackerras, and B. Corrie. Exploiting Data Coherence to Improve
Parallel Volume Rendering. IEEFE Parallel and Distributed Technology,
pages 8-16, Vol. 2, Number 2. Summer 1994.

N. Max. Optical models for direct volume rendering. IEEE Transactions

on Visualization and Computer Graphics, 1(2):99-108, June 1995.

BIBLIOGRAPHY 141

[48]

[49]

[50]

[51]

[52]

[53]

[54]

N. Max, P. Hanrahan, and R. Crawfis. Area and volume coherence for
efficient visualization of 3d scalar functions. Computer Graphics (San

Diego Workshop on Volume Visualization), 24(5):27-33, November 1990.

M. McCormick, T. DeFanti and M. Brown. Visualization in Scientific
Computing. Report of the NSF Advisory Panel on Graphics, Image Pro-
cessing and Workstations, 1987.

M. Meissner, J. Huang, D. Bartz. A Practical Evaluation of Popular
Volume Rendering Algorithms. 2000 Volume Visualization and Graphics
Symposium, pages 81-90, October, 2000.

S. Molnar, M. Cox, D. Ellsworth, and H. Fichs. A Sorting Classification
of Parallel Rendering. IEEE Computer Graphics and Applications, pages
23-32, Vol. 14, Number 4. July 1994.

C. Monks, P. Crossno, G. Davidson, C. Pavlakos, A. Kupfer, C. Silva
and B. Wylie. Three Dimensional Visualization of Proteins in Cellular

Interactions. IEEE Visualization '96, pages = 7777, 1996.

K. Mueller, T. Moeller, and R. Crawfis. Splatting without the blur. Proc.
Visualization’99, pages 363-371, 1999.

J. Nieh and M. Levoy. Volume rendering on scalable shared-memory mimd
architectures. In 1992 Workshop on Volume Visualization Proceedings,

pages 17-24, October 1992.

BIBLIOGRAPHY 142

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

H. Pfister and A. Kaufman. Cube-4 — A Scalable Architecture for Real-
Time Volume Rendering. ACM/IEEE Volume Visualization 1996, pages

7777,

F. Preparata and M. Shamos. Computational Geometry: An Introduction.

Springer-Verlag, New York, NY, 1985.

W. Schroeder, K. Martin and B. Lorensen. The Visualization Toolkit.
Prentice-Hall, 1996

H. W. Shen, L. J. Chiang, and K. L. Ma. A fast volume rendering al-
gorithm for time-varying fields using a time-space partitioning (tsp) tree.

IEEE Visualization 99, pages 371-378, October 1999.

P. Shirley and A. Tuchman. A polygonal approximation to direct scalar
volume rendering. Computer Graphics (San Diego Workshop on Volume

Visualization), 24(5):63-70, November 1990.

C. Silva, J. S. B. Mitchell, and A. E. Kaufman. Fast rendering of irregular
grids. 1996 Volume Visualization Symposium, pages 15-22, October 1996.

C. Silva and J. Mitchell. The lazy sweep ray casting algorithm for render-
ing irregular grids. IEEE Transactions on Visualization and Computer

Graphics, 3(2), April-June 1997.

C. Silva, J. Mitchell, and P. Williams. An exact interactive time visibility
ordering algorithm for polyhedral cell complexes. 1998 Volume Visual-
wzation Symposium, pages 87-94, October 1998.

BIBLIOGRAPHY 143

[63] C. Stein, B. Becker, and N. Max. Sorting and hardware assisted rendering
for volume visualization. In 199/ Symposium on Volume Visualization,

pages 83-90, October 1994.

[64] I. E. Sutherland, R. F. Sproull, and R. A. Schumacker. A Characterization
of Ten Hidden-Surface Algorithms. Computing Surveys, pages 1-55, Vol.
6, Number 1. March 1974.

[65] P. M. Sutton and C. D. Hansen. Accelerated isosurface extraction in
time-varying fields. IEEE Transactions on Visualization and Computer

Graphics, 6(2):98-107, April - June 2000.

[66] S. K. Ueng, C. Sikorski, and K. L. Ma. Out-of-core streamline visualiza-
tion on large unstructured meshes. IEEE Transactions on Visualization

and Computer Graphics, 3(4):370-380, October - December 1997.

[67] S. Uselton. Volume rendering for computational fluid dynamics: Initial

results. In Tech Report RNR-91-026, Nasa Ames Research Center, 1991.

[68] R. Westermann and T. Ertl. The VSbuffer: Visibility ordering of un-
structured volume primitives by polygon drawing. IEEE Visualization

"97, pages 35-42, November 1997.

[69] R.Westermann and T. Ertl. Efficiently using graphics hardware in volume
rendering applications. Proceedings of SIGGRAPH 98, pages 169-178,
July 1998.

BIBLIOGRAPHY 144

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

D. S. Whelan. Animac: A Multiprocessor Architecture for Real Time
Computer Animation Ph.D. Thesis Dissertation, California Institute of

Technology, 1985.

S. Whitman. Multiprocessor Methods for Computer Graphics Rendering.
Jones and Barttlett, Boston, 1992.

S. Whitman. Load Balancing for Parallel Polygon Rendering. [EEE
Computer Graphics and Applications, pages 41-48, Vol. 14, No. 4, July
1994.

J. Wilhelms and A. Van Gelder. A coherent projection approach for direct
volume rendering. Computer Graphics (Proceedings of SIGGRAPH 91),
25(4):275-284, July 1991.

J. Wilhelms, A. Van Gelder, P. Tarantino, and J. Gibbs. Hierarchical and
parallelizable direct volume rendering for irregular and multiple grids.

IEEFE Visualization 96, pages 57-64, October 1996.

J. Wilhelms. Pursuing interactive visualization of irregular grids. In

Visual Computer, vol. 9, no. 8, 1993.

P. L. Williams. Visibility-ordering meshed polyhedra. ACM Transactions
on Graphics, 11(2):103-126, April 1992.

P. Williams. Parallel volume rendering finite element data. In Proceedings

of Computer Graphics International, 1993.

BIBLIOGRAPHY 145

[78]

[79]

[80]

[81]

[82]

P. Williams, N. Max, and C. Stein. A high accuracy volume renderer for

unstructured data. IEEE Transactions on Visualization and Computer

Graphics, 4(1):37-54, January-March 1998.

C. Wittenbrink, T. Malzbender, and M. Gross. Opacity-weighted color
interpolation for volume sampling. 1998 Symposium on Volume Visual-

1zation, pages 135—142, 1998.

C. Wittenbrink. Cellfast: Interactive unstructured volume rendering. In
Proceedings IEEE Visualization’99, Late Breaking Hot Topics, pages 21—
24, 1999. Also available as Technical Report, HPL-1999-81R1.

R. Yagel, D. M. Reed, A. Law, P. W. Shih, and N. Shareef. Hardware
assisted volume rendering of unstructured grids by incremental slicing.

1996 Volume Visualization Symposium, pages 55—62, October 1996.

C. K. Yang, T. Mitra, and T. Chiueh. On-the-fly rendering of losslessly
compressed irregular volume data. In Proc. IEEE Visualization 2000,

2000.

