
A Unified
�

Infrastructure for Paralle l Out-Of-Core Isosurface Extraction and
Volume Rendering of Unstructured Grids

Yi-JenChiang�
PolytechnicUniversity

RicardoFarias�
Universityat Stony Brook

CláudioT. Silva�
AT&T

Bin Wei�
AT&T

Abstract

In thispaper, wepresentaunifiedinfrastructurefor parallel out-of-
core isosurfaceextractionandvolumerenderingof large unstruc-
tured grids on distributed-memoryparallel machines. We paral-
lelize theout-of-coreisosurfaceextractionalgorithmof [9] andthe
out-of-coreZSweeptechnique[17] for directvolumerendering,us-
ing themeta-celltechniqueasa unifiedunderlyingbuilding block.

Ourone-timepreprocessing first partitionsthedatasetinto meta-
cells thatarestoredin disk. Fromthemeta-cells,we build a BBIO
tree in disk, which canbe usedto speedup isosurfaceextraction,
and a bounding-box file in disk, which is usedfor direct volume
rendering. At run-time, we usea simple self-schedulingscheme
[39] to achieve load balancing amongtheprocessors.

Weperformseveralexperimentsonasixteen-nodeclusterof PCs
connectedby a gigabitethernet,usingdatasetsaslargeas6.6 mil-
lion cells. For the larger datasets,we have found that both our
isosurfaceextractionand direct volume renderingapproachesare
perfectlyscalableup to sixteennodes.

Keywords: Isosurface Extraction, Volume Rendering, Parallel
Computation,Out-Of-CoreTechniques,ScientificVisualization.

1 Intr oduction

In recentyears,new challengesfor scientificvisualizationemerged
as the size of data generatedfrom simulationsgrew exponen-
tially [4]. The sheersizeof dataoften makes the taskof interac-
tive visualizationimpossible,asonly a smallportionof datacanfit
into mainmemoryat a time, andthecomputationcostis often too
high for analgorithmto run in real-time.In this paper, we address
both issuesof limited main memorysizeandinsufficient comput-
ing speedof thecurrentgraphicsworkstationsfor processinglarge
visualizationapplications,by proposinga unifiedinfrastructurefor
parallel out-of-core isosurfaceextractionanddirectvolumerender-
ing. Our methodsfocuson the classof unstructured-grid volume
datasets,which is themostgeneralclassof volumetricdataandhas
beenproposed asaneffective meansof representing disparatefield
datathatarisesin abroadspectrumof applicationsincludingstruc-
tural mechanics,computationalfluid dynamics,partialdifferential
equationsolvers,andshockphysics.

Isosurface extraction and direct volume renderingare two of
the most importantclassesof visualizationtechniquesfor volume
�
Department of Computer andInformation Science,PolytechnicUniver-

sity, 5 MetroTech Center, Brooklyn, NY 11201;yjc@poly.edu. Supported
in part by NSFCAREERGrantCCR-0093373andby CATT, a New York
Office of Science,Technology andAcademic Research (NYSTAR) desig-
nated Center for AdvancedTechnology.�

Department of Applied Mathematics andStatistics,State University of
New York at Stony Brook,NY 11794-3600; rfarias@ams.sunysb.edu.�

AT&T Labs-Research, 180Park Ave.,RoomD265,Florham Park, NJ
07932;csilva@research.att.com.�

AT&T Labs-Research, 180Park Ave.,RoomD286,Florham Park, NJ
07932;bw@research.att.com.

datasets.Althoughthesetechniqueshave beendevelopedto a high
degreeof sophistication,mostof the algorithmsrequirethe entire
datasetto bekept in mainmemory, which is a severelimitation on
theirapplicability, especiallyfor largescientificapplications.

In this paper, we presenta unified infrastructurethat supports
bothisosurfaceextractionanddirectvolumerenderingfor largeun-
structuredgrids,usingout-of-coretechniquesthat areparallelized
for distributed-memoryparallelmachineswith a local disk and a
limited-sizemain memoryavailablefor eachnode.We parallelize
theout-of-coreisosurfaceextractionalgorithmof Chianget al. [9]
andtheout-of-coreZSweeptechniqueof FariasandSilva [17] for
directvolumerendering, usingthe meta-celltechniquefirst devel-
opedin [9] asa unifiedunderlying building block.

In thepreprocessingphase,we partitiontheoriginal datasetinto
clustersof cells,calledmeta-cells, which arekept in disk andeach
occupying roughly the samenumberof disk blocks. Similar to
theout-of-coreisosurfaceextractiontechnique [9], we build an in-
dexing datastructure,namelythe binary-blocked I/O interval tree
(BBIO tree),which is aB-tree-like interval treeandis entirelykept
in disk, to index themeta-cells,sothatgivenanisovaluetheactive
meta-cellsthat are intersectedby the isosurfacecanbe locatedin
anI/O-optimalway. In addition,similar to theout-of-coreZSweep
algorithm[17], we build a bounding-boxfile, which is alsokept in
diskandcontainstheboundingboxandotherauxiliary information
for eachmeta-cell,to facilitatethe(in-core)ZSweepalgorithm[16]
(which is basedon sweepinga planein the 	 -direction)in an I/O-
efficientway. Themeta-cells,theBBIO tree,andthebounding-box
file only needto beconstructedonce,andthis constructionprocess
canbe performedefficiently even without the needof keeping the
entiredatasetin main memory; the running time for this prepro-
cessingis thesameasrunningexternalsortinga few times.

In therun-timephase, weparallelizethebottleneckoperationsin
theout-of-coreisosurfaceextractiontechniqueof [9] andin theout-
of-coreZSweepalgorithm[17]: for theformer, theseincluderead-
ing theactive meta-cellsfrom disk andscanningthroughtheactive
meta-cellsto generateisosurfacetriangles;for the latter, thesein-
cludereadingthemeta-cellsfrom diskin adesiredfront-to-backor-
derandperformingin-coreZSweepon themeta-cellsread.We de-
velopself-schedulingschemes[39] for bothourparallelalgorithms,
which ensureload balancingamongprocessor nodesandarevery
simpleto implement.

2 Previous Related Work

In this section we review the previous related work in the ar-
easof isosurfaceextraction,direct volumerenderingfor unstruc-
turedgrids, andout-of-coretechniques; relatedparallelvisualiza-
tion work is reviewed in the context of isosurfaceextraction and
directvolumerendering.

2.1 Isosurface Extraction

There is a very rich literature on isosurface extraction; we re-
fer to [31] for an excellent and thorough review. In Marching

Cubes[32], all cells in the volume datasetare searchedfor iso-
surface
 intersection.Techniquesavoiding exhaustive scanningin-
clude using an octree[56], identifying a collection of seedcells
andperformingcontourpropagationfrom theseedcells[3, 26, 53],
NOISE[31], andothernearlyoptimal isosurfaceextractionmeth-
ods[41, 42]. The first optimal algorithmwasgiven by Cignoni et
al. [11]. The first out-of-core isosurfacetechnique was given by
ChiangandSilva [7]. They follow theideasof Cignoniet al. [11],
but use the I/O-optimal interval tree of [1] to solve the interval
searchproblem.Later, Chianget al. [9] further improved thedisk
spaceoverheadand the preprocessingtime of [7], at the cost of
slightly increasingthe isosurfacequerytime,by developing a two-
level indexing scheme,themeta-celltechnique, andtheBBIO tree
which is usedto index themeta-cells.Wewill review thisapproach
in moredetail in Section3. As for parallel isosurfaceextraction,
HansenandHinker [22] describedparallelmethodson SIMD ma-
chines,Ellsiepen[15] gave a parallelalgorithmfor FEM databy
distributingworkingblocksto anumberof connectedworkstations,
Shenetal. [41] developedasequentialandparallelapproachcalled
ISSUE,and Parker et al. [37] presenteda parallel technique us-
ing ray tracing. In addition,Bajaj et al. [2] proposeda paralleland
out-of-coreapproachbasedoncontour propagationfrom seedcells.
Sequentialisosurfacetechniques for time-varying dataweregiven
by Shen[43] andSuttonandHansen[49].

2.2 Volume Rendering for Unstructured Grids

A numberof efficient algorithmsfor renderingunstructuredgrids
have beendeveloped. Oneclassis basedon adaptingray tracing
techniques [20, 52,5]. In general, thesetechniquesrequirerandom
accessto thecells,connectivity information,andin somecasesex-
tra memory(suchas[5]) to optimizethe computationof intersec-
tions of rayswith facesof thecell complex. Othertechniquesuse
scan-linealgorithms,which sweepthe datawith a planeperpen-
dicular to the imageplane[58, 6]. Someof them(e.g., [48]) are
designedto be memoryefficient, but still usethe connectivity of
the mesh. Others(e.g., [21, 55]) usediscretebuffers in 	 to de-
terminethe orderof compositing, andcompletelyavoid the need
for connectivity information. However, usingdiscretebuffers has
the potential to lower the accuracy, and can requirea substantial
amountof main memory. The technique of [61] samplesthe ir-
regular grid with a fixed number(e.g.,50 or 100) of planeswhich
are later compositedtogether. This algorithm doesnot usecon-
nectivity, but thespaceto keeptheplanescanbequitesubstantial.
Fariaset al. [16] developed ZSweep,alsobasedon sweepingthe
datawith a planein the 	 direction.Very recently, FariasandSilva
parallelizedthe ZSweepalgorithmfor distributedshared-memory
architectures[18], and also developed an out-of-coreversion of
ZSweep[17]. In [18] a tiling ideaandan octreepartition scheme
wereproposed;in [17] meta-cellsandasimilartiling ideawereem-
ployed. We will discussZSweepandout-of-coreZSweepin more
detail in Section3.3.

Another approach for renderingirregular grids is the use of
projection (“feed-forward”) methods (e.g., [57, 35, 45, 10], in
which the cells are projectedonto the screen,one-by-one. Most
of thesetechniquesexploit graphicshardware to computethevol-
umetriclighting models[45], by first computing a visibility order-
ing [35,60,12], andincrementallyaccumulatingtheircontributions
to the final image. As for parallel volume renderingof irregular
grids,Ma andCrockett [33] usedtheapproachof computing all in-
tersectionsbetweeneachcastraywith all thecells,andperforming
a post-sortingto compute the image. Their techniquedistributes
thecellsamongprocessorsin a round-robinfashion.To avoid stor-
ing avery largenumberof ray intersections,they cleverly schedule
the computationusinga k-d tree. As shown in [33, 34], their al-
gorithm is very scalableon message-passingmachines.Recently,

Hofsetzand Ma [23] have developedan efficient shared-memory
version of this algorithm. Hong and Kaufman [24] proposed a
very efficient ray-castingbasedrenderingalgorithm for curvilin-
ear grids, and parallelizedtheir ray casterusing an image-based
taskschedulingscheme.The parallelizationof a ray castingtech-
niquehasalsobeenstudiedby Uselton[52] with very goodresults.
Challinger[6] andWilhelmset al. [58] proposed scan-linerender-
ing algorithms.Both papersreporton parallelization,which is the
mainfocusof [6]. Challinger[6] alsousedanimagetiling scheme
for parallelizationwith verygoodresults.Otherparalleltechniques
on shared-memorymachinesincludethe resultsby Williams [59],
Nieh andLevoy [36], andLacroute[27, 28].

2.3 Out-Of-Core Techniques

We now briefly review the work on out-of-coretechniques. For
theoreticalresultson out-of-core algorithms for graphsand for
computationalgeometry, we refer to the recent survey by Vit-
ter [54]. Teller et al. [50] describeda systemto computeradios-
ity solutionsfor polygonal environments larger than main mem-
ory, and Funkhouser et al. [19] presentedprefetchingtechniques
for interactive walk-throughsin largearchitecturalvirtual environ-
ments.More recently, Pharret al. [38] gave memory-coherentray-
tracingalgorithms,Cox andEllsworth [13] presentedapplication-
controlled demand paging methods,and Ueng el al. [51] pro-
posedout-of-corestreamlinetechniques. As mentioned,Chiang
andSilva [7, 8] andChiangetal. [9] gaveaseriesof out-of-coreal-
gorithmsfor isosurfaceextraction, and Bajaj et al. [2] presented
parallel and out-of-coreisosurface techniques. Leutenegger and
Ma [29] and FariasandSilva [17] developed out-of-corevolume
renderingapproaches.Shenet al. [44] andSuttonandHansen[49]
reportedout-of-corevisualizationfor time-varying datasets.For
surfacesimplification,Hoppe[25] proposedview-dependentsim-
plification methodfor terrainslargerthanmainmemory, andLind-
strom[30] gave an out-of-coretechnique to simplify large polyg-
onalmodels,which canperformsimplificationvery efficiently but
doesnot produceany hierarchicalstructurefor level-of-detailren-
dering. Concurrently, El-SanaandChiang[14] developed out-of-
coreview-dependentsimplificationand renderingtechniquesthat
canefficiently performbothsimplificationandview-dependentren-
deringfor polygonal modelslargerthanmainmemory.

3 Parallel Out-of-Core Isosurface and
Volume Rendering

We now presentour unified infrastructurethat supports both iso-
surfaceextractionanddirect volumerenderingusingparallelout-
of-coretechniques.Our methodis basedon parallelizingthe out-
of-coreisosurfaceextractionalgorithmof Chianget al. [9] andthe
out-of-coreZSweeptechniqueof Fariasand Silva [17] for direct
volumerendering,with the meta-cellsas the underlyingbuilding
block.

Ourtargetcomputingarchitectureis verysimple,andis basically
aclusterof machines,which containthefollowing components:

– onehostmachine, wherea client applicationdrivesthecom-
putationto beperformedby theprocessingnodes;

– one or more file servers or a directly attachedstorage-area
network (SAN), wherethe relevant datafiles resideandare
dynamicallyfetchedby theprocessingnodesasneeded;

– oneor moreprocessingnodes,whichperformcomputationby
receiving assignments from theclient applicationrunningon
thehostmachine.

Comparedto thePVR systemof Silva et al [47, 46], our current
system� hasextra functionalitiesof supporting out-of-corevolume
renderingand isosurfaceextraction,but doesnot have the PVR’s
high-performance compositing back-end[40] and thus is not de-
signedto be asflexible. We believe our extensionscould be inte-
gratedinto PVR.

Loca l stora ge Often, we assumelarge temporaryfiles (e.g.,
intermediateisosurface results)can be storedon the processing
nodes. This can eitherbe accomplishedby providing the cluster
machineswith localdisk (which is usuallythecase),or configuring
a directly attachedstorage-areanetwork (SAN).

3.1 Prepr ocessing

In our preprocessingphase,we constructthreefiles in disk:
(1) thefile containingall meta-cells,
(2) thefile of BBIO tree,and
(3) thebounding-boxfile.

Themeta-cellfile is essentiallythedatafile, while theothertwo
files areauxiliary files and are much smallerin size. The BBIO
tree is usedto index the meta-cellsfor isosurfaceextraction,and
thebounding-boxfile is usedto facilitatethetraversalof meta-cells
for directvolumerendering. All threefiles canbeconstructedeffi-
ciently without theneedof keepingtheentireinput in mainmem-
ory; the entirepreprocessingtime is the sameasrunning external
sortinga few times. We refer the interestedreaderto [9] and[17]
for detailson thealgorithmsusedfor preprocessing.

Wedescribethepurposeof meta-cells,which is acritical feature
of our work. Typical input of anunstructured-grid datasethasa list
of vertices,whereeachvertex entrycontainsits � -,
 -, 	 - andscalar
values,anda list of cells,whereeachcell entrycontainspointersto
its verticesin thevertex list. We referto this asthe“index cell set”
(ICS)format.While thisformatis verycompactandveryusefulfor
in-corealgorithms,it is not suitablefor out-of-coreaccesses.Ob-
serve thatrandomaccessesin disk by following pointersto thever-
tex list is very inefficient,sincethis involvesa largeamount of disk
headmovement (thedisk “seeks”).Moreover, sinceeachI/O oper-
ation reads/writesan entiredisk block, this alsoresultsin reading
anentiredisk block into mainmemoryin orderto justaccessasin-
gle item in that block (which usuallycontainshundredsof items).
Oneway to avoid suchrandompointeraccessesis to replaceeach
vertex pointerby the vertex � -,
 -, 	 - andscalarvaluesin thecell
list, but this causesmany duplicatedvertex informationandis very
inefficient in disk space.

Themeta-celltechniqueis usedto optimizebothdiskaccesscost
anddisk spacerequirement. We clusterspatiallyneighboringcells
togetherto form ameta-cell.Eachmeta-cellis roughlyof thesame
storagesize,usuallyin a multipleof diskblocksandalwaysableto
fit in mainmemory. Eachmeta-cellhasself-containedinformation
andis alwaysreadasa whole from disk to main memory. There-
fore,wecanusethecompactICSrepresentationfor eachmeta-cell,
namelya local vertex list anda local cell list which containspoint-
ersto thelocalvertex list. In thisway, avertex sharedby many cells
in thesamemeta-cellis storedjust oncein thatmeta-cell;theonly
duplicationsof vertex informationoccurwhena vertex belongsto
two cellsin differentmeta-cells;in this casewe let bothmeta-cells
includethatvertex in their vertex lists to make eachmeta-cellself-
contained.

During meta-cellconstruction, a cell may lie betweendifferent
meta-cells.For eachsuchcell, we usea voting schemeto assign
thecell to asinglemeta-cell,andalsoduplicatethecell to theother
meta-cellsthat it intersects,with theseadditionalduplicatedcells
marked.During isosurfaceextraction,we scanthecellsin eachac-
tivemeta-cellbut skipthemarkedcells,sothateachpotentialactive

cell is examinedexactly onceto avoid producingduplicatedisosur-
facetriangles.During volumerendering,all thecells in thecurrent
meta-cell,includingthemarkedcells,participatetherenderingpro-
cedure,so thateachcell makesits correctcontribution to thefinal
image.

3.2 Parallel Out-o f-Core Isosurface Extraction

In the run-timephase,we support isosurfacequeriesby paralleliz-
ing the bottleneckoperationsin the out-of-coreisosurface tech-
niqueof [9]. In [9], isosurfacequeriesareperformedas follows.
Givenanisovalue � , wefirst searchvia theBBIO treein disk to find
all � ��������������� meta-intervals containing � . Thesemeta-intervals
correspondto activemeta-cellsthatareintersectedby theisosurface
of � . Foreachsuchmeta-interval,weuseitsmeta-cellID to readthe
corresponding active meta-cellfrom disk to mainmemory, andgo
throughthecellsin thismeta-cellto find theisosurfacetrianglesus-
ing the MarchingCubesalgorithm(actually, MarchingTetrahedra
in our case). Finding meta-intervals containing � with the BBIO
tree is relatively fast, sincethe interval searchis performedI/O-
optimally, andtherecordsizeof thereportedmeta-intervalsis very
small. The computational bottleneckcomesfrom two sourcesof
operations:readingthe active meta-cellsfrom disk (an I/O opera-
tion), andscanning throughactivemeta-cellsto computeisosurface
triangles(a CPU operation). We reducethe bottleneckby paral-
lelizing theseoperations.

Our overall algorithmis describedasfollows.

1. Given an isovalue � , the hostusesthe BBIO treein the host
disk to find all meta-intervals containing � . The host then
createsa processqueue � that collectsall active meta-cell
IDs from thesemeta-intervals.

2. The hostactsasa processdispatcherto handlejob requests
from all otherprocessor nodes.Whena processornodefin-
ishesits currentjob (or is idle initially), it sendsa job request
to the host; the host,upon receiving a job request,removes
the next availableactive meta-cellID from � andgivesthis
meta-cellID to thecorresponding processor nodemakingthe
job request.This procedure is repeateduntil all active meta-
cell IDs areremovedfrom � .

Eachprocessornode,aftergettinganactivemeta-cellID from
thehost,performsthefollowing operations.

(a) Readthecorrespondingmeta-cell� from themeta-cell
file in disk to its local mainmemory.

(b) PerformMarching Cubes/Marching Tetrahedraon the
meta-cell� to computethesubsetof theisosurfacetri-
anglesthat is contributedby � . As describedin Sec-
tion 3.1,whenscanningthroughthecellsof � , skipthe
marked cells to avoid generatingduplicatedisosurface
triangles.

(c) Save thegeneratedisosurfacetrianglesin local storage,
deallocatethe main memoryspacefor � , andsenda
job request anda job completionmessageto thehost.

3. Whenthehostreceivesjob-completionmessagesfromall pro-
cessors,it knows theisosurfacecomputationis finished.

Post-processingis requiredfor actualrendering— in certain
systems,e.g. PVR, thedatacould bestreameddirectly from
theprocessingnodesto therenderingnodes.

Our algorithm parallelizesthe original bottleneckoperations
very well. In particular, the schemeof using the processqueue
� to dynamicallydispatchthejobsto availableprocessornodesen-
suresa load balancingamongall nodes: a nodethat finishesits

currentjob earlierwill continueto processanother job, so that all
nodes arekeptbusy. Moreover, this parallelschemeis very simple
to implement.

Similar to the original out-of-coreisosurfacetechnique [9], we
only needa very smallamountof mainmemoryfor eachprocessor
node. For the hostnode,this includesthe main memoryspaceto
hold onedisk block thatis thecurrentnodeof theBBIO treebeing
visitedfor the interval search,thespaceto keepthereportedmeta-
intervalsandtheactive meta-cellIDs in � , andfinally thespaceto
retainthecompletesetof isosurfacetriangles.For otherprocessor
nodes,we only needthemainmemoryspacefor thecurrentmeta-
cell beingprocessed. The isosurfacetrianglesgenerated from this
meta-cellaredirectly dumpedto disk (either local, NFS mounted
file system,or SAN).

3.3 Parallel Out-of -Core Volume Rendering

In therun-timephase,wesupportdirectvolumerenderingby paral-
lelizing the bottleneckoperationsin theout-of-coreZSweepalgo-
rithm [17]. We first give anoverview for the in-coreZSweeptech-
nique[16], which is thebasicbuilding block. ZSweepis basedon
sweepingthedatasetwith a planeparallelto theviewing plane,in
theorderof increasing	 (i.e.,front-to-back).As theverticesareen-
counteredby thesweepplane,thefacesof cellsthatareincidentto
theencounteredverticesareprojected. During faceprojection,one
simply computestheintersectionbetweenthefaceandtheray em-
anatingfrom eachpixel, andstoresits 	 -valueandotherauxiliary
information,in sortedorder, into a list of ray-faceintersectionsfor
thegiven pixel. In orderto avoid the lists gettingarbitrarily large,
a schemecalledtarget-z is employed to enableearly compositing.
Figure3 demonstratestheseideas.

We now briefly review the out-of-coreZSweepalgorithm[17],
which usesmeta-cellsand the bounding boxes of the meta-cells.
First, the imageplaneis divided into rectangular tiles. The meta-
cells, after viewing transformation,areassignedto the bucketsof
the tiles onto which the meta-cellsproject (calculatedusing the
bounding box of eachmeta-cell). For eachtile, its final imageis
renderedindependently from other tiles. The meta-cellsassigned
to thesametile aresortedin front-to-backorder(usingthebound-
ing boxes). They arethenreadfrom disk to mainmemory, oneby
oneasthey areencounteredby thesweepplaneof thetile in front-
to-backorder, andrenderedandcompositedusingthe ZSweepal-
gorithm[16].

We observe that in theabove out-of-coreZSweepapproach,the
computationsinvolving boundingboxesarerelatively fast,sincethe
recordof eachboundingbox is very smallandtheonly I/O opera-
tionsneededon thebounding-boxfile is linearly scanningthrough
the file once. The actual computational bottleneckcomesfrom
two sources:readingthe meta-cellsfrom disk in a desiredfront-
to-backorder(I/O operations),andperformingin-coreZSweepon
themeta-cellsread(CPUoperations). Wereducethebottleneckby
parallelizingtheseoperations.

A completedescriptionof our parallelout-of-corevolumeren-
deringalgorithmis givenbelow.

1. Thehostperformsthefollowing operations.

(a) Partition the final imageinto a numberof rectangular
tiles,andcreatea bucket for eachtile.

(b) Createaprocessqueue! , in which eachprocesscorre-
spondsto a tile.

2. The hostactsasa processdispatcher to handlejob requests
from all otherprocessor nodes.Whena processor nodefin-
ishesits currentjob (or is idle initially), it sendsa job request
to the host; the host,upon receiving a job request,removes

thenext availabletile " from ! andgives " to theprocessor
nodemakingthejob request.Thisprocedureis repeateduntil
all tilesareremovedfrom ! .

As partof a start-upinitialization,eachprocessornode scans
thebounding-boxfile, projectseachbounding box to the im-
agespace,andputstheprojectedbounding box to thebucket
of a tile if the projectedbounding box intersectsthis tile. If
theprojectedboundingbox intersectsseveraltiles,put it to all
thecorresponding buckets. Doing this onceavoidshaving to
recomputesuchinformationevery time a new renderingjob
is received. An alternative design(which alsoworks fine in
mostcases)would be to have thehostdo this one-timecom-
putation.

Eachprocessornode,aftergettinga tile " from thehost,per-
formsthefollowing operations.

(a) Sort theprojectedbounding boxesstoredin thebucket
of " into front-to-back order. Let the correspond-
ing meta-cellsin thesortedorderbe �$#%�&�('��%)*)*)*�+�-, .
Theseareall the meta-cellsthat may potentiallyhave
contributions to the tile " in the final image,in front-
to-backorder.

(b) Processmeta-cells�.#%�&�$'��%)/)*)*�&�-, oneby onein this
order as their boundingboxes are encounteredby the
sweepplaneof the tile " . Usually thereis only oneor
two suchworking meta-cellsat a time, but sometimes
therearea few moreworking meta-cells.For eachsuch
working meta-cell�-0 , performthefollowing steps.

i. Read� 0 (usingits meta-cellID thatis storedwith
its boundingbox) from themeta-cellfile in disk to
thelocalmainmemory.

ii. Transformthe verticesof �10 into imagespace,
andsort themin the 	 -direction.Mergethesever-
ticeswith thesortedverticesof theoriginal work-
ing meta-cellsalreadyin mainmemory. Continue
to runZSweep(or startto runZSweepif �10 is the
first working meta-cellfor ") on the sortedver-
tices and the cells of the currentworking meta-
cells, now including �-0 . As describedin Sec-
tion 3.1, all cells in �(0 , marked or not, partici-
patethe process,so that eachcell makes its cor-
rect contribution to the final image. When �20 is
completelyprocessed,deallocatethe main mem-
ory spacefor �-0 to makeroomfor anext working
meta-cell.

(c) When meta-cells �.#%�&�$'3�*)*)/)*�&�-, are all processed,
the renderingof the tile " is complete. Sendthe im-
ageof " aswell asa job requestto thehost.

3. When ! is emptyand all processornodes finish their jobs,
the hostcombinesthe completedimagesof all tiles together
to make up thefinal image.

The above algorithmeffectively parallelizesthe original bottle-
neckoperations. The self-schedulingschemeis similar to the one
in ourparallelout-of-coreisosurfaceextractionalgorithmdescribed
in Section3.2,andagainis very simpleto implement.Observe that
different tiles may have very different numberof meta-cellspro-
jectedto them,andhence the time to renderthemmay differ sig-
nificantly. With our scheme,theprocessornodesarekeptbusyand
thusaneffective loadbalancing amongthenodesis achieved.Also,
eachtile is completelyrenderedby a singleprocessornodeusing
thefront-to-backordering,andthusoptimizationssuchasearlyray
terminationcouldpotentiallybeusedto speedup thecomputation.

1 2 4 84 165
number of worker nodes6

10

20

30

40

50
el

ap
se

d
ti

m
e

(s
ec

)

weighted average: delta7
 average time: delta
 weighted average: blunt
average time: blunt8

Figure1: Summaryof performanceof parallelisosurfacecomputa-
tion. Eachdatapoint is an averageof several isosurfaces.For the
Delta datasetwe computed ten differentisosurfaces;for the Blunt
dataset,we computedfive differentisosurfaces.

Similar to the original out-of-coreZSweepmethod,our algo-
rithm essentiallyusesa small,fixedamountof local mainmemory
spacefor eachprocessornode.This includesthespacefor holding
a few working meta-cellsbeingprocessed,thespacefor small lists
of ray-faceintersectionsfor eachpixel in a tile, andthe spacefor
theimagefootprint for a tile.

4 Experimental Results and Anal ysis

We implementedthe techniques presentedin this paperusing a
combinationof C/C++, Vtk for the isosurfacecomputation, and
MPI for the communication betweenprocessors. The task dis-
patchingcodewasimplementedusinga portion of the PVR code
describedin [46].

Our experimentswereperformedon a small PC cluster, com-
posedof 16 client machinesandoneserver machine. All the ma-
chinesareequippedwith anAMD Athlon runningat900MHz and
512 MB of main memory(the server has784 MB of main mem-
ory). The clientshave IDE harddisks,while the server hasa 400
GB diskarraycomposedof eightSCSIdisks,but configuredastwo
200GB stripeddisks.Ourcommunicationlayeris aswitchedgiga-
bit ethernet.All themachinesarerunningvanilla RedHat7.0. We
usedVtk 3.2andMPI/Pro1.6.3(runningon top of TCP/IP)for our
experiments.

The server machinewasusedfor two purposes: (1) it was the
hostnodewhich servedup work andcollectedinformationfor the
client machines,and(2) it wasalsoan NFS server, which served
largefiles to theclient machines. Our setupis very simpleto repli-
cate,andis fairly inexpensivesinceourclusteris put togethercom-
pletelyout of commodity partsandcommodity software(asfar as
possible— clearly, we wrotethequerypartof theisosurfacecom-
putationandthevolumerenderingalgorithm).

Table1 shows thedatasetswe usedin our experiments.For the
purposeof comparison,we alsoexperimentedwith two modelsof
dataaccess:(1) centralized-datamodel,in which we only haveone
copy of themeta-cellfile residingin theserver disk, and(2) local-
datamodel,in which thereis onecopy of the meta-cellfile in the
local disk of eachprocessor node, so that eachnodecanreadthe
desireddatafrom its local disk.

19 2
:

4
;

8< 16=
number of worker nodes>

100

200

300

400

500

el
ap

se
d

ti
m

e
(s

ec
)

spx (remote)?
spx (local)?
spx1 (remote)?
spx1 (local)?
spx2 (remote)?
spx2 (local)?
spx3 (remote)?
spx3 (local)?

Figure2: Summaryof performanceof thevolumerenderingcom-
putation.Eachdatapoint is anaverageof six views,eachof which
correspondsto anadditional @ A rotationof theobjectfrom theprevi-
ousview. Theimageswerecomputedwith a512-by-512 resolution
using 256 tiles for task subdivision. A curve labeled“(remote)”
meansthe centralized-datamodel is used,while a curve labeled
“(local)” meansthelocal-datamodelis used.

Isosurface Computat ion

We have computed isosurfaces for both the Blunt and Delta
datasets.A sampleimageof ourisosurfacesextractedfrom theSPX
datasetis given in Figure4. We computedfive isosurfaces for the
Blunt dataset,andten isosurfacesfor theDeltadataset.We spread
the isovaluesin a wide rangethat hasan isosurfacein eachcase.
Figure1 summarizesour findings.Our I/O-efficientquerying tech-
niquecoupledwith theself-schedulingschemeworked togetherto
generateanexcellentperformance.

We report resultsin two differentways. Oneway is to simply
averagethetime of eachisosurfacecomputation.This doesnot ac-
countfor thefactthatdifferentisosurfaceshave differentcomplex-
itiesandthustake differentrunningtimes.Measuringperformance
this way givesusanoverall speedupof 15.77for theBlunt dataset
and 15.86 for the Delta dataset.Another way to measurewould
beto weightthemeasurementsby takingthenumberof activecells
into account. Wedefinetheweightedtimeastheusualrunningtime
multiplied by thenumber of active cells in eachstep,andthendi-
vided by the total numberof active cells. For this, we measureda
perfectspeedup of 16 for the Blunt dataset,andan almostperfect
15.8for theDeltadataset.

Wewould like to pointout thateachprocessor nodefetchesonly
thedatait needs,andonly once.In fact,theamountof datamove-
mentis quitelow. This is themainreasonwedid not careto exper-
iment with copying the datato the local disk of eachnode,aswe
would not expectany changein performance.

Volume Rendering

Wecomputedvolumerenderingsfor all thedatasets.A summaryof
theperformanceis givenin Figure2 andTable2; Figure5 shows a
sampleimageof our results.In general,volumerenderingrequires
a considerableamountof datamovement. In fact, for eachimage,
thewhole datasethasto be moved to the processornodes. This is
in sharpcontrastto isosurfacecomputations, whereonly a small
portionof thedatasethasto move.

Dataset Information
of vertices # of cells meta-celldata BBIO tree bounding-boxfile

Dataset
Blunt Fin 41K 187K 27 MB 31.8KB 40 KB
DeltaWing 212K 1005K 212MB 224KB 254KB
SPX 2.9K 13K 1 MB 4.1KB 1 KB
SPX1 20K 103K 12 MB 17.7KB 23 KB
SPX2 150K 830K 65 MB 18.1KB 27 KB
SPX3 1150K 6620K 453MB 44 KB 56 KB

Table 1: Main datasetsusedfor benchmarking. The first two are tetrahedralizedversionsof the well-known NASA datasets.SPX is
an unstructuredgrid composedof tetrahedra.For the last threeversionsof SPX, eachversionis obtainedfrom the previous versionby
subdividing eachtetrahedroninto 8, that is, SPX3is 512 timesaslarge asSPX.We list the number of vertices(in thousands), numberof
tetrahedra(in thousands), the sizeof the meta-celldatafile (in megabytes),the sizeof the BBIO tree (in kilobytes), and the sizeof the
bounding-boxfile (in kilobytes).

Parallel Out-Of-Core Volume Rendering Times (sec)
Num. Processors. SPX2 SPX3 Blunt Fin DeltaWing

Local Remote Local Remote Local Remote Local Remote
1 98.4 96.5 446.6 438.1 43 44.7 177 177
2 50.0 47.8 230.9 220.3 20 21 88 86
4 25.9 23.5 116.9 109.0 10.5 10.9 44 42
8 11.8 11.7 60.7 53.9 5.5 5.6 30 26
16 9.1 6.1 41.7 28.1 3.5 3.7 28 28

Table2: The timesshown are the averageover the running times for six rotationalviews. SeeFigure2 for details. “Local” meansthe
local-datamodelis used,and“Remote”meansthecentralized-datamodelis used.

Comparingthesingleprocessortimes,weseethatournew paral-
lel codeis about twiceasslow asthesequentialout-of-coreZSweep
algorithm[17].

In any case,ourparallelvolumerenderingresultsarequitegood.
As datain Table2 indicates,our speedupswereexcellent for all
versionsof SPX— for SPX3,with over 6.6million cells,we got a
speedupof 15.6(a parallelefficiency of 98%).Wealsoseethatthe
speedups werevery goodfor Blunt (over 12), andonly about 6 or
so for Delta. We believe the limited imagesizeis the main cause
of the problemfor the Delta dataset.We hadsimilar poor results
for ourshared-memoryversionof ZSweepwhentheresolutionwas
low (see[18]). More interestingly, andsomewhat surprisingly, we
seethatreadingdatafrom localdisksresultedin nobetteror some-
timeseven worseperformance thanreadingdatafrom the remote
disk servedby a singlemachine.This might bedueto thefact that
the local disksarejust IDE disks,while theserver hasfasterSCSI
stripeddisks.In addition,thegigabitethernetseemsto have plenty
of capacityto handleour traffic, andtheamountof datamovement
is not enoughto overloadtheserver.

Evenfor theDeltadataset,wewouldliketo pointout thatourap-
proachis quitecompetitive in thesensethateachnodeonly needs
to have a smallamount of mainmemory, thusallowing for render-
ing very largedatasetefficiently. In addition,sinceeachnodeonly
readsthe small portion of the datasetthat is needed to renderits
currenttile, this is quiteefficient. Usingtheoriginal ZSweepcode
[16], it would take over 20 secondsto simply readthe dataset.In
thattime,our approach would becloseto finishingtherendering.

5 Conc lusions

We have presenteda unified infrastructurethat supports both iso-
surfaceextraction and direct volume renderingfor large unstruc-
tured grids, using out-of-coretechniquesthat are parallelizedfor

distributed-memoryparallel machineswith a local disk and a
limited-sizemain memoryavailable for eachnode. Our experi-
mentsdemonstrateda perfector nearperfectspeedup for both iso-
surfaceextractionanddirectvolumerendering.

Ourself-schedulingschemeisespeciallyadvantageous.It isvery
simpleto implement,andit enablesour algorithmsto achieve load
balancingvery effectively. Althoughour currentexperimentswere
performedonly on a clusterof machinesthatareof thesameplat-
form, we believe that this self-schedulingschemecan achieve a
similar loadbalancingin aheterogeneousenvironment. Thiswould
enableusto fully utilize thecomputingpower of theentiresite.

Ourout-of-coretechniquesarealsoof specialinterest.A central
themeof the techniquesis that eachprocessornodeonly fetches
thesmallportionof thedatasetthat is neededfor thecurrentcom-
putation.Thisnotonly minimizesthedatamovementbetweendisk
andmain memory(I/O communications), but alsominimizesthe
datamovement in the network (network communications). It is
clearthatminimizing thedatadistributioncostis thekey to design-
ing efficient visualizationalgorithms,especiallyfor largedatasets.
In addition,our efficient client-server visualizationmodel implies
anefficient remotevisualization:our meta-celldatarepresentation
seemsto beableto liveoutof thevisualizationmachineswith little
disk spaceoverhead,in additionto the largevisualizationspeedup
it bringsto us.

In conclusion, our work of integrating out-of-coretechniques
with parallelapproachesdecouplesthe sizeof a visualizationtask
from the amountof computational resourcesavailable, and indi-
catesa promisingdirection towards resolving the big challenges
posedby large-scalevisualizationproblems.

Ackno wledgmen ts

We thankPeterWilliams (LLNL) andNASA for thedatasetsused
in our experiments.This work wasmadepossiblewith the gener-

oussupportof SandiaNationalLabsandtheDeptof Energy Mathe-
matics,
 InformationandComputerScienceOffice. Y.-J.Chiangac-
knowledgespartialsupportby NSFCAREERGrantCCR-0093373
andby CATT, aNew York Officeof Science,TechnologyandAca-
demicResearch(NYSTAR) designatedCenterfor AdvancedTech-
nology. R. Fariasacknowledgespartialsupportfrom CNPq-Brazil
undera PhDfellowship.

Reference s
[1] L. Arge and J. S. Vitter. Optimal interval managementin external

memory. In Proc. IEEE Foundationsof Comp.Sci., pages560–569,
1996.

[2] C. Bajaj, V. Pascucci, D.Thompson,andX.Y. Zhang. Parallel accel-
erated isocontouring for out-of-core visualization. In Proceedingsof
IEEEParallel VisualizationandGraphicsSymposium, pages97–104,
1999.

[3] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast isocontouring
for improved interactivity. In 1996VolumeVisualizationSymposium,
pages39–46,October 1996.

[4] S. Bryson,D. Kenwright, andM. Cox. Exploring gigabyte datasets
in real time: algorithms,dataManagement, andtime-critical Design.
ACM SIGGRAPHcoursenote,1997.

[5] P. Bunyk, A. Kaufman,and C. Silva. Simple, fast, and robust ray
casting of irregular grids. In Scientific Visualization,Proceedings of
Dagstuhl ’97, pages30–36,2000.

[6] J. Challinger. Scalableparallel volumeraycasting for nonrectil inear
computational grids. ACM SIGGRAPHSymposium on Parallel Ren-
dering, pages81–88,November1993.

[7] Y.-J. Chiang and C. T. Silva. I/O optimal isosurface extraction. In
Proc.IEEEVisualization, pages293–300,1997.

[8] Y.-J. Chiang and C. T. Silva. Externalmemorytechniquesfor iso-
surface extraction in scientific visualization. External MemoryAlgo-
rithmsandVisualization(DIMACSBookSeries,AmericanMathemat-
ical Society), 50:247–277, 1999.

[9] Y.-J.Chiang, C. T. Silva, andW. J.Schroeder. Interactive out-of-core
isosurface extraction. In Proc. IEEE Visualization, pages167–174,
1998.

[10] P. Cignoni, C. Montani, D. Sarti, and R. Scopigno. On the opti-
mization of projectivevolumerendering. In Visualization in Scientific
Computing ’95, pages58–71.SpringerVerlag, 1995.

[11] P. Cignoni, P. Marino, C.Montani, E.Puppo,andR.Scopigno.Speed-
ing up isosurface extraction usinginterval trees. IEEE Transactions
on Visualization andComputer Graphics, 3(2),April - June1997.

[12] J. Comba,J. T. Klosowski, N. Max, J. S. B. Mitchell, C. T. Silva,
andP. L. Willi ams.Fastpolyhedral cell sortingfor interactive render-
ing of unstructuredgrids.ComputerGraphicsForum, 18(3):369–376,
September1999.

[13] M. Cox andD. Ellsworth. Application-controlled demandpaging for
out-of-core visualization. In Proc. IEEE Visualization, pages235–
244,1997.

[14] J. El-SanaandY.-J. Chiang. Externalmemoryview-dependent sim-
plification. Computer Graphics Forum(EUROGRAPHICS2000Pro-
ceedings), 19(3):139–150,August2000.

[15] P. Ellsiepen. Parallel isosurfacing in largeunstructureddatasets. In Vi-
sualization in Scientific Computing ’95, pages9–23.Springer Verlag,
1995.

[16] R. Farias, J. Mitchell, and C. Silva. ZSweep: An efficient and ex-
act projection algorithm for unstructuredvolumerendering. In Proc.
VolumeVisualization Symposium, pages 91–99.ACM Press,October
2000.

[17] R. Farias andC. Silva. Out-of-core rendering of large unstructured
grids. IEEE Computer Graphics & Applications, 21(4):42–50,July
2001.

[18] R. Farias and C. Silva. Parallelizing the ZSweepalgorithm for
distributed-shared memoryarchitectures.In Proc.International Work-
shopon VolumeGraphics, 2001.

[19] T. A. Funkhouser, S. Teller, C. H. Séquin, and D. Khorramabadi.
Databasemanagement for modelslarger thanmain memory. In In-
teractive Walkthroughof Large Geometric Databases, CourseNotes
32, SIGGRAPH’95, pagesE15–E60,1995. Appeared as “The UC
Berkeley Systemfor Interactive Visualization of Large Architectural
Models”, in Presence:TeleoperatorsandVirtual Environments, Vol.5,
No.1,Winter 1996.

[20] M. P. Garrity. Raytracing irregular volumedata. Computer Graphics
(SanDiego WorkshoponVolumeVisualization), 24(5):35–40,Novem-
ber1990.

[21] C. Giertsen. Volumevisualization of sparseirregular meshes.IEEE
Computer Graphics& Applications, 12(2):40–48,March1992.

[22] C. HansenandP. Hinker. Massively parallel isosurfaceextraction. In
Proc.IEEEVisualization, 1992.

[23] C. HofsetzandK.-L. Ma. Multi -threadedrendering unstructured-grid
volumedataon thesgi origin 2000. In Third Eurographics Workshop
on Parallel GraphicsandVisualization, 2000.

[24] L. HongandA. E. Kaufman. Accelerated ray-casting for curvilinear
volumes.IEEEVisualization ’98, pages247–254, October 1998.

[25] H. H. Hoppe. Smoothview-dependent level-of-detail control andits
applicationto terrain rendering. IEEEVisualization ’98, pages35–42,
October 1998.

[26] T. Itoh and K. Koyamada. Automatic isosurface propagation using
an extremagraphandsortedboundary cell lists. IEEE Transactions
on Visualization and Computer Graphics, 1(4):319–327,December
1995.

[27] P. Lacroute. Real-timevolumerenderingonsharedmemorymultipro-
cessorsusingthe shear-warp factorization. IEEE Parallel Rendering
Symposium, pages15–22,October1995.

[28] P. Lacroute. Analysisof a parallel volumerendering systembasedon
theshear-warpfactorization. IEEETransactionson Visualization and
Computer Graphics, 2(3),September1996.

[29] S.LeuteneggerandK.-L. Ma. Fastretrieval of disk-residentunstruc-
turedvolumedatafor visualization. External MemoryAlgorithmsand
Visualization (DIMACS Book Series, AmericanMathematical Soci-
ety), 50,1999.

[30] P. Lindstrom. Out-of-coresimplification of large polygonal models.
Proceedingsof SIGGRAPH2000, pages259–262, July 2000.

[31] Y. Livnat, H.-W. Shen,andC.R.Johnson.A near optimal isosurface
extraction algorithm usingspanspace. IEEE Transactionson Visual-
izationandComputer Graphics, 2(1):73–84,March1996.

[32] W. E. Lorensenand H. E. Cline. Marching cubes: A high resolu-
tion 3D surfaceconstruction algorithm. In Maureen C. Stone,editor,
Computer Graphics(SIGGRAPH’87 Proceedings), volume21,pages
163–169,July 1987.

[33] K.-L. Ma and T. W. Crockett. A scalable parallel cell-projection
volumerendering algorithm for three-dimensional unstructureddata.
IEEEParallel Rendering Symposium, pages95–104,November1997.

[34] K.-L. Ma and T. W. Crockett. Parallel visualization of large-scale
aerodynamicscalculations: A casestudyon thecray t3e. Symposium
on Parallel Visualization andGraphics, pages15–20,October 1999.

[35] N. Max, P. Hanrahan,andR. Crawfis. Areaandvolumecoherencefor
efficientvisualization of 3dscalar functions.Computer Graphics(San
Diego Workshopon VolumeVisualization), 24(5):27–33,November
1990.

[36] J.Nieh andM. Levoy. Volumerendering on scalableshared-memory
MIMD architectures. In Workshopon VolumeVisualization, pages
17–24.ACM Press,October 1992.

[37] S.Parker, P. Shirley, Y. Livnat, C. Hansen,andP.-P. Sloan.Interactive
ray tracing for isosurface rendering. IEEE Visualization ’98, pages
233–238,October1998.

[38] M. Pharr, C.Kolb,R.Gershbein,andP. Hanrahan.Rendering complex
sceneswith memory-coherentraytracing. Proceedingsof SIGGRAPH
97, pages101–108,August1997.

[39] M. Quinn. Designing Efficient Algorithmsfor Parallel Computers.
McGraw-Hill, 1987.

[40] C. R. RamakrishnanandC. Silva. Optimal processorallocation for
sort-last compositing underBSP-treeordering. In SPIE Electronic
Imaging, Visual Data Exploration andAnalysis IV, 1999.

[41] H.-W. Shen,C. D. Hansen,Y. Livnat, andC. R. Johnson.Isosurfacing
in spanspacewith utmostefficiency (ISSUE). In IEEE Visualization
’96, October 1996.

[42] H.-W. ShenandC.R.Johnson.Sweeping simplices:A fastiso-surface
extraction algorithmfor unstructuredgrids.In IEEEVisualization’95,
pages143–150,October1995.

[43] H.-W. Shen.Isosurface extraction in time-varying fieldsusinga tem-
poralhierarchical index tree. IEEEVisualization’98, pages159–166,
October 1998.

[44] H.-W. Shen,L.-J. Chiang, and K.-L. Ma. A fast volume rendering
algorithm for time-varying fieldsusinga time-spacepartitioning (tsp)
tree. IEEEVisualization ’99, pages371–378,October 1999.

[45] P. Shirley and A. Tuchman. A polygonal approximation to direct
scalar volumerendering. Computer Graphics (SanDiego Workshop
on VolumeVisualization), 24(5):63–70,November1990.

[46] C. Silva. Parallel volumerendering of irregular grids, Ph.D. thesis,
Department of Computer Science, State University of New York at
Stony Brook,1996.

[47] C. Silva, A. Kaufman, andC. Pavlakos. PVR: High performancevol-
umerendering. IEEE Computational ScienceandEngineering (Spe-
cial Issueon Visual Supercomputing), pages18–28,Winter 1996.

[48] C. T. SilvaandJ.S.B. Mitchell. Thelazy sweepraycasting algorithm
for rendering irregular grids. IEEETransactionson Visualizationand
Computer Graphics, 3(2),April - June1997.

[49] P. M. SuttonandC. D. Hansen. Accelerated isosurface extraction in
time-varyingfields. IEEE Transactions on Visualization and Com-
puter Graphics, 6(2):98–107,April - June2000.

[50] S. Teller, C. Fowler, T. Funkhouser, and P. Hanrahan. Partitioning
andordering large radiosity computations. In Andrew Glassner, ed-
itor, Proceedings of SIGGRAPH’94 (Orlando, Florida, July 24–29,
1994), ComputerGraphics Proceedings, Annual ConferenceSeries,
pages443–450.ACM SIGGRAPH,ACM Press,July 1994.

[51] S.K. Ueng,K. Sikorski, andK.-L. Ma. Out-of-corestreamlinevisual-
ization onlargeunstructed meshes.IEEETransationsonVisualization
andComputer Graphics, 3(4):370–380,1997.

[52] S.Uselton. Volumerendering for computational fluid dynamics: Ini-
tial results. TechReportRNR-91-026,NasaAmesResearch Center,
1991.

[53] M. vanKreveld, R. vanOostrum,C. L. Bajaj, V. Pascucci, andD. R.
Schikore. Contour trees andsmall seedsetsfor isosurface traversal.
In Proc.ACM Symp.on Comput. Geom., pages212–220, 1997.

[54] J.S.Vitter. External memoryalgorithmsanddatastructures.External
MemoryAlgorithmsandVisualization (DIMACSBookSeries,Ameri-
canMathematical Society), 50,1999.

[55] R. WestermannandT. Ertl. TheVSbuffer: Visibil ity ordering of un-
structuredvolumeprimitivesby polygon drawing. IEEEVisualization
’97, pages35–42,November1997.

[56] J.Wilhelms andA. VanGelder. Octreesfor fasterisosurfacegenera-
tion. In Computer Graphics (SanDiego Workshopon VolumeVisual-
ization), volume24,pages57–62,November1990.

[57] J. WilhelmsandA. Van Gelder. A coherent projection approach for
direct volume rendering. Computer Graphics (Proceedingsof SIG-
GRAPH91), 25(4):275–284,July 1991.

[58] J.P. Wilhelms,A. VanGelder, P. Tarantino, andJ.Gibbs.Hierarchical
andparallelizabledirect volumerendering for irregular andmultiple
grids. IEEEVisualization ’96, pages57–64, October 1996.

[59] P. Will iams. Parallel volumerendering finite element data. In Pro-
ceedingsof Computer Graphics International, 1993.

[60] P. L. Willi ams.Visibili ty-ordering meshedpolyhedra.ACM Transac-
tionson Graphics, 11(2):103–126,April 1992.

[61] R. Yagel, D. M. Reed,A. Law, P.-W. Shih, and N. Shareef. Hard-
wareassisted volumerendering of unstructuredgrids by incremental
slicing. 1996VolumeVisualizationSymposium, pages55–62,October
1996.

Figure3: Illustrationof theZSweepalgorithm.In thetopfigure,the
sweepingplaneis shown in blue andthe planedeterminedby the
target-zis shown in light gray. Thesweepingdirectionis from right
to left. Facesto beprojectedareshown in yellow, which lie ahead
of thesweepingplane.Themiddleandthebottomfiguresshow the
snapshotsbeforeandafterthesweepingplanehits thetarget-z, and
theimageplaneis shown in blue.Thelengthof theintersectionlists
overeachpixel is representedby theheightof thecolumns,colored
with the following scheme:greenis usedfor lists with fewer than
six intersections,yellow from sevento 12,andredfrom 13 to 18.

Figure4: A few isosurfacesextractedfrom the SPX dataset,each
renderedwith a distinctsemi-transparentcolor. Theupper-left cor-
nershows thebounding surfaceof thedataset.

Figure5: A 512 B 512imageof Blunt Fin.

