
Modeling and Rendering of Real Environments

Wagner T. Corrêa ∗

Manuel M. Oliveira †

Cláudio T. Silva ‡

Jianning Wang §

Abstract

The use of detailed geometric models is a critical factor for achieving realism in most com-
puter graphics applications. In the past few years, we have observed an increasing demand
for faithful representations of real scenes, primarily driven by applications whose goal is to
create extremely realistic experiences by building virtual replicas of real environments. Po-
tential uses of this technology include entertainment, training and simulation, special effects,
forensic analysis, and remote walkthroughs. Creating models of real scenes is, however, a
complex task for which the use of traditional modeling techniques is inappropriate. Aim-
ing to simplify the modeling and rendering tasks, several image-based techniques have been
proposed in recent years. Among these, the combined use of laser rangefinders and color
images appears as one the most promising approaches due to its relative independence of the
sampled geometry and short acquisition time. Renderings of scenes modeled with such a
technique can potentially exhibit an unprecedented degree of photorealism. But before one
can actually render new views of these virtualized environments, several challenges need to
be addressed. This tutorial provides an overview of the main issues associated with the mod-
eling and rendering of real environments sampled with laser rangefinders, and discusses the
main techniques used to address these challenges.

Keywords: 3D scanning, 3D model acquisition, 3D photography

∗Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540,
e-mail: wtcorrea@cs.princeton.edu

†Instituto de Informática, UFRGS, Caixa Postal 15064, Porto Alegre, RS 91501-970, Brasil,
e-mail: oliveira@inf.ufrgs.br

‡Department of Computer Science and Engineering, OGI School of Science and Engineering, Oregon Health &
Science University, 20000 NW Walker Rd., Beaverton, OR 97006, e-mail: csilva@cse.ogi.edu

§Department of Computer Science, State University of New York at Stony Brook, Stony Brook, NY 11794-4400,
USA, e-mail: jianning@cs.sunysb.edu



Modeling and Rendering of Real Environments

Resumo

O uso de modelos geométricos detalhados é um fator crı́tico para obtenção de realismo na
maioria das aplicações em computação gráfica. Recentemente, tem-se observado uma de-
manda crescente por representações fidedignas de cenas reais. Isso se deve, principalmente,
ao interesse por aplicações que objetivam a criação de experiências extremamente realı́sticas
através da construção de réplicas virtuais de ambientes reais. Exemplos de tais aplicações
incluem entretenimento, treinamento e simulação, efeitos especiais, análise forênsica, e ex-
ploração de ambientes remotos. Entretanto, a criação de modelos de ambientes reais é uma
tarefa não trivial para a qual o uso de técnicas de modelagem tradicionais é inapropriado.
Objetivando simplificar o processo de modelagem e rendering nesses casos, várias técnicas
baseadas no uso de imagens foram propostas nos últimos anos. Entre essas, o uso combinado
de digitalizadores 3D a base de laser e de fotografias coloridas tem se mostrado como uma
das abordagens mais promissoras devido à sua relativa independência em relação às superfi-
cies a serem amostradas e à velocidade do processo de amostragem. A visualização de cenas
reconstruı́das utilizando essa técnica permite, teoricamente, a obteção de um grau de foto-
realismo sem precedentes. Mas antes que se possa explorar esses ambientes virtuais, várias
etapas precisam ser observadas e vários desafios superados. Este tutorial apresenta os princi-
pais aspectos relacionados à modelagem e rendering de ambientes reais amostrados por meio
de digitalizadores 3D a base de laser e discute as principais técnicas utilizadas.

1 Introduction

Models of real-world objects and scenes are becoming fundamental components of mod-
ern computer graphics applications, playing an important role in helping to create realis-
tic virtual experiences. Applications such as entertainment, training and simulation, spe-
cial effects, analysis of forensic records, telepresence, and remote walkthroughs can greatly
benefit from the availability of such models. However, the modeling of real scenes is a
non-trivial task for which the use of traditional modeling techniques is inappropriate. Try-
ing to overcome this problem, several image-based techniques have been proposed in recent
years [7, 17, 30, 55, 71, 72, 88]. Among these, the use of laser rangefinders combined with
color photographs seems to be one the most promising approaches due to its relative inde-
pendence of the sampled geometry and short acquisition time. Renderings of scenes recon-
structed using this approach can potentially display an unparalleled degree of photorealism.

Sampling a real environment is just the beginning of the scene reconstruction process,
and before one can explore these virtualized spaces, several challenges need to be addressed.
For example, to cover the entire environment, multiple datasets are usually acquired from
different viewpoints, and need to be integrated. Measurements produced by laser rangefinders
are inherently noisy, and some preprocessing is required to “clean” the data. Range and
color information are often captured using different devices, and must be registered. The
output produced by the previous stages is still a point cloud, and surface reconstruction is

2 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

required if the models are to be displayed as polygonal meshes. In many situations, despite
data being collected from several viewpoints, it may still not be possible, or practical, to
guarantee appropriate sampling for all surfaces: occlusions and accessibility limitations to
certain regions of the scene may cause some areas not to be sampled, resulting in incomplete
models. In these cases, it is desirable to reconstruct the missing geometry and texture from
the incomplete data available. Another challenge involves the management of large amounts
of samples. Datasets with several hundred megabytes in size are common, and out-of-core,
simplification, and parallelization techniques are used to achieve interactive renderings. The
ability to edit the resulting scenes is also highly desirable. Ideally, one should be able to
manipulate individual objects, positioning, scaling, saving, loading, and combining them to
create new scenes, as if they were conventional 3D models.

This tutorial discusses the major issues associated with the modeling and rendering of
real environments sampled using laser rangefinders, and discusses the main techniques used
to address the many associated challenges. It starts by describing the steps involved in 3D
model acquisition pipeline, which includes range acquisition (Section 2), texture acquisition
(Section 3), and reconstruction of non-sampled areas (Section 4). Scene editing is also dis-
cussed in Section 4. Section 5 presents rendering strategies for handling massive amounts
of sample data. Section 6 discusses some of the research challenges ahead: the issues of
inconsistent illumination among sets of photographs, lighting changes, and reconstruction of
non-stochastic textures. Finally, Section 7 summarizes the key ideas discussed in this survey.

2 Range Acquisition

In this section, we describe the range acquisition phase of the model acquisition pipeline.
First, we give a brief overview of range acquisition methods. Then, we describe how to
register multiple range datasets in a common coordinate system. Finally, we describe how to
filter the acquisition artifacts in the range datasets.

2.1 Range Acquisition Methods

There are many different methods for range acquisition (Figure 1). Curless [29] and
Rusinkiewicz [91, 92] classify these methods into three main categories: contact, transmis-
sive, and reflective methods.

Contact methods touch the surface of the object with a probe, and record the position.
Contact methods, e.g., coordinate measuring machines (CMMs), can be very accurate, but
they are slow, can be clumsy to manipulate, usually require a human operator, and must make
contact with the surface, which may be undesirable for fragile objects [29].

Transmissive methods project energy waves onto an object, and record the transmitted
energy. For example, industrial computer tomography (CT) projects x-rays onto an object,
and measures the amount of radiation that passes through it. The result is a high resolution
volumetric model of the object. Transmissive methods are largely insensitive to the reflective

RITA • Volume IX • Número 1 • Agosto 2002 3



Modeling and Rendering of Real Environments

Range
acquisition

methods































































































































































































Contact











































Mechanical

{

Coordinate measuring machine (CMM)
Jointed-arm

Inertial

{

Gyroscope
Accelerometer

Ultrasonic trackers

Magnetic trackers

Transmissive







Industrial computer tomography (CT)
Ultrasound
Magnetic resonance imaging (MRI)

Reflective































































































Non-optical

{

Sonar
Microwave radar

Optical











































































Passive































Shape from shading
Shape from stereo
Shape from motion
Shape from texture
Shape from focus
Shape from defocus

Active























Stereo with projected texture (interferometry)
Active depth from defocus
Photometric stereo
Triangulation
Imaging radar (time-of-flight laser rangefinder)

Figure 1: Classification of range acquisition methods. Adapted from Curless [29] and
Rusinkiewicz [92]. In this tutorial, we focus on optical time of flight methods.

properties of the object, and they can capture details not visible from the outside. On the other
hand, transmissive methods are expensive, sensitive to large variation in material density, and
pontentially hazardous [29].

Reflective methods may be non-optical or optical. Non-optical methods include sonar
and microwave radar, which measure the distance to an object by sending a pulse of sound
or microwave energy to the object, and recording the the time it takes for the pulse to bounce
back from the object. Sonars are typically inexpensive, but they are neither very accurate nor
very fast, and microwave radars are typically used for long range remote sensing.

Optical methods may be passive or active. Passive methods do not interact with the object
being scanned, and include computer vision techniques such as shape-from-shading for single
images, stereo triangulation for pairs of images, and optical flow and factorization methods
for video streams. Although passive methods require little special purpose hardware, they
rarely construct accurate models, and their main application is object recognition [29, 92].

4 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

Active optical methods project light onto an object in a structured manner, and deter-
mine the object’s shape from the reflections. Active optical methods include depth from
defocus [79], photometric stereo [90], projected-light triangulation [47, 91], and time of
flight [1, 2]. Active methods have several advantages over passive methods: active meth-
ods perform better in the absence of texture, are computationally inexpensive and robust,
and produce dense and accurate sets of range samples [91]. In this tutorial, we focus on
time-of-flight laser range scanning.

2.2 Registration of Multiple Range Datasets

A single scan usually contains holes due to occlusion, and samples near and far objects at
different resolutions. Thus, to get a more complete model, or to obtain a more uniform reso-
lution, we need to scan the environment from multiple locations. Automatically determining
the best set of locations for scanning is a hard problem [38, 85]. The simplest approach is
to select the scanning locations manually, trying to minimize the number of scans necessary
for a good coverage of the environment, and making sure that there is some overlap between
the scans [24]. After we have a set of scans, we need to align them in a common coordinate
system. Most approaches first find an initial global alignment, and then refine it.

There are several approaches for finding an initial alignment between a pair of scans.
High-end systems, such as coordinate measuring machines (CMM), employ accurate track-
ing, but these systems are often very expensive. Some low-end systems find the initial
alignment by performing the scanning using a turntable, which tends to constrain the use
of this approach to small objects. Other low-end systems [24] rely on a human operator,
who uses an interactive tool to select matching features on each scan. From the match-
ing features, a rigid transformation is computed that aligns the two scans [52]. Automatic
feature detection, although desirable, is a hard problem, and is currently an active area of
research [27, 44, 54, 89, 127].

The initial global alignment is typically not very accurate, and needs to be refined. The
most common approach to refine the initial alignment is the iterative closest point (ICP)
algorithm and its variants [14, 18, 94, 128]. The ICP algorithm consists of two main steps.
Given two sets of points, the first step is to identify pairs of candidates corresponding points,
and the second step is to compute a transformation that minimizes the distance between the
two sets of candidate points in the least-squares sense. These steps are repeated until some
convergence criterion is met.

ICP typically provides very accurate alignments, and converges fast, but it may get stuck
in local minima. Another potential problem with ICP is that sequential alignment of multiple
scans may suffer from accumulation of pair-wise errors. To avoid this problem, some systems
use anchor scans, and align additional scans to the anchor scans. Other systems employ error
diffusion to evenly distribute the error among the scans. Bernardini and Rushmeier [13]
review several approaches to avoid accumulation of pair-wise errors.

RITA • Volume IX • Número 1 • Agosto 2002 5



Modeling and Rendering of Real Environments

(a) (b) (c) (d) (e)

Figure 2: The noise removal process. (a) In 2D, a moving least squares curve (black) [6] is
computed from noisy sample points (gray). (b) Noisy scan of a 3D object. (c)-(e) Progres-
sively smoother versions of (b). Images courtesy of Shachar Fleishman, Tel Aviv University.

2.3 Range Data Filtering

The raw data provided by a 3D scanner may contain several artifacts, including noise,
difference in resolution between near and far surfaces, and distortions due to intensity bias.
Many researchers have studied the artifacts related to triangulation scanners [49, 80, 95, 103,
110]. Here we focus on artifacts related to optical time-of-light scanners [2, 24].

A typical time-of-flight scanner, such as the DeltaSphere-3000 [2], returns a set of points,
each point consisting of its spherical coordinates (r,θ ,φ ) and the intensity i of the energy
returned from that point. We thus use the term “rtpi sample” to refer to a point sample
captured by such a scanner.

One artifact related to optical time-of-flight scanners is intensity bias: points with too
low or too high intensity tend to have unreliable radius. One approach to minimize the
intensity bias of the scanner is to scan a calibration pattern, and build a correction table.
Corrêa et al. [24] use a calibration image that changes linearly from black to white, and is
surrounded by a white background. The image is placed on a flat surface, and then scanned.
From the scan, a bias correction table that is used for correcting subsequent scans is built.
The noise distribution in the scan is assumed to be of zero mean. The bias in the scan is in
the r part of an rtpi sample, not in φ or θ . The background is considered to be the ground
truth, and the best (in the least squares sense) plane that fits the background points is found.
A bias is computed for every intensity value i ∈ [0,255] as the average height H i (relative to
the plane) of the sampled points with intensity i. After building the bias correction table, the
radius r of every point is corrected by computing r′ = r−H i.

Another acquisition artifact is noise, which manifest itself as random errors in the position
of surface points (Figure 2). One approach to deal with noise is to average samples from
overlapping scans [13]. Another approach is to resample the points based on a local estimate
of the underlying surface. For example, Alexa et al. [6] and Corrêa et al. [24] apply the
moving least squares (MLS) projection of Levin [63] to filter the noisy scans.

6 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

3 Texture Acquisition

Section 2 described the acquisition of the geometric properties of a model. This section
focus on object texture (colors) acquistion. Ideally, we would like to have a complete descrip-
tion of how a surface point reflects light depending on its normal, the incident light direction,
the emerging light direction, and the light’s wavelength. Such a description is known as the
bidirectional reflectance distribution function (BRDF) of a surface. Measuring BRDFs accu-
rately is a hard problem [60, 125]. Here we describe a simple approach that captures sparse
samples of BRDFs, suitable for diffuse environments [24, 71].

The simplest approach for acquiring the texture of an environment is to take pictures of it,
and then map these photographs onto the previously acquired geometry. To map a photograph
to the geometry, we need to know the camera projection parameters (intrinsic parameters),
and the position and orientation of the camera when the photograph was taken (extrinsic
parameters). Real cameras do not perform a perfect perspective projection as a pinhole cam-
era does, and present many kinds of distortions, e.g., radial distorsion. One solution to this
problem is to model the action of the distorsions, and to find an inverse mapping. A widely
used model was proposed by Tsai [108]. Tsai’s camera model has five intrinsic parameters,
namely the focal length, the first-order coefficient of radial distortion, the coordinates of the
image center, and a scale factor. One way to calibrate these intrinsic parameters is to take a
photograph of a planar checkerboard pattern with known geometry, and then find the image
location of the checkerboard corners with subpixel accuracy. Implementing these algorithms,
which require full non-linear optimization, is fairly complex. Luckily, high quality imple-
mentations are available from Willson [121] and Bouguet [15].

After calibrating the intrinsic camera parameters, the process of acquiring the images
goes as follows. First, we take photographs of the environment, keeping the same camera
settings for all photographs to avoid having to recalibrate the intrinsic parameters. Then, for
each photograph, we first remove its radial distortion, using a warp based on the coefficient
found above, and then find the position (translation) and orientation (rotation) of the camera
when we took the photograph relative to an arbitrary global coordinate system.

It is hard to automatically solve the image-geometry registration problem. By specify-
ing pairs of corresponding points between the images and the geometry, it is possible to
find the extrinsic camera parameters [121]. The approach taken by McAllister et al. [71]
is to keep the center of projection (COP) of the camera coincident with the COP of the 3D
scanner, while acquiring panoramic images. This simplifies the registration problem by only
requiring the computation of a rotation. Furthermore, this enforces that no occlusion artifacts
arise. Corrêa et al. [24] uses an interactive program to specify corresponding points, typi-
cally requiring only 7 to 10 correspondences to obtain a good calibration of the camera. One
advantage of this approach is that it allows the user to take pictures from any position.

Once all the parameters have been found, it is straightforward to map the colors from the
photograph to the scan (or scans) that it covers. For each 3D point in a scan covered by the
photograph, we find its 2D projection on the camera plane, and assign the corresponding pixel

RITA • Volume IX • Número 1 • Agosto 2002 7



Modeling and Rendering of Real Environments

(a) photograph (b) scan

Figure 3: The texture-geometry registration process.

color to it (Figure 3). To support view-dependent effects (such as highlights), we can store
multiple color samples per point, and at runtime find the color of a point by interpolating the
closest color samples [31].

4 Reconstruction of Non-Sampled Areas and Scene Editing

Even after a scene has been scanned from several viewpoints, it may still not be possible,
or practical, to guarantee a complete coverage of all surfaces. Occlusions and scanner acces-
sibility limitations to certain areas of the environment may lead to incomplete or incorrectly
reconstructed models. Figure 4a shows the rendering of a real environment created using
1,805,139 samples from ten range images. Note the missing portions of the carpet, chair, and
several pieces of furniture. These problems result from the limited vertical field of view used
during the scanning of the scene and from occlusions among objects. For this example, the
scene is being observed from a viewpoint chosen to stress the exposure of non-sampled areas.
The existence of holes introduces major rendering artifacts and creating high-quality recon-
structions from incomplete data is a challenging task [126]. Arbitrary geometric relationships
among objects in a scene make the automatic computation of viewpoints that guarantees ap-
propriate sampling of all surfaces essentially impossible. Solving this problem would require
knowing the scene model, which is what the reconstruction process is trying to produce. As
a result, the decision of where to position the scanner is usually left to the user.

8 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

(a) original scans (b) reconstructed model

Figure 4: A real environment model with 1.8 million samples from 10 range images.

Given the difficulty to avoid the occurrence of undesirable holes in the reconstructed
models, one is left with two alternatives: keep acquiring more scans or try to reconstruct the
missing information using the incomplete data available. Neither alternative alone is com-
pletely satisfactory in general. Holes caused by accessibility limitations cannot be filled with
the acquisition of new scans, and the ability to perform reconstruction from incomplete data is
highly dependent on the input data. Ideally, both approaches should be used in combination.
Since acquiring and merging new scans is a relatively straightforward task, we will focus on
reconstruction of missing information from incomplete data.

4.1 The Reconstruction Pipeline

Wang and Oliveira [116] proposed a pipeline for improving scene reconstruction that
can significantly reduce artifacts caused by missing data. It consists of a segmentation step
followed by the reconstruction of absent geometric and textural information (Figure 5). As
output, the pipeline produces a modified scene model with most of the original holes re-
moved. Figure 4b illustrates the reconstruction produced by the method for the same input
samples used to create Figure 4a. Note the considerable improvement between the two ren-
derings. The ability to reconstruct missing information requires some assumptions about the
structure of the environment. Although scenes tend to differ significantly from one to another,
two observations seem to hold true: first, indoor scenes usually contain a significant number
of large planar surfaces, such as walls, ceiling, and floor; second, symmetry pervades both

RITA • Volume IX • Número 1 • Agosto 2002 9



Modeling and Rendering of Real Environments

Symmetry
Check &

Reconstruction

Surface
Fitting

Segmentation /
Reconstruction

of Planar
Surfaces

Texture
Reconstruction

Planar
Surfaces

Meshing,
Texturing,

Simplification

Scene Editing

3D Hough
Transform

Surfaces
Non−Planar

Clustering

Reconstructed Scene

Point Cloud

Figure 5: The segmentation and reconstruction pipeline

10 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

human-created and natural environments [48, 69, 119]. These observations were exploited
in the design of new algorithms and tools that significantly simplify the reconstruction task.
Since absent areas may possibly contain arbitrary geometry and texture, reconstruction from
incomplete data is inherently ambiguous. Thus, although most tasks in the pipeline are per-
formed automatically, they require some amount of user intervention. This is acceptable
given the costs and difficulties still associated with the scanning of real environments.

Segmentation and Reconstruction of Planar Surfaces

Given the existence of several algorithms for registration of range, and range and color
data [14, 81, 87], it is assumed that the data presented as input to the pipeline have already
been registered (both range and color). The reconstruction process starts by dividing the
original dataset into planar and non-planar surfaces using a 3D Hough transform [119]. The
separation of the original dataset into two non-overlapping groups greatly simplifies the over-
all reconstruction task. For example, holes in planar surfaces can be easily restored. Also, by
removing the samples associated with planar areas more expensive algorithms can be used
to reconstruct the remaining surfaces (represented by smaller datasets). In order to avoid the
undesired effect of finding spurious planes by the Hough transform, the normal of every point
is computed before vote accumulation and each point only votes for a few Hough cells [116].
These cells are identified based on the normal at the point, which, in turn, is computed con-
sidering the point’s neighborhood. The final parameters for the plane are obtained through
a fitting process using singular value decomposition (SVD). Once large planar surfaces have
been automatically identified using the procedure just described, the user is required to spec-
ify boundaries for the underlying planar areas. This is done interactively in 3D through the
use of a graphical user interface. Note that the specification of such boundaries is often neces-
sary due to the ambiguity introduced by the existence of missing data. For example, consider
the small portion of the carpet visible in Figure 4a. It would not be possible to automatically
recover the original boundaries of the carpet from the available information. The boundaries
specified by the users define polygons that will replace the original samples. The texture as-
sociated with a planar surface is extracted by orthographically projecting the corresponding
color samples onto the plane of the polygon. For the case of stochastic textures, a small sam-
ple is obtained and used as input for a texture synthesis algorithm [34]. The original samples
are then discarded and the new synthesized texture is mapped onto the corresponding poly-
gon. This procedure was used to reconstruct the carpet in Figure 4b. Although not identical,
the new textures are statistically similar to the original ones. Since only the new textures are
presented to the viewer, the actual differences between them are likely to pass unnoticed.

Replacing many thousands of samples with textured-mapped polygons allows for effi-
cient rendering on current graphics hardware. 2D textures with symmetric patterns can also
be reconstructed along the planar-surfaces branch of the pipeline. In this case, a 2D Hough
transform applied to texel colors is used to identify axes of symmetry, and to mirror informa-
tion from one side to another [116]. Remaining holes are filled using a push-pull strategy [43].

RITA • Volume IX • Número 1 • Agosto 2002 11



Modeling and Rendering of Real Environments

(a) original scan (b) symmetry plane (c) reconstructed model

Figure 6: Symmetry-based reconstruction.

Segmentation and Reconstruction of Non-Planar Surfaces

Samples corresponding to non-planar surfaces receive a different treatment. Since most
objects rest on flat surfaces, once the large planar areas have been removed, it becomes rel-
atively easier to identify and isolate individual objects. Thus, the non-planar branch of the
reconstruction pipeline starts by clustering spatially close samples. This is accomplished us-
ing an incremental surface construction algorithm based on proximity of points in 3D [42].
Once clusters have been identified, each one is treated independently of the rest of the dataset.
This is desirable since each cluster usually has a relatively small size when compared to the
entire dataset and some of the algorithms used for cluster reconstruction run in polynomial
time on the number of the input samples.

Each cluster undergoes a 3D symmetry check based on a variation of the 3D Hough trans-
form [116]. The check consists of computing, for each pair of points in the cluster, its bisec-
tor plane (i.e., the plane perpendicular to the line defined by the two points and equidistant
to both), which receives a vote. At the end, any plane with a significantly larger number of
votes is elected as representative of approximate symmetry [116]. Depending on the amount
of missing data and their distribution over the object’s surface, it may not be possible to accu-
rately recover the actual symmetry plane of the original object. In this case, user intervention
is required to appropriately reposition the computed plane. User intervention is also required
to select among several candidate planes with approximately the same number of votes. In
the case of rotationally symmetric objects, the axis of revolution can be obtained as the in-
tersection, in the least square sense, of all the candidates. In practice, however, rotationally
symmetric objects are easier reconstructed by mirroring data across several of their sym-
metry planes. Figure 6a shows a chair automatically segmented from the dataset depicted in
Figure 4a. Figure 6b shows the symmetry plane computed using the procedure just described.
Note that, despite the large missing areas on the surface of the chair, the algorithm still man-
ages to compute a good symmetry plane. This can be explained by the relative insensitivity

12 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

Figure 7: Identifying holes.

of the Hough transform to noisy and missing data. Finding an approximate symmetry plane
does not require a consensus, but simply finding a plane with the largest number of votes.
Once approximate symmetry has been identified, surface reconstruction proceeds by mirror-
ing samples across the symmetry plane (axis) [116]. Figure 6c shows the reconstructed chair
obtained from the original samples using symmetry-based reconstruction. The existence of
small holes in the resulting model is due to the lack of samples in both sides of the symmetry
plane. While such holes are relatively small and could have been filled during the meshing
process, all surface reconstruction algorithms [9, 11, 33, 42, 51] assume that the surfaces to
be restored have been appropriately sampled and, therefore, do not handle local variations in
sampling density. The occurrence of such variations manifests itself as small holes visible in
Figure 6c, and further processing is required to eliminate these artifacts.

Filling Small Holes by Surface Interpolation

In locally smooth surfaces, holes can be filled using surface interpolation methods. Wang
and Oliveira [115] describe a procedure for automatic identification and filling of holes in
point clouds. The method consists of first creating a triangle mesh using a surface con-
struction algorithm. Holes are then automatically identified by analyzing the resulting mesh
searching for cycles of non-shared edges (Figure 7). Note that since it is not possible to
distinguish between an under-sampled region and a real hole in the surface, user interaction
is required to guarantee proper reconstruction. Once a hole has been identified, the missing
region can be interpolated from its neighborhood. Samples around the hole, called the inter-
polation context (see dark gray regions in Figure 7), are used to perform the interpolation.
Whereas several surface fitting techniques can be used to reconstruct missing regions, for
most of them, the resulting surfaces do not pass through the original samples, which tends
to introduce discontinuities. This is the case, for instance, of the conventional least-square

RITA • Volume IX • Número 1 • Agosto 2002 13



Modeling and Rendering of Real Environments

method for surface fitting. Avoiding discontinuities between the original and filled areas is
important in order to guarantee the quality of the reconstructed models. The hole filling strat-
egy proposed by Wang and Oliveira [115] consists of adding new samples to under-sampled
regions by resampling an interpolated surface reconstructed using moving least squares [59],
a variation of the original least squares method that guarantees the interpolation of the origi-
nal samples. An important requirement during the introduction of new samples is to enforce
that the sampling density inside the hole matches the sample density of the interpolation con-
text. This is necessary to guarantee that the surface reconstruction algorithm used will not
just leave even smaller holes.

Surface fitting procedures treat the surfaces to be reconstructed as height fields (i.e., as
function of the type z = f (x,y)) [59]. Thus, for each hole, reconstruction and re-sampling
are performed at its ”local tangent plane“. Let N be the number of samples in the interpola-
tion context c of a hole h, and let O be the point obtained by averaging the 3D coordinates
of all samples in c. Also, let M be an Nx3 matrix obtained by subtracting O from all sam-
ples in c. A local coordinate system for the tangent plane can be obtained by factoring M
using singular value decomposition. Such a factorization produces an orthonormal basis cor-
responding to the eigenvectors of MMT [104]. The two eigenvectors corresponding to the
two eigenvectors with largest absolute values span the desired tangent plane, while the third
one is perpendicular to the plane. Once the plane has been computed, the samples belonging
to the corresponding interpolation context are projected onto it. The problem of deciding the
re-sampling positions inside the hole is then reduced to the 2D problem of finding a set of
(x,y) positions inside the projection of the hole that preserves the sampling density of the
projection of the interpolation context. These positions are computed, and the new samples
are obtained by re-sampling the interpolated surface at these points. Once these samples have
been added, a new triangle mesh is created for the object using the surface reconstruction
algorithm described in [42].

In addition to reconstructing geometry, it is also necessary to reconstruct color and tex-
ture. The moving-least-squares procedure can also be used for the reconstruction of smoothly
varying colors. This can be achieved simply by replacing height (the z coordinate measured
with respect to the plane) with the red, green and blue color channels, one at a time. Fig-
ure 8 shows a scene displaying the chair model in three different stages of the reconstruction
pipeline. The original samples are shown on the left; the image in the middle depicts the chair
after symmetry-based reconstruction; on the right, one sees the result after the hole-filling
procedure has been applied. A significant improvement can be observed when comparing the
original and the final models.

Scene Editing

The segmentation of individual objects supported by the pipeline depicted in Figure 5
provides the users with the ability to edit the original environments. This is an extremely
valuable feature, since it allows the acquired scenes to be composited in many different ways.

14 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

(a) original samples (b) after symmetry-based re-
construction

(c) after hole filling

Figure 8: Edited scene showing a chair in different stages of the reconstruction pipeline.

Like conventional 3D geometric models, these reconstructed objects can be translated, ro-
tated, scaled, and instantiated arbitrarily. In the reconstruction shown in Figure 4b, the chair
in Figure 6c was instantiated three times at different positions and orientations, replacing the
original ones. In Figure 8, the original chairs were replaced by a single instance of the recon-
structed chair, and the carpet was replaced with a wooden-textured floor. The bottom shelves
and their contents were edited using some imaging tools available in the system described by
Wang and Oliveira [116].

4.2 Other Reconstruction Approaches

An alternative for filling holes as part of surface reconstruction from point clouds has
been proposed by Carr et al. [16], and consists of using polyharmonic radial basis functions
to obtain implicit representations for object surfaces. Such a technique handles large numbers
of samples, produces very impressive results, and can also be used for mesh simplification
and re-meshing. Mesh simplification is a highly desirable feature, since it can be used to
significantly reduce the amount of primitives used to render the model while preserving its
original appearance. One drawback of this approach is that the entire point cloud (extended
with some off-surface points [16]) represents a single surface. As a result, the entire scene is
treated as a single surface, which precludes scene editing. Handling individual objects would
require the use of a segmentation procedure (not part of the original algorithm) in order to
isolate the objects. This approach does not handle texture reconstruction, and would need to
be combined with texture synthesis techniques.

Another approach for model reconstruction of indoor scenes sampled by range images
has been proposed by Whitaker et al. [120]. In their system, the user defines correspon-

RITA • Volume IX • Número 1 • Agosto 2002 15



Modeling and Rendering of Real Environments

dences among planar surfaces visible in the several range images, which are used to guide
the registration process. The integration of the range images is performed using a probabilis-
tic optimization procedure that deforms the original range surfaces in order to improve the
fitting. Except for requiring the user to define the correspondences, the process is completely
automatic. Like in the approach proposed by Carr et al., the entire scene is modeled as a
single surface, and no support for scene editing is provided. In order to handle noisy datasets,
the input data undergo some smoothing pre-processing, causing all sharp edges and corners
to be rounded in the reconstructed model.

5 Rendering

5.1 Interactive Exploration of Large Environments

Researchers have studied the problem of rendering complex models at interactive frame
rates for many years. Clark [22] proposed many of the techniques for rendering complex
models used today, including the use of hierarchical spatial data structures, level-of-detail
(LOD) management, hierarchical view-frustum and occlusion culling, and working-set man-
agement (geometry caching). Garlick et al. [41] presented the idea of exploiting multiproces-
sor graphics workstations to overlap visibility computations with rendering. Airey et al. [4]
described a system that combined LOD management with the idea of precomputing visibility
information for models made of axis-aligned polygons. Funkhouser et al. [40] described the
first published system that supported models larger than main memory, and performed spec-
ulative prefetching. Their system was based on the from-region visibility algorithm of Teller
and Séquin [107], which required long preprocessing times, and was limited to models made
of axis-aligned cells. Aliaga et al. [8] presented the Massive Model Rendering (MMR) sys-
tem, which employed many acceleration techniques, including replacing geometry far from
the user’s point of view with imagery, occlusion culling, LOD management, and from-region
prefetching. MMR was the first published system to handle models with tens of millions of
polygons at interactive frame rates.

Recently, Wonka et al. [123] presented a from-region visibility preprocessing algorithm
with occluder fusion. The fact that their algorithm took 9 hours to preprocess a model with
8 million triangles, and was limited to 2.5D environments highlights the difficulty of handling
complex models. Another example is the work of Durand et al. [32], which presents a from-
region visibility preprocessing algorithm that could handle 3D environments, as opposed to
2.5D [123]. But the algorithm took 33 hours to process a model with 6 million triangles.
Schaufler et al. [101] also presented a from-region 3D visibility preprocessing algorithm, but
their largest test model had only 0.6 million triangles.

The vast amount of work in the area of real-time rendering algorithms makes it impossible
for us to be comprehensive. We point the readers to the survey of Cohen et al [23], and the
books by Luebke et al [70] and Möller and Haines [73].

16 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

5.2 Out-Of-Core Techniques for Model Management

In this section, we briefly review the existing work on out-of-core techniques for computer
graphics and scientific visualization. For a general introduction to the theory and practice of
external memory algorithms, we refer the interested reader to Abello and Vitter [3].

Cox and Ellsworth [28] propose a general framework for out-of-core scientific visual-
ization systems based on application-controlled demand paging. Leutenegger and Ma [62]
propose to use R-trees [46] to optimize searching operations on large unstructured datasets.
Ueng et al [111] uses an octree partition to restructure unstructured grids to optimize the
computation of streamlines. Shen et al [102] and Sutton and Hansen [105] have developed
techniques for indexing time-varying datasets. Shen et al [102] apply their technique for
volume rendering, while [105] focusses on isosurface computations. Chiang and Silva [19]
worked on I/O-optimal algorithms for isosurface generation. An interesting aspect of their
work is that even the preprocessing is assumed to be performed completely on a machine
with limited memory. Though their technique is quite fast in terms of actually computing the
isosurfaces, the associated disk and preprocessing overhead is substantial. This lead to further
research [20] on techniques which are able to trade disk overhead for time in the querying for
the active cells. They developed a set of useful meta-cell preprocessing techniques. External
memory algorithms for surface simplification have been developed by Lindstrom [67] and
El-Sana and Chiang [36]. The technique presented in [67] is able to simplify arbitrarily large
datasets on machines with just enough memory to hold the output (i.e., the simplified) trian-
gle mesh. Lindstrom and Silva [68] extended the work into a completely memory insensitive
technique. Wald et al. [113] developed a ray tracing system that used a cluster of 7 dual-
processor PCs to render low-resolution images of models with tens of millions of polygons
at interactive frame rates. Their system could preprocess the UNC power plant model [114]
in 2.5 hours (two orders of magnitude faster than MMR [8]). Avila and Schroeder [10]
and El-Sana and Chiang [36] developed systems for interactive out-of-core rendering based
on LOD management, but these systems did not perform occlusion culling. Varadhan and
Manocha [112] describe a system for interactive out-of-core rendering that uses hierarchical
LODs [37] and from-region prefetching, but no occlusion culling. Cignoni et al. [21] devel-
oped an out-of-core algorithm for simplification of large models. Their algorithm first builds
a raw (not indexed) octree-based external memory mesh (OEMM), and then traverses the raw
OEMM twice to build an indexed OEMM.

5.3 Parallel Rendering and Large-Scale Displays

When interacting with large models, it is natural to want to visualize these models at
high resolution. It is possible to use parallelism to increase performance, and, in particu-
lar, increase the resolution of graphics displays. A traditional approach to parallel rendering
has been to use a high-end parallel machine. More recently, with the explosive growth in
power of inexpensive graphics cards for PCs, and the availability of high-speed networks,
using a cluster of PCs for parallel rendering has become an attractive alternative, for many

RITA • Volume IX • Número 1 • Agosto 2002 17



Modeling and Rendering of Real Environments

reasons: [65, 96]. First, a cluster of commodity PCs, each costing a few thousand dollars,
typically has a better price/performance ratio than a high-end, highly-specialized supercom-
puter that may cost up to millions of dollars. Second, high-volume off-the-shelf parts tend
to improve at faster rates than special-purpose hardware. We can upgrade a cluster of PCs
much more frequently than a high-end system, as new inexpensive PC graphics cards become
available every 6-12 months. Third, we can easily add or remove machines from the cluster,
and even mix machines of different kinds. We can also use the cluster for tasks other than
rendering. Finally, the aggregate computing, storage, and bandwidth capacity of a PC cluster
grows linearly with the number of machines in the cluster.

Many approaches to parallel rendering have been proposed. Molnar et al. [74] classify
parallelization strategies in three categories based on where in the rendering pipeline sorting
for visible-surface determination takes place. Sorting may happen during geometry prepro-
cessing, between geometry preprocessing and rasterization, or during rasterization. The three
categories of parallelization strategies are sort-first, sort-middle, and sort-last, respectively.

Sort-first algorithms [53, 77, 97, 98] distribute raw primitives (with unknown screen-
space coordinates) during geometry preprocessing. These approaches divide the 2D screen
into disjoint regions (or tiles), and assign each region to a different processor, which is re-
sponsible for all of the rendering in its region. For each frame, a pre-transformation step
determines the regions in which each primitive falls. Then a redistribution step transfers the
primitives to the appropriate renderers. Sort-first approaches take advantage of frame-to-
frame coherence well, since few primitives tend to move between tiles from one frame to the
next. Sort-first algorithms can also use any rendering algorithm, since each processor has all
the information it needs to do a complete rendering. Furthermore, as rendering algorithms
advance, sort-first approaches can take full advantage of them. One disadvantage of sort-first
is that primitives may cluster into regions, causing load balancing problems between render-
ers. Another disadvantage is that more than one renderer may process the same primitive if
it overlaps screen region boundaries.

Sort-middle algorithms [5, 39, 76] distribute screen-space primitives between the geome-
try preprocessing and rasterization stages. Sort-middle approaches assign an arbitrary subset
of primitives to each geometry processor, and a portion of the screen to each rasterizer. A ge-
ometry processor transforms and lights its primitives, and then sends them to the appropriate
rasterizers. Until recently, this approach has been the most popular due to the availability of
high-end graphics machines. One disadvantage of sort-middle approaches is that primitives
may be distributed unevenly over the screen, causing load imbalance between rasterizers.
Sort-middle also requires high bandwidth for the transfer of data between the geometry pro-
cessing and rasterization stages.

Sort-last approaches [50, 75, 117] distribute pixels during rasterization. They assign an
arbitrary subset of the primitives to each renderer. A renderer computes pixel values for its
subset, no matter where they fall in the screen, and then transfer these pixels (color and depth
values) to compositing processors. Sort-last approaches scale well with respect to the number
of primitives, since they render each primitive exactly once. On the other hand, they need a

18 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

high bandwidth network to handle all the pixel transfers. Another disadvantage of sort-last
approaches is that they only determine the final depth of a pixel during the composition
phase, and therefore make it difficult (if not impossible) to use certain rendering algorithms,
e.g., transparency and anti-aliasing.

5.4 Polygonal versus Point versus Image-Based Rendering

Interactive rendering of realistic environments has been a focus of computer graphics re-
search for many years [4, 40]. Traditionally, researchers have modeled the geometric and
photometric properties of an environment manually, and the resulting 3D models have been
frequently polygonal soups or meshes. More recently, the advances in 3D scanning technol-
ogy have allowed researchers to capture those properties directly from real-world environ-
ments [12, 64, 81, 106], and the use of images and points instead of polygons as rendering
primitives has become widespread [45, 84, 93, 82, 83, 86].

On a high level, representing geometry with triangles, images, and points are fundamen-
tally equivalent, and in principle, it should be possible to convert from one representation to
another with proper algorithms. Unfortunately, our current knowledge is far from making
this possible. Because of the way computer graphics developed, polygonal representations
are the easiest to render, with extensive hardware support, and the one that we know most
about in terms of its algorithmic properties. Because it has been a preferred representation
for so long, quite a bit is known about transforming other representations into polygonized
models. On the other hand, for data acquisition, points and images are the most natural since
3D scanners and imaging equipment in general output collections of points and/or images.
Using techniques developed in computer vision, it is possible to transform (usually registered
and calibrated) imagery into 3D points. Actually building models out of the raw input is quite
hard (as can be seen from the material covered in this paper). With the substantial amount
of research being done, it is getting easier to convert between representations. Several ef-
forts are underway to make it easy to use points and images as basic primitives, in a similar
way to how we use polygonal models. For instance, it is now possible to render points quite
efficiently [45, 84, 93], and there are even some systems for editing point sets directly [129].

5.5 Case Study: The iWalk System

The iWalk system [25] lets a user walk through a large model at interactive frame rates
using a PC with a small amount of memory. Figure 3b shows an image that was rendered by
the iWalk system. The main parts of iWalk are the out-of-core preprocessing algorithm and
the out-of-core multi-threaded rendering approach.

The out-of-core preprocessing algorithm creates an on-disk hierarchical representation of
the input model. More specifically, it creates an octree [99] whose leaves contain the ge-
ometry of the input model. The algorithm first breaks the model in sections that fit in main
memory, and then incrementally builds the octree on disk, one pass for each section, keeping
in memory only the section being processed. To store the octree on disk, the preprocessing

RITA • Volume IX • Número 1 • Agosto 2002 19



Modeling and Rendering of Real Environments

algorithm saves the geometric contents of each octree node in a separate file. The preprocess-
ing algorithm also creates a hierarchy structure (HS) file. The HS file has information about
the spatial relationship of the nodes in the hierarchy, and for each node it contains the node’s
bounding box and auxiliary data needed for visibility culling. The HS file is the main data
structure that our system uses to control the flow of data. A key assumption we make is that
the HS file fits in memory. That is usually a trivial assumption. For example, the size of the
HS file for a 13-million-triangle model is only 1 MB.

At run time, iWalk uses an out-of-core multi-threaded rendering approach. A rendering
thread uses the PLP [57] algorithm to determine the set of octree nodes that are visible from
the user’s point of view. For each visible node, the rendering thread sends a fetch request to
the fetch threads, which will process the request, and bring the contents of the node from disk
into a memory cache. If the cache is full, the least recently used node in the cache is evicted
from memory. To minimize the chance of I/O bursts, there is a look-ahead thread that runs
concurrently with the rendering thread. The look-ahead thread tries to predict where the user
is going to be in the next few frames, uses PLP to determine the nodes that the user would
see then, and sends prefetch requests to the prefetch threads. If there are no fetch requests
pending, the prefetch threads will bring the requested nodes into memory (up to certain limit
per frame based on the disk’s bandwidth). This prefetching scheme amortizes the bursts of
I/O over frames that require little or no I/O, and produces faster and smoother frame rates.

The rendering thread and the look-ahead thread both use PLP [57] to determine the nodes
that are visible from a given point. PLP is an approximate, from-point visibility algorithm
that may be understood as a set of modifications to the traditional hierarchical view frustum
culling algorithm [22]. First, instead of traversing the model hierarchy in a predefined order,
PLP keeps the hierarchy leaf nodes in a priority queue called the front, and traverses the
nodes from highest to lowest priority. When PLP visits a node, it adds the node to the visible
set, removes the node from the front, and adds the unvisited neighbors of the node to the
front. Second, instead of traversing the entire hierarchy, PLP works on a budget, stopping
the traversal after a certain number of primitives have been added to the visible set. Finally,
PLP requires each node to know not only its children, but also all of its neighbors. An
implementation of PLP may be simple or sophisticated, depending on the heuristic to assign
priorities to each node. Several heuristics precompute for each node a value between 0.0 and
1.0 called solidity, which estimates how likely it is for the node to occlude an object behind
it. At run time, the priority of a node is found by initializing it to 1.0, and attenuating it based
on the solidity of the nodes found along the traversal path to the node.

The key feature of PLP that iWalk exploits is that PLP can generate an approximate visible
set based only on the information stored in the HS file created at preprocessing time. In other
words, PLP can estimate the visible set without access to the actual scene geometry.

Although PLP is in practice quite accurate for most frames, it does not guarantee image
quality, and some frames may show objectionable artifacts. To avoid this potential problem,
the rendering thread may optionally use cPLP [58], a conservative extension of PLP that
guarantees 100% accurate images. On the other hand, cPLP cannot determine the visible set

20 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

from the HS file only, and needs to read the geometry of all potentially visible nodes. The
additional I/O operations make cPLP much slower than PLP.

Corrêa et al. [26] used iWalk to develop a sort-first parallel system for out-of-core ren-
dering of large models on cluster-based tiled displays. Their system is able to render high-
resolution images of large models at interactive frame rates using off-the-shelf PCs with small
memory. Given a model, they use an out-of-core preprocessing algorithm to build an on-disk
hierarchical representation for the model. At run time, each PC renders the image for a dis-
play tile, using iWalk’s rendering approach. Using a cluster of 16 PCs, each with 512 MB of
main memory, they were able to render 12-megapixel images of a 13-million-triangle model
with 99.3% of accuracy at 10.8 frames per second. Rendering such a large model at high
resolutions and interactive frame rates would typically require expensive high-end graphics
hardware. Their results show that a cluster of inexpensive PCs is an attractive alternative to
those high-end systems.

6 Challenges Ahead

Despite the great potential of the integrated use of laser scanning and color photographs,
several challenges still need to be overcome, including handling inconsistent illumination,
being able to dynamically change the scene lighting conditions, and reconstructing non-
stochastic textures.

In order to handle possible occlusions and cover the geometric complexity usually as-
sociated with real environments, laser scans and photographs usually need to be acquired
from several different positions. The existence of view-dependent effects tends to introduce
shading inconsistences in sets of pictures taken from different viewpoints. As these pictures
are combined to model a scene, seams due to abrupt changes in shading across the same
surface can be very distracting. A possible way to address this problem is to extract sur-
face reflectance properties, for example, in the form of BRDFs, and use them for rendering.
While some techniques have been developed for extracting reflectance properties from sets
of photographs associated with known geometry [61, 126], these approaches assume that the
properties and positions of the lights sources in the scene is are known. As a result, they can-
not be used for arbitrary scenes. Alternatively, one can consider factoring the illumination
reflected by a surface into its diffuse and specular components. This kind of decomposition
has been studied by several researchers in recent years [56, 66, 78, 100, 122], but satisfatory
results are only achieved under controllable conditions very unlikely to be found in real en-
vironments. The ability to dynamically change the scene lighting conditions by, for example,
changing the position of the light sources is a highly desirable feature closely related to the
problem of factoring shading between its diffuse and specular components.

While several algorithms have been developed in recent years for synthesizing stochastic
textures [34, 35, 118] and for texture synthesis on surfaces [109, 118, 124], reconstruction of
arbitrary textures is a hard problem for which no general solution is likely to exist. For these
cases, the use of a painting system to perform manual retouching may be the only solution.

RITA • Volume IX • Número 1 • Agosto 2002 21



Modeling and Rendering of Real Environments

7 Conclusion

This tutorial is an introduction to recent work in the modeling and interactive rendering of
real environments. These topics lie in the frontier between computer graphics and computer
vision research, and have recently been the source of substantial work. We expect this to
continue to be the case for years to come, and that in the near future we might start to see
complete commercial 3D photography systems based on research similar to the one described
here. The usefulness of such technology is very broad, ranging from entertainment to the
analysis of forensic records, and we expect it to have tremendous impact in everyday life.

We would like to point out that our tutorial is highly skewed towards our research areas,
and, thus, it is not representitive of all areas of work. For a more complete description of
work in 3D model acquisition, we point the reader to the excellent survey of Bernardini and
Rushmeier [13]. For those interested in interactive rendering, we recommend the survey by
Cohen-Or et al. [23], and the books by Luebke et al. [70] and Möller and Haines [73].

Acknowledgements

The authors would like to thank the UNC Chapel Hill IBR Group for kindly providing the
Reading Room dataset. Some of the material presented here is based on work done jointly
with Shachar Fleishman of Tel Aviv University and James T. Klosowski of the IBM T.J.
Watson Research Center.

References

[1] 3DV Systems, Inc. ZCam. http://www.3dvsystems.com.

[2] 3rdTech. Deltasphere-3000 laser 3D scene digitizer.

[3] J. Abello and J. Vitter. External Memory Algorithms and Visualization, volume 50 of
DIMACS Book Series. American Mathematical Society, 1999.

[4] J. M. Airey, J. H. Rohlf, and F. P. Brooks, Jr. Towards image realism with interactive
update rates in complex virtual building environments. 1990 ACM Symposium on
Interactive 3D Graphics, 24(2):41–50, Mar. 1990.

[5] K. Akeley. RealityEngine graphics. In Proceedings of SIGGRAPH 93, pages 109–116,
1993.

[6] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Point set
surfaces. IEEE Visualization 2001, pages 21–28, Oct. 2001.

22 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

[7] D. Aliaga and I. Carlbom. Plenoptic stitching: A scalable method for reconstructing
3D interactive walkthroughs. In Proceedings of SIGGRAPH 2001, pages 443–450,
2001.

[8] D. Aliaga, J. Cohen, A. Wilson, H. Zhang, C. Erikson, K. Hoff, T. Hudson,
W. Stürzlinger, E. Baker, R. Bastos, M. Whitton, F. Brooks, and D. Manocha. MMR:
An interactive massive model rendering system using geometric and image-based ac-
celeration. 1999 ACM Symposium on Interactive 3D Graphics, pages 199–206, 1999.

[9] N. Amenta, M. Bern, and M. Kamvysselis. A new Voronoi-based surface reconstruc-
tion algorithm. In Proceedings of SIGGRAPH 98, pages 415–421, 1998.

[10] L. S. Avila and W. Schroeder. Interactive visualization of aircraft and power generation
engines. In IEEE Visualization 97, pages 483–486. IEEE, Nov. 1997.

[11] C. L. Bajaj, F. Bernardini, and G. Xu. Automatic reconstruction of surfaces and scalar
fields from 3D scans. In Proceedings of SIGGRAPH 95, pages 109–118, 1995.

[12] F. Bernardini, I. Martin, J. Mittleman, H. Rushmeier, and G. Taubin. Building a digital
model of Michelangelo’s Florentine Pietà. IEEE Computer Graphics & Applications,
22(1):59–67, Jan. 2002.

[13] F. Bernardini and H. Rushmeier. The 3D model acquisition pipeline. Computer Graph-
ics Forum, 21(2):149–172, June 2002.

[14] P. Besl and N. Mckay. A method for registration of 3D shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[15] J.-Y. Bouguet. Camera calibration toolbox for matlab. http://www.vision.caltech.edu/-
bouguetj/calib doc.

[16] J. C. Carr, R. K. Beatson, J. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum,
and T. R. Evans. Reconstruction and representation of 3D objects with radial basis
functions. In Proceedings of SIGGRAPH 2001, pages 67–76, 2001.

[17] S. E. Chen. QuickTime VR — an image-based approach to virtual environment navi-
gation. In Proceedings of SIGGRAPH 95, pages 29–38, 1995.

[18] Y. Chen and G. G. Medioni. Object modeling by registration of multiple range images.
Image and Vision Computing, 10(3):145–155, 1992.

[19] Y.-J. Chiang and C. T. Silva. I/O optimal isosurface extraction. IEEE Visualization 97,
pages 293–300, Nov. 1997.

[20] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder. Interactive out-of-core isosurface ex-
traction. IEEE Visualization 98, pages 167–174, Oct. 1998.

RITA • Volume IX • Número 1 • Agosto 2002 23



Modeling and Rendering of Real Environments

[21] P. Cignoni, C. Rocchini, C. Montani, and R. Scopigno. External memory management
and simplification of huge meshes. IEEE Transactions on Visualization and Computer
Graphics, 2002. To appear.

[22] J. H. Clark. Hierarchical geometric models for visible surface algorithms. Communi-
cations of the ACM, 19(10):547–554, Oct. 1976.

[23] D. Cohen-Or, Y. Chrysanthou, C. T. Silva, and F. Durand. A survey of visibility for
walkthrough applications. IEEE Transactions on Visualization and Computer Graph-
ics, 2002. To appear.

[24] W. T. Corrêa, S. Fleishman, and C. T. Silva. Towards point-based acquisition and
rendering of large real-world environments. In Proceedings of the 15th Brazilian Sym-
posium on Computer Graphics and Image Processing, 2002. To appear.

[25] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. iWalk: Interactive out-of-core rendering
of large models. Technical Report TR-653-02, Princeton University, 2002.

[26] W. T. Corrêa, J. T. Klosowski, and C. T. Silva. Out-of-core sort-first parallel rendering
for cluster-based tiled displays. In Proceedings of the 4th Eurographics Workshop on
Parallel Graphics and Visualization, 2002. To appear.

[27] G. M. Cortelazzo, C. Doretto, and L. Lucchese. Free-form textured surfaces registra-
tion by a frequency domain technique. In Proceedings of the International Conference
on Image Processing, pages 813–817, 1998.

[28] M. B. Cox and D. Ellsworth. Application-controlled demand paging for out-of-core
visualization. IEEE Visualization 97, pages 235–244, Nov. 1997.

[29] B. Curless. New Methods for Surface Reconstruction from Range Images. PhD thesis,
Stanford University, 1997.

[30] P. Debevec, C. Taylor, and J. Malik. Modeling and rendering architecture from pho-
tographs: A hybrid geometry- and image-based approach. In Proceedings of SIG-
GRAPH 96, pages 11–20, 1996.

[31] P. E. Debevec, Y. Yu, and G. D. Borshukov. Efficient View-Dependent Image-
Based Rendering with Projective Texture-Mapping. Eurographics Rendering Work-
shop 1998, pages 105–116, 1998.

[32] F. Durand, G. Drettakis, J. Thollot, and C. Puech. Conservative visibility preprocess-
ing using extended projections. In Proceedings of SIGGRAPH 2000, pages 239–248,
2000.

[33] H. Edelsbrunner and E. P. Mucke. Three-dimensional alpha shapes. ACM Transactions
on Graphics, 13(1):43–72, Jan. 1994.

24 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

[34] A. A. Efros and W. T. Freeman. Image quilting for texture synthesis and transfer. In
Proceedings of SIGGRAPH 2001, pages 341–346, 2001.

[35] A. A. Efros and T. K. Leung. Texture synthesis by non-parametric sampling. In
Proceedings of the International Conference on Computer Vision 99, pages 1033–
1038, 1999.

[36] J. El-Sana and Y.-J. Chiang. External memory view-dependent simplification. Com-
puter Graphics Forum, 19(3):139–150, Aug. 2000.

[37] C. Erikson, D. Manocha, and W. V. Baxter III. HLODs for faster display of large static
and dynamic environments. In 2001 ACM Symposium on Interactive 3D Graphics,
pages 111–120, Mar. 2001.

[38] S. Fleishman, D. Cohen-Or, and D. Lischinski. Automatic camera placement for
image-based modeling. Computer Graphics Forum, 19(2):100–110, 2000.

[39] H. Fuchs, J. Poulton, J. Eyles, T. Greer, J. Goldfeather, D. Ellsworth, S. Molnar,
G. Turk, B. Tebbs, and L. Israel. Pixel-planes 5: A heterogeneous multiprocessor
graphics system using processor-enhanced memories. In Proceedings of SIGGRAPH
89, pages 79–88, 1989.

[40] T. A. Funkhouser, C. H. Séquin, and S. J. Teller. Management of large amounts of
data in interactive building walkthroughs. 1992 ACM Symposium on Interactive 3D
Graphics, 25(2):11–20, Mar. 1992.

[41] B. Garlick, D. R. Baum, and J. M. Winget. Interactive viewing of large geometric
databases using multiprocessor graphics workstations. In SIGGRAPH 90 Course Notes
(Parallel Algorithms and Architectures for 3D Image Generation). ACM SIGGRAPH,
1990.

[42] M. Gopi and S. Krishnan. A fast and efficient projection-based approach for surface
reconstruction. High Performance Computer Graphics, Multimedia and Visualization,
1(1):1–12, 2000.

[43] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The Lumigraph. In Pro-
ceedings of SIGGRAPH 96, pages 43–54, 1996.

[44] M. A. Greenspan and P. Boulanger. Efficient and reliable template set matching for 3D
object recognition. In Proceedings of the 2nd International Conference on 3D Digital
Imaging and Modeling, pages 230–239, 1999.

[45] J. Grossman and W. J. Dally. Point sample rendering. In 9th Eurographics Workshop
on Rendering, pages 181–192, Aug. 1998.

RITA • Volume IX • Número 1 • Agosto 2002 25



Modeling and Rendering of Real Environments

[46] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. ACM
SIGMOD Conf. Principles Database Systems, pages 47–57, 1984.

[47] O. Hall-Holt and S. Rusinkiewicz. Stripe boundary codes for real-time structured-light
range scanning of moving objects. In Proceedings of the 8th International Conference
on Computer Vision, pages 359–366, 2001.

[48] I. Hargittai and M. Hargittai. Symmetry: A Unifying Concept. Shelter Publications,
Bolinas, California, 1994.

[49] P. Hébert, D. Laurendeau, and D. Poussart. Scene reconstruction and description:
Geometric primitive extraction from multiple view scattered data. In Proceedings of
IEEE Computer Vision and Pattern Recognition, pages 286–292, 1993.

[50] A. Heirich and L. Moll. Scalable distributed visualization using off-the-shelf compo-
nents. Symposium on Parallel Visualization and Graphics, pages 55–59, 1999.

[51] H. Hoppe, T. DeRose, T. Duchamp, J. McDonald, and W. Stuetzle. Surface recon-
struction from unorganized points. In Proceedings of SIGGRAPH 92, pages 71–78,
1992.

[52] B. K. P. Horn. Closed form solution of absolute orientation using unit quaternions.
Journal of the Optical Society A, 4(4):629–642, Apr. 1987.

[53] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan. WireGL:
A scalable graphics system for clusters. In Proceedings of SIGGRAPH 2001, pages
129–140, 2001.

[54] A. E. Johnson and M. Hebert. Using spin images for efficient object recognition in
cluttered 3D scenes. IEEE Transactions on Pattern Analysis and Machine Intelligence,
21(5):433–449, May 1999.

[55] T. Kanade, P. Rander, and P. J. Narayanan. Virtualized reality: Constructing virtual
worlds from real scenes. IEEE MultiMedia, 4(1):34–47, Mar. 1997.

[56] G. J. Klinker, A. Shafer, and T. Kanade. The measurements of highlights in color
images. International Journal of Computer Vision, 2(1):7–32, 1988.

[57] J. T. Klosowski and C. T. Silva. The prioritized-layered projection algorithm for visible
set estimation. IEEE Transactions on Visualization and Computer Graphics, 6(2):108–
123, Apr. 2000.

[58] J. T. Klosowski and C. T. Silva. Efficient conservative visibility culling using the
prioritized-layered projection algorithm. IEEE Transactions on Visualization and
Computer Graphics, 7(4):365–379, Oct. 2001.

26 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

[59] P. Lancaster and K. Salkauskas. Curve and Surface Fitting. Academic Press, London,
1986.

[60] H. Lensch, M. Goesele, J. Kautz, W. Heidrich, and H. Seidel. Image-based reconstruc-
tion of spatially varying materials. In Rendering Techniques 2001, pages 103–114,
2001.

[61] H. P. A. Lensch, J. Kautz, M. Goesele, W. Heidrich, and H.-P. Seidel. Image-based
reconstruction of spatially varying materials. In Eurographics Rendering Workshop
2001, pages 104–115, 2001.

[62] S. Leutenegger and K.-L. Ma. External Memory Algorithms and Visualization, vol-
ume 50 of DIMACS Book Series, chapter Fast Retrieval of Disk-Resident Unstructured
Volume Data for Visualization. American Mathematical Society, 1999.

[63] D. Levin. Mesh-independent surface interpolation. Technical report, Tel-Aviv Univer-
sity, 2000. Available online at http://www.math.tau.ac.il/˜levin.

[64] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller, L. Pereira, M. Ginzton,
S. Anderson, J. Davis, J. Ginsberg, J. Shade, and D. Fulk. The digital Michelangelo
project: 3D scanning of large statues. In Proceedings of SIGGRAPH 2000, pages
131–144, 2000.

[65] K. Li, H. Chen, Y. Chen, D. W. Clark, P. Cook, S. Damianakis, G. Essl, A. Finkelstein,
T. Funkhouser, T. Housel, A. Klein, Z. Liu, E. Praun, R. Samanta, B. Shedd, J. P.
Singh, G. Tzanetakis, , and J. Zheng. Early experiences and challenges in building
and using a scalable display wall system. IEEE Computer Graphics and Applications,
25(4):671–680, 2000.

[66] S. Lin and H.-Y. Shum. Separation of diffuse and specular reflection in color images.
In Proceedings of IEEE Computer Vision and Pattern Recognition, pages 341–346,
2001.

[67] P. Lindstrom. Out-of-core simplification of large polygonal models. In Proceedings of
SIGGRAPH 2000, pages 259–262, 2000.

[68] P. Lindstrom and C. T. Silva. A memory insensitive technique for large model simpli-
fication. In IEEE Visualization 2001, pages 121–126, Oct. 2001.

[69] Y. Liu. Computational symmetry. Technical Report CMU-RI-TR-00-31, The Robotics
Institute, Carnegie Mellon University, 2000.

[70] D. Luebke, M. Reddy, J. D. Cohen, A. Varshney, B. Watson, and R. Huebner. Level of
Detail for 3D Graphics. Morgan Kaufmann, 2002.

RITA • Volume IX • Número 1 • Agosto 2002 27



Modeling and Rendering of Real Environments

[71] D. K. McAllister, L. Nyland, V. Popescu, A. Lastra, and C. McCue. Real-time render-
ing of real world environments. In Rendering Techniques 99, pages 145–160, 1999.

[72] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system.
In Proceedings of SIGGRAPH 95, pages 39–46, 1995.

[73] T. Möller and E. Haines. Real-Time Rendering. A K Peters, 1999.

[74] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs. A sorting classification of parallel
rendering. IEEE Computer Graphics and Applications, 14(4):23–32, 1994.

[75] S. Molnar, J. Eyles, and J. Poulton. Pixelflow: High-speed rendering using image
composition. In Proceedings of SIGGRAPH 92, pages 231–240, 1992.

[76] J. S. Montrym, D. R. Baum, D. L. Dignam, and C. J. Migdal. InfiniteReality: A
real-time graphics system. In Proceedings of SIGGRAPH 97, pages 293–302, 1997.

[77] C. Mueller. The sort-first rendering architecture for high-performance graphics. 1995
ACM Symposium on Interactive 3D Graphics, pages 75–84, 1995.

[78] S. Nayar, X. Fang, and T. Boult. Removal of specularities using color and polarization.
In Proceedings of IEEE Computer Vision and Pattern Recognition, pages 583–590,
1993.

[79] S. K. Nayar, M. Watanabe, and M. Noguchi. Real-time focus range sensor. In Pro-
ceedings of the 5th International Conference on Computer Vision, pages 1186–1198,
Dec. 1996.

[80] P. J. Neugebauer. Reconstruction of real-world objects via simultaneous registration
and robust combination of multiple range images. International Journal of Shape
Modeling, 3(1 & 2):71–90, 1997.

[81] L. Nyland, A. Lastra, D. K. McAllister, V. Popescu, and C. McCue. Capturing, pro-
cessing and rendering real-world scenes. In Videometrics and Optical Methods for 3D
Shape Measurement, Electronic Imaging 2001, Photonics West, volume 4309, pages
107–116. SPIE, 2001.

[82] L. Nyland, D. McAllister, V. Popescu, C. McCue, A. Lastra, P. Rademacher, M. M.
Oliveira, G. Bishop, G. Meenakshisundaram, M. Cutts, and H. Fuchs. The impact of
dense range data on computer graphics. In Proceedings of Multi-View Modeling and
Analysis Workshop, pages 3–10, 1999.

[83] M. M. Oliveira, G. Bishop, and D. McAllister. Relief texture mapping. In Proceedings
of SIGGRAPH 2000, pages 359–368, July 2000.

28 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

[84] H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: Surface elements as ren-
dering primitives. In Proceedings of SIGGRAPH 2000, pages 335–342, 2000.

[85] R. Pito. A solution to the next best view problem for automated surface acquisition.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(10):1016–1030,
1999.

[86] V. S. Popescu, A. Lastra, D. G. Aliaga, and M. M. de Oliveira Neto. Efficient warping
for architectural walkthroughs using layered depth images. In IEEE Visualization 98,
pages 211–216, Oct. 1998.

[87] K. Pulli. Multiview registration for large datasets. In Proceedings of the 2nd Interna-
tional Conference on 3D Digital Imaging and Modeling, pages 160–168, 1999.

[88] R. Raskar, G. Welch, M. Cutts, A. Lake, L. Stesin, and H. Fuchs. The office of the
future: A unified approach to image-based modeling and spatially immersive displays.
In Proceedings of SIGGRAPH 98, pages 179–188, 1998.

[89] G. Roth. Registering two overlapping range images. In Proceedings of the 2nd Inter-
national Conference on 3D Digital Imaging and Modeling, pages 191–200, 1999.

[90] H. Rushmeier, G. Taubin, and A. Guéziec. Applying shape from lighting variation
to bump map capture. In Proceedings of the 8th Eurographics Rendering Workshop,
pages 35–44, June 1997.

[91] S. Rusinkiewicz. Real-time Acquisition and Rendering of Large 3D Models. PhD
thesis, Stanford University, 2001.

[92] S. Rusinkiewicz. Sensing for graphics. http://www.cs.princeton.edu/courses/archive/-
fall01/cs597d, 2001.

[93] S. Rusinkiewicz and M. Levoy. QSplat: A multiresolution point rendering system for
large meshes. In Proceedings of SIGGRAPH 2000, pages 343–352, 2000.

[94] S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proceedings
of the 3rd International Conference on 3D Digital Imaging and Modeling, pages 145–
152, 2001.

[95] M. Rutishauser, M. Stricker, and M. Trobina. Merging range images of arbitrarily
shaped objects. In Proceedings of IEEE Computer Vision and Pattern Recognition,
pages 573–580, 1994.

[96] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Hybrid sort-first and sort-last
parallel rendering with a cluster of PCs. In 2000 SIGGRAPH/Eurographics Workshop
on Graphics Hardware, pages 97–108, 2000.

RITA • Volume IX • Número 1 • Agosto 2002 29



Modeling and Rendering of Real Environments

[97] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh. Sort-first parallel rendering with a
cluster of PCs. In Sketches and Applications, SIGGRAPH 2000, page 260, 2000.

[98] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh. Load balancing for
multi-projector rendering systems. In 1999 SIGGRAPH/Eurographics Workshop on
Graphics Hardware, pages 107–116, 1999.

[99] H. Samet. The Design and Analysis of Spatial Data Structures. Addison-Wesley, 1990.

[100] Y. Sato and K. Ikeuchi. Temporal-color space analysis of reflection. Journal of the
Optical Society of America A, 11(11):2990–3002, 1994.

[101] G. Schaufler, J. Dorsey, X. Decoret, and F. X. Sillion. Conservative volumetric visibil-
ity with occluder fusion. In Proceedings of SIGGRAPH 2000, pages 229–238, 2000.

[102] H.-W. Shen, L.-J. Chiang, and K.-L. Ma. A fast volume rendering algorithm for time-
varying fields using a time-space partitioning (TSP) tree. IEEE Visualization 99, pages
371–378, Oct. 1999.

[103] M. Soucy and D. Laurendeau. A general surface approach to the integration of a set
of range views. IEEE Transactions on Pattern Analysis and Machine Intelligence,
17(4):344–358, Apr. 1995.

[104] G. Strang. Linear Algebra and Its Applications. Saunders HBJ College Publishers,
Orlando, Florida, 3rd edition, 1988.

[105] P. M. Sutton and C. D. Hansen. Accelerated isosurface extraction in time-varying
fields. IEEE Transactions on Visualization and Computer Graphics, 6(2):98–107, Apr.
2000.

[106] S. Teller. Toward urban model acquisition from geo-located images. Pacific Graphics
98, pages 45–52, 1998.

[107] S. J. Teller and C. H. Séquin. Visibility preprocessing for interactive walkthroughs. In
Proceedings of SIGGRAPH 91, pages 61–69, 1991.

[108] R. Y. Tsai. A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of Robotics
and Automation, RA-3(4):323–344, Aug. 1987.

[109] G. Turk. Texture synthesis on surfaces. In Proceedings of SIGGRAPH 2001, pages
347–354, 2001.

[110] G. Turk and M. Levoy. Zippered polygon meshes from range images. In Proceedings
of SIGGRAPH 94, pages 311–318, 1994.

30 RITA • Volume IX • Número 1 • Agosto 2002



Modeling and Rendering of Real Environments

[111] S.-K. Ueng, C. Sikorski, and K.-L. Ma. Out-of-core streamline visualization on large
unstructured meshes. IEEE Transactions on Visualization and Computer Graphics,
3(4):370–380, Oct. 1997.

[112] G. Varadhan and D. Manocha. Out-of-core rendering of massive geometric environ-
ments. In IEEE Visualization 2002, 2002. To appear.

[113] I. Wald, P. Slusallek, and C. Benthin. Interactive distributed ray tracing of highly
complex models. Rendering Techniques 2001, pages 277–288, 2001.

[114] Walkthru Project at UNC Chapel Hill. Power plant model. http://www.cs.unc.edu/-
˜geom/Powerplant.

[115] J. Wang and M. M. Oliveira. A hole filling strategy for surface reconstruction from
range images. Technical Report TR02.07.18, SUNY at Stony Brook, 2002.

[116] J. Wang and M. M. Oliveira. Improved scene reconstruction from range images. Com-
puter Graphics Forum, 21(3), Sept. 2002. To appear.

[117] B. Wei, D. W. Clark, E. W. Felten, K. Li, and G. Stoll. Performance issues of a dis-
tributed frame buffer on a multicomputer. 1998 SIGGRAPH / Eurographics Workshop
on Graphics Hardware, pages 87–96, 1998.

[118] L.-Y. Wei and M. Levoy. Texture synthesis over arbitrary manifold surfaces. In Pro-
ceedings of SIGGRAPH 2001, pages 355–360, 2001.

[119] H. Weyl. Symmetry. Princeton University Press, Princeton, New Jersey, 1952.

[120] R. Whitaker, J. Gregor, and P. Chen. Indoor scene reconstruction from sets of noisy
range images. In Proceedings of the 2nd International Conference on 3-D Digital
Imaging and Modeling, pages 348–357, 1999.

[121] R. Willson. Freeware implementation of Roger Tsai’s camera calibration algorithm.
Available online at http://www.cs.cmu.edu/˜rgw/TsaiCode.html.

[122] L. B. Wolf. Using polarization to separate reflection components. In Proceedings of
IEEE Computer Vision and Pattern Recognition, pages 363–369, 1989.

[123] P. Wonka, M. Wimmer, and D. Schmalstieg. Visibility preprocessing with occluder
fusion for urban walkthroughs. In Rendering Techniques 2000, pages 71–82, 2000.

[124] L. Ying, A. Hertzman, H. Bierman, and D. Zorin. Texture and shape synthesis on
surfaces. In Rendering Techniques 2001, pages 301–312, 2001.

[125] Y. Yu, P. Debevec, J. Malik, and T. Hawkins. Inverse global illumination: Recovering
reflectance models of real scenes from photographs. In Proceedings of SIGGRAPH
99, pages 215–224, 1999.

RITA • Volume IX • Número 1 • Agosto 2002 31



Modeling and Rendering of Real Environments

[126] Y. Yu, A. Ferencz, and J. Malik. Extracting objects from range and radiance images.
IEEE Transactions on Visualization and Computer Graphics, 7(4):351–364, 2001.

[127] D. Zhang and M. Hebert. Harmonic maps and their application in surface matching. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pages
524–530, 1999.

[128] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces.
International Journal of Computer Vision, 13(2):119–152, 1994.

[129] M. Zwicker, M. Pauly, O. Knoll, and M. Gross. Pointshop 3D: An interactive system
for point-based surface editing. In Proceedings of SIGGRAPH 2002, pages 322–329,
2002.

32 RITA • Volume IX • Número 1 • Agosto 2002


