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Abstract

For large scientific visualization applications, it is hopeless to hold the entire datasets in main
memory. Previously, we proposed the I/O-filter technique, which is the first I/O-optimal method for
the problem of isosurface extraction in scientific visualization. I/O-filter works by indexing and re-
organizing the datasets in disk, so that isosurface can be extracted with a very small amount of disk
I/0’s. The main advantage of this approach is that datasets much larger than main memory can
be visualized very efficiently, possibly even on low-end machines. The original I/O-filter technique
uses the I/O-optimal interval tree of Arge and Vitter as the indexing data structure, together
with the isosurface engine from Vtk (one of the currently best visualization packages). The main
shortcoming of this approach was the overheads of the disk scratch space and the preprocessing
time necessary to build the data structure, and of the disk space needed to hold the data structure.

In this paper, we improve the first version of I/O-filter by reducing its data structure size, the
disk scratch space and the preprocessing time, while keeping the isosurface query time the same.
We achieve the improvements through a new implementation of I/0O-filter, by replacing the interval
tree with the metablock tree of Kanellakis et al., which is also I/O-optimal for query and space. In
the process, we propose two simple preprocessing algorithms for static metablock tree that are I/O-
optimal. We give the first implementation of metablock tree, and compare the practical performance
between metablock tree and interval tree under the same framework of I/O-filter with real-world
test data. Our experiments provide detailed quantitative evaluation of the implementations of
the two trees, and lead to new insights to their properties. As mentioned, the metablock-tree
implementation results in performance improvements of the I/O-filter method. Moreover, for our
test datasets larger than main memory, the isosurface queries in both implementations of I/O-filter
are about two orders of magnitude faster than those in Vtk’s original implementation, showing that
I/0-filter is an excellent isosurface technique for large scientific visualization applications.
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1 Introduction

The field of computer graphics can be roughly classified into two subfields: surface graphics, in which
objects are defined by surfaces, and volume graphics [21, 22], in which objects are given by datasets
consisting of 3D sample points over their volume. In volume graphics, objects are usually modeled
as fuzzy entities. This representation leads to greater freedom, and also makes it possible to visualize
the interior of an object. Notice that this is harder for traditional surface-graphics objects. Since the
dataset consists of points sampling the entire volume rather than just vertices defining the surfaces,
typical volume datasets are huge. This makes volume visualization an ideal application domain for
I/0O techniques.

Input/Output (I/O) communication between fast internal memory and slower external memory is
the major bottleneck in many large-scale applications. Algorithms specifically designed to reduce the
I/O bottleneck are called ezternal-memory algorithms. The issue of this I/O bottleneck is becoming
more and more important, since problem sizes of applications are getting larger and larger, and
technological advances are increasing CPU speeds at an annual rate of 40-60% while disk transfer
rates are only increasing by 7-10% annually [29]. Due to this increasing importance, considerable
attention has been given to the development of external-memory algorithms and data structures in
recent years. Most of the developed techniques, however, are shown to be efficient only in theory, and
their performance in practice is yet to be evaluated. Also, system issues, usually very important for
the actual performance of the algorithms, are often left untouched. In particular, the question of how
much impact these I/O techniques can make on real-world applications is yet to be answered.

In this paper, we consider an I/O technique for one of the most important problems in volume graph-
ics: isosurface extraction in scientific visualization. Isosurface extraction represents one of the most
effective and powerful techniques for the investigation of volume datasets. It has been used extensively,
particularly in visualization [24, 26], simplification [18], and implicit modeling [30]. Isosurfaces also
play an important role in other areas of science such as biology, medicine, chemistry, computational
fluid dynamics, etc., since they can be used to study and perform detailed measurements of properties
of the datasets. In fact, nearly all visualization packages include an isosurface extraction component.
Its widespread use makes efficient isosurface extraction a very important problem.

The problem of isosurface extraction can be stated as follows. A scalar volume dataset consists of
tuples (x,F(x)), where x is a 3D point and F is a scalar function defined over 3D points. Given
an isovalue (a scalar value) ¢, to extract the isosurface of ¢ is to compute and display isosurface
C(q) = {x|F(x) = q}. Typical isosurfaces (generated by our code) are shown in Fig. 6, where the
Blunt Fin dataset shows an airflow through a flat plate with a blunt fin, and the Combustion Chamber
dataset comes from a combustion simulation.
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Figure 1: A pipeline of the isosurface extraction process.

The computational process of isosurface extraction can be viewed as consisting of two phases (see
Fig. 1). First, in the search phase, one finds all active cells of the dataset that are intersected by the
isosurface. Next, in the generation phase, depending on the type of cells, one can apply an algorithm
to actually generate the isosurface from those active cells (Marching Cubes [24] is one such algorithm
for hexahedral cells). Notice that the search phase is the bottleneck of the entire process, since it
searches the 3D dataset and produces 2D data. In fact, letting N be the total number of cells in the



dataset and K the number of active cells, it is estimated that the average value of K is O(N?/3) [19].
Therefore an exhaustive scanning of all cells in the search phase is inefficient, and a lot of research
efforts have thus focused on developing output-sensitive algorithms to speed up the search phase. In
the following we use M and B to respectively denote the numbers of cells fitting in the main memory
and in a disk block. Each I/O operation reads or writes one disk block.

Previous Related Work

We first briefly review the work on I/O techniques. In addition to early work on sorting and sci-
entific computing [2, 27, 42], recently various researchers have been investigating external-memory
algorithms for graphs [1, 12] and for computational geometry [1, 3, 5, 6, 7, 10, 17, 20, 28, 37, 41]. As
mentioned before, most of the results are theoretical, and yet the experiments of Chiang [11], Vengroff
and Vitter [40], and Arge et al. [5] on some of these techniques show that they result in significant
improvements over traditional algorithms in practice.

As for isosurface extraction, there is a very rich literature. Here we only briefly review the results
that focus on speeding up the search phase. We refer to [23] for an excellent and thorough review.
In Marching Cubes [24], all cells in the volume dataset are searched for isosurface intersection, and
thus O(N) time is needed. This technique does not require the entire dataset to fit into the main
memory, but [N/B] disk reads are necessary. Techniques avoiding exhaustive scanning include using
an octree [43], identifying a collection of seed cells and performing contour propagation from the seed
cells [8, 19, 39], NOISE [23], and other nearly optimal isosurface extraction methods [34, 35]. The
first optimal isosurface extraction algorithm was given by Cignoni et al. [14], based on the following
two ideas. First, by producing for each cell an interval, the active-cell searching process is reduced to
the following problem of stabbing queries: given a set of intervals and a query point ¢ in 1D, report
all intervals (and the associated cells) containing g. Secondly, the stabbing queries are solved by the
use of an internal-memory interval tree [16]. After an O(N log N)-time preprocessing, active cells for
a query ¢ can be found in optimal O(log N + K) time. This achieves tight theoretical bounds in terms
of internal computation.

All the isosurface techniques mentioned above are main-memory algorithms. Except for the ex-
haustive scanning method of Marching Cubes, all of them require the time and main memory space
to read and keep the entire dataset in the main memory, plus additional preprocessing time and main
memory space to build the search structure. Unfortunately, for (usually) very large volume datasets,
these methods often suffer the problem of not having enough main memory, which can cause a major
slow-down of the algorithms due to a large number of page faults.

In [13] we give I/O-filter, the first I/O-optimal technique for isosurface extraction. We follow the
ideas of Cignoni et al. [14], but use I/O-optimal interval tree [7] to solve the stabbing queries. We
give the first implementation of the I/O interval tree, and also implement our method as an I/0 filter
for the isosurface extraction routine of Vtk [31, 32] (which is one of the currently best visualization
packages) for the case of irregular grids. With this I/O-filter technique, only the K active cells are
brought into the main memory (via I/O-optimal stabbing queries in disk, using O(logg N + K/B)
I/0’s); this much smaller set of K cells is then treated as an input to Vtk. Thus we filter out a large
number of unnecessary cells from the original input, without touching the entire dataset in disk. Our
experiments show that datasets much larger than main memory can be visualized very efficiently, and
in fact the search phase is no longer a bottleneck. Another out-of-core isosurface technique, based on
contour propagation from seed cells, is recently given in [9].

Very recently Agarwal et al. [1] developed I/O techniques to solve a similar contour-line (i.e., isoline)
extraction problem in GIS (which was originally solved in [38] by reducing the problem to stabbing



queries and then solving stabbing queries with internal-memory interval tree [16]). In addition to
just reporting “active regions”, their techniques can also report the contour-line segments in sorted
order within the same optimal I/O bound, assuming there are too many active regions to fit into
the main memory. Notice that under this assumption, our I/O-filter method needs additional O(K)
I/O’s if no further I/O technique is used, which is far from optimal. However, for our particular
problem of isosurface extraction, we just assume that all active cells can fit into the main memory
and do not explore any I/O techniques beyond the search phase (see Fig. 1). The reason for this is
twofold: (1) since there are only K = O(N?/?) active cells, in practice K is fairly small compared to
N (the largest isosurface in our experiments has only 55205 active cells, occupying 4.2Mb); (2) for
visualization purposes, we need to render the isosurface in real time. For this to be possible, we need
to use a machine with enough main memory to hold the isosurface. Therefore in practice the active
cells have to all fit into the main memory.

Our Results

Our main goal in this paper is to address the deficiencies of the first version of I/O-filter, namely the
large disk scratch space and the preprocessing time to build the data structure, and the disk space to
hold the data structure [13]. We improve the first version of I/O-filter by reducing all these overheads,
while keeping the isosurface query time the same.

We achieve the performance improvements through a new implementation of I/O-filter, by replacing
the I/O interval tree with the metablock tree of Kanellakis et al. [20], which is an external-memory
version of priority search tree [25] and is also I/O-optimal for query (O(logg N + %) I/0’s) and space
(O(N/B) disk blocks). In [20] the main focus is on the dynamic version (it is insertion-only) and no
preprocessing algorithm for static version is given. We propose two simple preprocessing algorithms
achieving optimal O(%log M %) I/O’s. We give the first implementation of metablock tree, and
compare the practical performance between the implementations of the two trees under the same
framework of I/O-filter for isosurface extraction. We also compare the performance with that of Vtk’s
original implementation. We summarize our extensive experimental results in 24 charts and three
tables, which provide detailed quantitative evaluation of the methods and also lead to new insights to
their properties. For example, we find that for queries the implementation of interval tree in general
needs less block reads, but the implementation of metablock tree inherently has a better locality for
disk accesses and thus needs less disk-head movements; their query performance is therefore about
the same. Also, metablock tree reduces the tree construction time by a factor of about 1/2, and the
average data structure size in disk reduces from 7.7 times the original dataset size to 7.2 times. In
addition, the disk scratch space needed for preprocessing reduces from 16 times the original dataset
size to 10 times. All these features improve the practical performance of I/0O-filter, and the observed
behavior is consistent with our analysis on the properties of the trees. The experiments also show
that both implementations of I/O-filter are about two orders of magnitude faster than Vtk’s original
implementation when performing isosurface queries on our test datasets larger than main memory.
This demonstrates that I/O-filter is an excellent isosurface technique for large scientific visualization
applications.

We remark that we do not implement the more complicated corner structure in either interval tree
or metablock tree. The corner structure is needed to achieve the theoretically I/O-optimal queries and
the optimal disk space in the interval tree [7], so implementing the corner structure could potentially
improve the query and space performance of the interval tree, at the expense of potentially increasing
the preprocessing time. The corner structure is not implemented in [13] for simplicity of coding and
a potentially faster preprocessing. The corner structure is also needed to achieve the theoretically
I/O-optimal queries in the metablock tree, at the expense of increasing both the disk space and the



preprocessing time [20]. Since currently the I/O query time for each tree is already less than the
CPU time for generating the isosurface, this I/O query time can be hidden by overlapping it with the
CPU time, and thus there is no need to speed up the I/O queries any further. Also, since our main
interest is to reduce the preprocessing time and the disk space of I/O-filter via the implementation of
metablock tree, we deliberately choose not to implement the corner structure because its implementa-
tion will increase these overheads in metablock tree. However, from the view point of data-structure
experimentation, it is an interesting open question to investigate the effects of the corner structure to
the practical performance measures of the two trees.

We summarize the contribution of this work as follows:

e We give the first implementation of metablock tree. The implementation is robust and handles
all degenerate cases. In the process, we also propose two simple preprocessing algorithms for
static metablock tree that are I/O-optimal.

e We perform experimental studies on the practical performance between the implementations
of metablock tree and I/O interval tree, under the same framework of I/0O-filter for isosurface
extraction. Both trees are implemented on top of a collection of our general-purpose I/O func-
tions (which support basic I/O operations and main memory buffer management), so that we
can make fair comparisons between them. In addition, the test data are drawn from real-world
applications.

e The metablock-tree implementation results in performance improvement of I/O-filter for the
isosurface extraction problem. While keeping the isosurface query time the same (which outper-
forms Vtk by orders of magnitude), the preprocessing time is greatly improved, and the data
structure size and the disk scratch space needed for preprocessing are both reduced.

2 Metablock Tree

2.1 Data Structure

We first briefly review the metablock tree data structure [20], which is an external-memory version of
priority search tree [25]. We use Bf to denote the branching factor of the tree, and recall that B is
the number of cells (intervals) that can fit in one disk block. The stabbing query problem is solved
in the dual space, where each interval [left,right] is mapped to a dual point (z,y) with z = left and
y = right. Then the query “find intervals [z,y] with z < ¢ < y” amounts to the following two-sided
orthogonal range query in the dual space: report all dual points (z,y) lying in the intersection of the
half planes z < g and y > ¢g. Observe that all intervals [left, right] have left < right, and thus all
dual points lie in the half plane x < y. Also, the “corner” induced by the two sides of the query is the
dual point (g, g), so all query corners lie on the line z = y.

Metablock tree stores dual points in the same spirit as priority search tree, but increases the branch-
ing factor Bf from 2 to ©(B), and also stores Bf- B points in each tree node. The main structure of
metablock tree is defined recursively as follows (see Fig. 2(a)): if there are no more than Bf- B points,
then all of them are assigned to the current node, which is a leaf; otherwise, the topmost Bf- B points
are assigned to the current node, and the remaining points are distributed by their z-coordinates into
Bf vertical slabs, each containing the same number of points. Now the Bf subtrees of the current node
are just the metablock trees defined on the Bf vertical slabs. The Bf— 1 slab boundaries are stored in
the current node as keys for deciding which child to go during search. Notice that each internal node
has no more than Bf children, and there are Bf blocks of points assigned to it. For each node, the



points assigned to it are stored twice, respectively in two lists in disk of the same size: the horizontal
list, where the points are horizontally blocked and stored sorted by decreasing y-coordinates, and the
vertical list, where the points are vertically blocked and stored sorted by increasing z-coordinates. We
use unique dataset cell ID’s to break a tie. Each node has two pointers to its horizontal and vertical
lists. Also, the “bottom” (i.e., the y-value of the bottommost point) of the horizontal list is stored in
the node.

@ r . (b)
'.'. AR y TS(U) !

Figure 2: A schematic example of metablock tree: (a) the main structure; (b) the T'S list. In (a),
Bf=3 and B = 2, so each node has up to 6 points assigned to it. We relax the requirement that each
vertical slab have the same number of points.

The second piece of organization is the TS list maintained in disk for each node U (see Fig. 2(b)):
the list 77S(U) has at most Bf blocks, storing the topmost Bf blocks of points from all left siblings of
U (if there are less than Bf- B points then all of them are stored in 7'S(U)). The points in T'S list
are horizontally blocked, stored sorted by decreasing y-coordinates. Again each node has a pointer to
its T'S list, and also stores the “bottom” of the 7T'S list.

The final piece of organization is the corner structure. A corner structure can store ¢t < Bf- B points
in optimal O(t¢/B) disk blocks, so that a two-sided orthogonal range query can be answered in optimal
O(k/B +1) I/0O’s, where k is the number of points reported. Assuming all ¢ points can fit in the main
memory, a corner structure can be built in optimal O(¢/B) I/O’s. We refer to [20] for more details. In
a metablock tree, for each node U where a query corner can possibly lie, a corner structure is built for
the (< Bf- B) points assigned to U. Since any query corner must lie on line z = y, those nodes U are
(1) all leaves, and (2) all nodes in the rightmost root-to-leaf path, including the root (see Fig. 2(a)).
It is easy to see that the entire metablock tree has height O(logz N) (recall that Bf = ©(B)) and
uses optimal O(N/B) blocks of disk space [20]. Also, it can be seen that the corner structures are
additional structures to metablock tree; we can save some storage space by not implementing the
corner structures (at the cost of increasing the worst-case query bound; see Section 2.2).

As we shall see in Section 2.3, we will slightly modify the definition of metablock tree to ease the
task of preprocessing, while keeping the bounds of tree height and tree storage space the same.

2.2 Query Algorithm

Now we review the query algorithm given in [20]. Given query value g, we perform the following
recursive procedure starting with meta-query (g, the root of the metablock tree). Recall that we want
to report all dual points lying in £ < ¢ and y > q. We maintain the invariant that the current node
U being visited always has its x-range containing the vertical line z = gq.



Procedure meta-query (query g, node U)

1. If U contains the corner of ¢, i.e., the bottom of the horizontal list of U is lower than the
horizontal line y = ¢, then use the corner structure of U to answer the query and stop.

2. Otherwise (y(bottom(U) > q), all points of U are above or on the horizontal line y = ¢q. Report
all points of U that are on or to the left of vertical line = ¢, using the vertical list of U.

3. Find the child U, (of U) whose z-range contains the vertical line z = ¢. Node U, will be the
next node to be recursively visited by meta-query.

4. Before recursively visiting U, take care of the left-sibling subtrees of U, first (points in all these
subtrees are on or to the left of vertical line = ¢, and thus it suffices to just check their heights):
(a) If the bottom of T'S(U,) is lower than horizontal line y = ¢, then report the points in T'S(U,)
that lie inside the query range. Go to step 5.

(b) Else, for each left sibling W of U,, repeatedly call procedure H-report (query g, node W).
(H-report is another recursive procedure given below.)

5. Recursively call meta-query (query ¢, node U,).

H-report is another recursive procedure for which we maintain the invariant that the current node
W being visited have all its points lying on or to the left of vertical line z = ¢, and thus we only need
to consider the condition y > q.

Procedure H-report (query g, node W)

1. Use the horizontal list of W to report all points of W lying on or above horizontal line y = q.

2. If the bottom of W is lower than line y = ¢ then stop.
Otherwise, for each child V' of W, repeatedly call H-report (query g, node V') recursively.

It can be shown that the queries are performed in optimal O(logg N + £) I/0’s [20]. We remark
that only one node in the search path would possibly use its corner structure to report its points
lying in the query range since there is at most one node containing the query corner (gq,q). If we
do not implement the corner structure, then step 1 of Procedure meta-query can still be performed
by checking the wvertical list of U up to the point where the current point lies to the right of vertical
line x = ¢ and reporting all points thus checked with y > ¢. This might perform extra Bf I/O’s to
examine the entire vertical list without reporting any point, and hence is not optimal. However, if
K > a - (Bf- B) for some constant o < 1 then this is still worst-case I/O-optimal since we need to
perform Q(Bf) I/O’s to just report the answer.

2.3 Preprocessing Algorithms

Now we present our two simple preprocessing algorithms achieving optimal O(% log m %) I/O’s. The
B

first one is based on a paradigm we call scan and distribute inspired by the distribution sweep 1/0
technique [11, 17]. The second one applies the buffer technique, making use of a buffer tree [3]. Both
methods relies on a slight modification of the definition of metablock tree.

In the original definition of metablock tree, the vertical slabs for the subtrees of the current node
are defined by dividing the remaining points not assigned to the current node into Bf groups. This
makes the distribution of the points into the slabs more difficult, since in order to assign the topmost



Bf blocks to the current node we have to sort the points by y-values, and yet the slab boundaries
(z-values) from the remaining points cannot be directly decided. There is a simple way around it: we
first sort all N points by increasing z-values into a fixed set X. Now set X is used to decide the slab
boundaries: the root corresponds to the entire z-range of X, and each child of the root corresponds
to an z-range spanned by consecutive | X |/Bf points in X, and so on. In this way, the slab boundaries
of the entire metablock tree is pre-fized, and the tree height is still O(logg N).

Our first method is based on scan and distribute. In the first phase, we sort all points into set X as
above and also sort all points by decreasing y-values into set Y. Now the second phase is a recursive
procedure. We assign the first Bf blocks in set Y to the root (and build its horizontal and vertical
lists), and scan the remaining points to distribute them to the vertical slabs of the root. For each
vertical slab we maintain a temporary list, which keeps one block in the main memory as a buffer
and the remaining blocks in disk. Each time a point is distribute to a slab, we put that point to the
corresponding buffer; when the buffer is full, it is written to the corresponding list in disk. When
all points are scanned and distributed, each temporary list has all its points, automatically sorted
by decreasing y. Now we build the T'S lists for children nodes Uy, Ui, --- numbered left to right.
Starting from Uy, T'S(U;) is computed by merging two sorted lists in decreasing y and taking the
first Bf blocks, where the two lists are T'S(U;—1) and the temporary list for slab 7 — 1, both sorted in
decreasing y. Note that for the initial condition T'S(Up) = 0. (It suffices to consider T'S(U;_1) to take
care of all points in slabs 0,1, ---,7 — 2 that can possibly enter T'S(U;), since each T'S list contains up
to Bf blocks of points.) After this, we apply the procedure recursively to each slab. When the current
slab contains no more than Bf blocks of points, the current node is a leaf and we stop. The corner
structures are built for appropriate nodes as the recursive procedure goes. It is easy to see that at each
level of the tree, the total number of I/O’s for that level is O(N/B), and thus the entire process uses
O(% logg N) I/O’s. Using the same technique that turns the nearly-optimal O(% logp N) bound to
optimal in building the static I/O interval tree [4], we can turn this nearly-optimal bound to optimal
O(% 10g % %)

The second method is inspired by the buffer technique used for building static I/O interval tree [4].
We first perform two sortings to obtain sets X and Y as before, and then build a buffer tree whose
primary structure is a complete Bf-ary tree defined on set X. Notice that this primary structure is
basically the same as the main structure of metablock tree. We then use the buffer tree to assign the
points belonging to each node: we sequentially “feed” the points from set Y, and perform the usual
buffer-tree insertion operation without rebalancing the tree. The main difference is that each node U
of the buffer tree now has a “capacity” of Bf blocks, i.e., the first Bf blocks of points inserted to U are
assigned to U and are stored into the horizontal and wvertical lists of U; after the first Bf blocks, the
subsequent points inserted to U are then put into the buffer of U as in the usual buffer tree. After all
points of set Y are inserted, we empty all buffers to push down all points to their appropriate nodes.
Now we remove all subtrees that contain no point (replacing such subtree rooted at node U with an
empty leaf if the parent of U is not already a leaf), and also free all buffers. This buffer tree has now
been turned into a metablock tree; we now traverse the tree once again to build the T'S lists and also
the corner structures. Notice that while corner structures can be built along with the insertions, the
TS list of node U cannot be built until all left siblings of U know the points belonging to them; this
is why we have to perform additional traversal of the tree after the insertions are complete. Since
each insertion has amortized O(5h) I/O cost where h is the tree height [3], the entire process takes
O(% logg N) I/O’s. Again using the same technique [4], we can turn this nearly-optimal bound to
optimal O(% log% 5.



3 Implementation

Our code metaBuild is used to first normalize the input dataset and then build a metablock tree, and
code metaQuery is used to perform isosurface queries by searching the metablock tree. Notice that
the input is a Toff file!, which has to be normalized to de-reference the pointers so that inefficient
pointer references in disk can be avoided [13]. After normalization, we obtain direct cell information
for each cell: the z-, y-, z-values and the scalar values of each of the four vertices of the cell. Similarly,
as in [13], ioBuild normalizes the input dataset and builds an I/O interval tree, and ioQuery uses
the interval tree for isosurface queries. Both metaQuery and ioQuery are linked with Vtk’s isosurface
code.

In metaBuild, we use the basic scan and distribute algorithm (i.e., without turning the nearly-
optimal bound to optimal) in Section 2.3 to build the metablock tree, for the following reasons. (1)
The nearly-optimal bound is almost the same as the optimal one in practice; in particular, the log terms
correspond to the tree height, and in all our experiments the height of metablock tree (i.e., the larger
log term) is at most 3. (2) As for choosing between the scan and distribute algorithm and the buffer
technique, we observe that (a) the two-phase buffer-emptying operation [3] is more complicated than
the operations in scan and distribute, and (b) the buffer technique needs an extra pass of traversing
the tree to build the T'S lists, and an extra work of removing the empty subtrees. Therefore we choose
the basic scan and distribute algorithm. For similar reasons, ioBuild uses an algorithm based on scan
and distribute that builds the I/O interval tree in the same I/O bound O(% logg N) [13]. Also, for
reasons described in Section 1, we decide not to implement the corner structure.

Each node of metablock/interval tree is one disk block, whose size decides the value of branching
factor Bf and also the value of B (number of cells fitting in one disk block). In our case each disk
block is of size 4,096 bytes, thus Bf = 505 for metablock tree and B = 53. For comparison, in the I/O
interval tree Bfis 29 [13]. We remark that in our implementation, only four blocks of main memory are
needed in searching active cells with the metablock tree (and only two blocks are needed for searching
with the interval tree).

3.1 Implementing Metablock Tree
Data Structure

We describe the organization of the data structure. We use files dataset .metaTree, dataset.horizontal,
dataset.vertical, and dataset.TS to hold the metablock tree nodes, all horizontal lists, all vertical
lists, and all T'S lists, respectively. Every time we create a new tree node, we allocate the next available
block from file dataset .metaTree and store the node there. (The root of the tree always starts from
position 0 of the file.) Similarly, every time we create a new horizontal (resp. vertical/T'S) list, we allo-
cate the next available consecutive blocks just enough to hold the list, from file dataset.horizontal
(resp. dataset.vertical/dataset.TS) and store the list there. We always allocate disk space of
size an integral number of blocks. Each block in file dataset.horizontal, dataset.vertical and
dataset.TS stores up to B dual points (intervals). Each dual point contains a cell ID, four vertices
of the cell (z-, y-, z- values and the scalar value of each vertex), and the z- and y-values of the dual
point (i.e., the left and right endpoints of the interval associated with the cell, which are the min and
max values of the four scalar values).

Now we give the layout of the metablock tree node. Each node contains the following: (1) a flag

LA Toff file is analogous to the Geomview “off” file. It has the number of vertices and tetrahedra, followed by a list
of the vertices and a list of the tetrahedra, each of which is specified using the vertex locations in the file as an index.
See [36].



indicating whether the node is a leaf or an internal node, (2) the number (< Bf- B) of dual points
assigned to the node (which is the number of dual points stored in each of the horizontal and vertical
lists of the node), (3) information about its horizontal list, (4) information about its vertical list, (5)
information about its 7'S list, (6) the number (< Bf— 1) of keys (slab boundaries) stored in the node,
(7) the actual slab boundaries stored, (8) Bf pointers to the starting positions of the children nodes in
file dataset .metaTree. Notice that items (6)—(8) are maintained only if the node is an internal node.
A child pointer (item (8)) is usually a positive integer P, but we sometimes make it negative, —P,
indicating that the child starts at position P and that the child has 0 points assigned to it. During
queries, this child will be needed only for its T'S list to take care of its left siblings; the recursive call
of Procedure meta-query on this child (step 5) can be avoided.

The information about a horizontal list include the following: (a) a pointer to the starting position
of the list in file dataset.horizontal, (b) y-value of the topmost (first) point in the list, (¢) y-value
of the bottom (last) point in the list. Item (b) is used to speed up the query: if the topmost point is
already below horizontal line y = ¢, then no point in the list will be inside the query range and we can
avoid any block read of the list. The information about the vertical list are similar. The information
about the T'S list are also similar, with an additional item, i.e., the number of points stored in that
TS list.

Preprocessing

There is an interesting issue associated with the implementation of the scan and distribute preprocess-
ing algorithm. Recall from Section 2.3 that for each vertical slab of the current node U we maintain
a temporary list to keep all points that are distributed to this slab. Notice that no temporary list
is completed until one pass of the scan and distribute process is done. If we use one file for each
temporary list, then in the process of scan and distribute all these Bf = 505 files have to be open at
the same time. Unfortunately, there is a hard limit imposed by the operating system on the number
of files a process can open simultaneously (given by the system parameter OPEN_MAX; older version of
Unix allowed up to 20 open files and this was increased to 64 by many systems).

We solve this problem by using a scratch file dataset.Y temp as a collection of all temporary lists.
Let dataset.Y be the file for set Y. Observe that by the way we define the slabs, each slab contains
at most [n/Bf] blocks of points, where n is the number of blocks in set Y (set X). Therefore the size
of file dataset.Y_temp is the same as the size of the file for set Y (X). We let the i-th temporary list
start from block i - [n/Bf] of file dataset.Y temp, for i = 0,---, Bf — 1. After the construction of all
temporary lists is complete, we copy them to the corresponding locations in file dataset .Y, and the
scratch file dataset .Y temp is again available for use. Now to perform a recursion on each slab i, we
use the portion of file dataset.Y staring from block 7 - [n/Bf] with no more than [n/Bf] blocks as
the new Y set to the subproblem.

Handling Degeneracies

Degenerate cases arise when dual points have non-distinct z- or y-values. We use cell ID’s to break
ties. During tree construction, the key of each slab boundary used to distribute the points includes
both the z-value (primary key) and the cell ID (secondary key). In addition, if the (z-value, cell ID)
of a point is exactly the slab boundary separating slabs ¢ — 1 and ¢, then this point is considered as
lying in slab 7. In the nodes of metablock tree, we only store the z-values as slab boundaries (keys),
without storing the corresponding cell ID’s. During query operations, to find the child U, whose
z-range contains ¢, we find the rightmost such child — since we want to report points with z < ¢
and y > g, this ensures that no point satisfying the z-condition of the query is missed. Similarly, to
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Figure 3: Isosurface extraction phase. Given the four data structure files of the metablock/interval
tree and an isovalue, metaQuery/ioQuery filters the dataset and passes to Vtk only those active cells
of the isosurface. Several Vtk methods are used to generate the isosurface, in particular, vtkUnstruc-
turedGrid, vtkContourFilter, and vtkPolyMapper.

handle the y-condition properly, whenever we consider a horizontal list or a T'S list, we do not stop if
the bottom of the list has the same y-value as ¢, but instead, we stop only when the bottom is truly
lower than horizontal line y = q.

3.2 Interfacing with Vtk

A full isosurface extraction pipeline should include several steps in addition to finding active cells
(see Fig. 1). In particular, (1) intersection points and triangles have to be computed; (2) triangles
need to be decimated [33]; and (3) triangle strips have to be generated. Steps (1)—(3) can be carried
out by the existing code in Vtk [32]. Our two pieces of isosurface querying code, metaQuery and
ioQuery, are implemented by linking the respective I/O querying code with Vtk’s isosurface generation
code, as shown in Fig. 3. Given an isovalue, (1) all the active cells are collected from disk; (2) a
vtkUnstructuredGrid is generated; (3) the isosurface is extracted with vtkContourFilter; and (4) the
isosurface is saved in a file with vtkPolyMapper. At this point, memory is deallocated. If multiple
isosurfaces are needed, this process is repeated. Note that this approach requires double buffering of
the active cells during the creation of the vtkUnstructuredGrid data structure. A more sophisticated
implementation would be to incorporate the functionality of metaQuery (resp. ioQuery) inside the
Vtk data structures and make the methods I/O aware. This should be possible due to Vtk’s pipeline
evaluation scheme (see Chapter 4 of [32]).

4 Experimental Results and Analysis

In this section we present experimental results of running the two implementations of I/O-filter and
also Vtk’s native isosurface implementation on real datasets. We have run our experiments on four
different datasets shown in Table 1. All of these datasets are tetrahedralized versions of well-known
datasets. Our benchmark machine was an off-the-shelf PC: a Pentium Pro, 200MHz with 128M of
RAM, and two EIDE Western Digital 2.5Gb hard disk (5400 RPM, 128Kb cache, 12ms seek time).
Each disk block size is 4,096 bytes. We ran Linux (kernels 2.0.27, and 2.0.30) on this machine. One
interesting property of Linux is that it allows during booting the specification of the exact amount of
main memory to use. This allows us to fake for the isosurface code a given amount of main memory
to use (after this memory is completely used, the system will start to use disk swap space and have
page faults).
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‘ Name ‘ # of Cells ‘ Original Size ‘ Size after Normalization ‘

Blunt Fin 187K 5.8M 12M
Combustion Chamber 215K 6.8M 13M
Liquid Oxygen Post 513K 16.4M 33M
Delta Wing 1,005K 33.8M 64M

Table 1: A list of the datasets used for testing. After normalization, each cell is 64 bytes long (3D
coordinates and scalar fields are represented as floats).

Preprocessing with metaBuild and ioBuild

Both metaBuild and ioBuild take the input file, normalize it, and then respectively build a metablock
tree and an interval tree. During tree construction, multiple files are created as scratch files for
computation, but at the end only four files are left as the final data structure files. See Table 2 for the
names of the files for each program.

As noted in [13], the scalability of I/O algorithms is best tested when the dataset size exceeds the
main memory size. When we first ran ioBuild with 128M of RAM on the datasets, it seemed too
fast regarding the numbers of I/O reads and writes it was issuing. It turned out that the OS was
able to optimize (by caching) a lot of those I/O requests, and the CPU was running at nearly 95% of
usage. To avoid these side effects of the OS, we lowered the amount of main memory of our system
by starting Linux with a “linux mem=16M” command line at kernel boot time. Basically, about 14M
of main memory can actually be used by applications (after normalization the input sizes range from
12M to 64M; see Table 1). Also, we allow the programs to allocate only 1024K blocks (4 Mb) of RAM.
This is a compile-time parameter in the programs. With this 16M/4M configuration, the actual CPU
usage percentage during the execution of metaBuild and ioBuild was in the range of low teens.

In Table 2 we show all relevant experimental data obtained from running metaBuild and ioBuild
with the 16M/4M configuration. We make the following observations and analysis.

e The numbers of tree nodes are fairly small: 9-39 for metablock tree and 36-183 for interval
tree. Interval tree has more nodes because its branching factor is smaller (asymptotically its Bf
is taken as ©(v/B) rather than ©(B) in metablock tree). Considering the actual values of Bf
(505 for metablock tree and 29 for interval tree), we know that the tree height for metablock
tree is at most 3, and at most 4 for interval tree. This shows that reducing the branching
factor from ©(B) to ©(v/B) in interval tree almost dose not increase the tree height. Also, the
nearly-optimal O(% logz N) bound for preprocessing is actually the same as the optimal bound
o% log% &) in practice.

e For data structure size, metablock tree (average size increase: 7.2 times the original input size)
is somewhat smaller than interval tree (average 7.7 times). This can be seen from the structures
of the two trees. While the left, right and multi lists of any node in interval tree can each have
a nonful final block, the horizontal, vertical, and T'S lists for internal nodes of metablock tree
are always of fully Bf blocks (except for the T'S list of node U where all left siblings of U are
leaves). Therefore metablock tree potentially has a better disk block usage than interval tree.

e For tree construction time, metablock tree takes only about half the time for interval tree
(metablock tree also uses much less numbers of I/O’s than interval tree). We analyze this
as follows. (1) Although metablock tree performs two sorting (sets X and Y') while interval tree
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performs only one sorting (the interval endpoint set sorted in increasing endpoint values), the
endpoint set is twice as large as set X or Y, since each interval (i.e., a dual point in set X (or
set Y')) is duplicated for its two endpoints. Thus the sorting costs are the same. (2) During
the scan and distribute process, metablock tree needs only one temporary file to maintain the
temporary lists for vertical slabs, while interval tree needs four files respectively for the tempo-
rary lists for children slabs, left, right, and multi lists [13]. The overhead of maintaining three
extra temporary-list files slows down the construction of interval tree. (3) In addition, to avoid
blowing up the scratch space by a factor of Bf (= 29) in interval tree, the multi lists of a node
U are constructed by performing scan and distribute for each of the Bf left lists of U [13]. This
may be another source of inefficiency. (4) While both the wvertical list in metablock tree and
the right list in interval tree need an extra sorting to put them in desired ordering, the vertical
list is no more than Bf = 505 blocks and can always be sorted internally, but the right list can
be arbitrarily long and may need external sorting. This again may potentially slow down the
interval tree construction.

e For the disk scratch space used during construction, metablock tree needs about 10 times the
original size of input dataset, improving over interval tree (about 16 times). As mentioned above,
this is due to the three extra temporary-list files needed for interval tree.

In summary, metaBuild outperforms ioBuild in every aspect, most notably the tree construction
time. This can be considerable for really large (i.e., gigabyte- or terabyte-size) datasets. We remark
that in large production environments where large disk scratch areas are available, the 10-16 times
the original input size of disk scratch space is a minor cost, since the preprocessing is done once and
for all; after the trees are built in disk, the tree files can be duplicated by just copying. However,
the improvement from 16 times to 10 times still increases the applicability of our I/O-filter technique.
Also, given that disk prices are on the order of 35-40 times lower than main memory prices, the overall
cost of a four to eight factor increase in disk space overhead is negligible when compared to a twofold
increase in main memory.

Isosurface Extraction with metaQuery and ioQuery

In the following we use metaQuery and ioQuery to denote the entire isosurface extraction codes shown
in Fig. 3, and vtkiso to denote the Vtk-only isosurface code. We ran two batteries of tests, each with
different amount of core memory (128M and 32M). Each test consists of calculating 10 isosurfaces with
isovalues in the range of the scalar values of each dataset, by using metaQuery, ioQuery, and vtkiso.
We did not run X-windows during the isosurface extraction time, and the output of vtkPolyMapper
was saved in a file instead. Some representative isosurfaces are shown in Fig. 6. We summarize in
Table 3 the total running times for the extraction of the 10 isosurfaces using metaQuery, ioQuery,
and vtkiso with different amount of main memory. Observe that both metaQuery and ioQuery have
significant advantages over vtkiso, especially for large dataset and/or small main memory.

Figures 4 and 5 summarize detailed benchmarks. For each isosurface calculated using metaQuery
and ioQuery, we break the time into four categories: (1) I/O time (the bottommost part, shown in
red) — This is the time to identify and bring in from disk the active cells of the isosurface. (2) Copy
Time (the second part from bottom, shown in yellow) — In order to use Vtk’s isosurface capabilities,
we need to generate a vtkUnstructuredGrid object that contains the active cells just obtained. We
refer to the time for this process as “Copy Time”. (3) Isosurface (the third part from bottom, shown
in blue) — This is the time for Vtk’s isosurface code to actually generate the isosurface from the
active cells. (4) File Output (the topmost part, shown in green) — In the end we write to disk a
file containing the actual isosurface in Vtk format. As for the performance of vtkiso, only items (3)
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and (4) are shown in Figs. 4 and 5. Two additional costs are not shown: the reading of the dataset,
and the generation of the vtkUnstructuredGrid. These two operations are performed only once at the
beginning of each batch of 10 isosurface extractions. We show the sum of the two costs as vtkiso I/O
in Table 3. It is very interesting to see (from Table 3) that the vtkiso I/O entries for Post in 32M,
and for Delta in both memory sizes, are all much larger than the corresponding entries of metaQuery
and ioQuery. This means that before the time vtkiso finishes reading the dataset and generating a
vtkUnstructuredGrid, metaQuery and ioQuery already finished computing all 10 isosurfaces!

Regarding Figs. 4 and 5, we observe the following:

(A) For both ioQuery and metaQuery, in most cases (1) is smaller than (3), especially as the datasets
get larger. This means that the active-cell searching process is not a bottleneck any more; the effect
is even more significant for larger datasets. By overlapping the I/O time of (1) with the CPU time
of (3), we can further improve the performance so that I/O has no cost at alll Thus there is no
need to improve the I/O query time of metablock/interval tree any further. Also, one can see the
output-sensitive behavior by noting that when small isosurfaces (or no isosurfaces) are generated, our
I/O-filter techniques take negligible time.

(B) For both metaQuery and ioQuery, the I/O times almost do not change with the amount of main
memory. As mentioned before, metablock tree only needs four blocks of main memory in searching
active cells, and interval tree only needs two blocks. Thus the performance is independent of the size
of the main memory available. Similarly, the overall running times of metaQuery and ioQuery almost
do not change with the amount of main memory.

In Table 4, we show detailed performance of querying the metablock tree and interval tree. It
is interesting to see that metablock tree usually has more disk reads, and yet the query times are
comparable or sometimes even faster. This can be explained by a better locality of disk accesses of
metablock tree from the structures of the two trees. In metablock tree, the horizontal, vertical, and
TS lists are always read sequentially during queries, but in interval tree, although the left and right
lists are always read sequentially, the multi lists reported inherently cause scattered disk accesses: for
query ¢ lying in slab %, all multi lists of the multi-slabs spanning slab i are reported; these include
multi-slabs [1,4],[1,4 + 1],---,[1, Bf— 2], [2,4],[2,s + 1],---,[2, Bf— 2],-- -, [i, 4], [¢,2 + 1], - -, [{, Bf — 2]
(see [13]). While [¢,-]’s are in consecutive places of a file and can be sequentially accessed, changing
from [¢, Bf — 2] to [¢ + 1,4] causes non-sequential disk reads (since [ + 1,4+ 1],---,[(+ 1,7 — 1] are
skipped). This also leads us to believe that in order to correctly model I/O algorithms, some cost
should be associated with disk-head movements, since this is one of the major costs involved. This is
similar to the parallel computation models (see, for instance, the LogP model of Culler et al. [15]),
where there is also a charge on latency (or per message overhead), as well as a cost associated with
the overall bandwidth used by the algorithm.

5 Conclusions

We give a new implementation of our I/O-filter technique for the problem of isosurface extraction, by
replacing the I/O interval tree with the first implementation of metablock tree. We provide experi-
mental comparisons of the practical performance between the implementations of the two trees with
real-world test data. The metablock-tree implementation also results in performance improvements
of I/O-filter. In addition, both implementations of I/O-filter have significant advantages over Vtk’s
original implementation. We conclude that I/O-filter is an excellent isosurface technique for large
scientific visualization applications.
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Metablock Tree: metaBuild

Blunt

Chamber

Post

Delta

metaTree [size (# nodes)]

37K (9)

41K (10)

86K (21)

160K (39)

horizontal [size (# blocks)]

14.5M (3539)

16.6M (4062)

39.7M (9693)

77.8M (18988)

vertical [size (# blocks)]

14.5M (3539)

16.6M (4062)

39.7M (9693)

77.8M (18988)

TS [size (# blocks)]

14.5M (3535)

16.5M (4040)

39.3M (9593)

76.5M (18685)

Total Size 43.5M 49.9M 118.8M 232.2M
Original Size 5.8M 6.8M 16.4M 33.8M
Ratio of Size Increase 7.5 7.3 7.2 6.9
Normalization 348s 465s 920s 1798s
Tree Construction 180s 219s 533s 1071s
Total Time 528s 684s 1453s 2869s
Page Ins 92K 106K 253K 497K
Page Outs 95K 109K 262K 513K

‘ Interval Tree: ioBuild

‘ Blunt ‘ Chamber ‘ Post Delta
intTree [size (# nodes)] 303K (74) 147K (36) 238K (58) 750K (183)

left [size (# blocks)]

15.6M (3816)

17.3M (4222)

41.0M (10000)

80.5M (19650)

right [size (# blocks)]

15.6M (3821)

17.3M (4229)

41.0M (10008)

80.5M (19653)

multi [size (# blocks)]

17.6M (4305)

20.0M (4874)

34.6M (8446)

80.6M (19682)

Total Size 49.2M 54. 7™ 116.8M 242.3M
Original Size 5.8M 6.8M 16.4M 33.8M
Ratio of Size Increase 8.5 8.0 7.1 7.2
Normalization 348s 465s 920s 1798s
Tree Construction 361s 391s 928s 1982s
Total Time 709s 8506s 1848s 3780s
Page Ins 103K 115K 270K 570K
Page Outs 109K 123K 286K 605K

Table 2: Statistics for running metaBuild (upper half) and ioBuild (lower half) in a machine with
16M of main memory and 4M of buffer memory, for the datasets in Table 1. The first four values in
each half of the table are the sizes of the four files kept after the preprocessing; the number of nodes
of each tree and each file size expressed in terms of number of disk blocks are also shown.
size” is the total amount of disk space used after preprocessing. “Normalization” is the time used to
convert the input Toff file to a normalized (i.e., de-referenced) file. “Tree Construction” is the actual
time used to create the metablock/interval tree data files from the normalized file. “Total Time” is
the overall running time of the whole preprocessing. “Page Ins” and “Outs” are the numbers of disk

block reads and writes requested to the operating system.

“Total



‘ ‘ Blunt ‘ Chamber ‘ Post ‘ Delta ‘

metaQuery — 128M 9s 17s 19s 26s
ioQuery — 128M 7s 16s 18s 31s
vtkiso — 128M 15s 22s 44s 182s
vtkiso I/O —128M | 3s 2s 12s 40s
metaQuery — 32M 9s 19s 21s 31s
ioQuery - 32M 10s 19s 22s 32s
vtkiso - 32M 21s 54s 1563s | 3188s
vtkiso I/O - 32M 8s 28s 123s | 249s

Table 3: Overall running times for the extraction of the 10 isosurfaces using metaQuery, ioQuery, and
vtkiso with different amount of main memory. These include all the time to read the datasets and
write the isosurfaces to files. vtkiso I/O is the fractional amount of time of vtkiso for reading the
dataset and generating a vtkUnstructuredGrid object.



Blunt (187K cells)

Isosurface ID 1 2 3 4 5 6 7 8 9 10
Active Cells 20 | 20981 | 13679 | 9383 | 6490 | 4567 | 3547 | 2665 | 2047 950
metaQuery | Page Ins 3 739 635 222 439 296 222 155 87 25

Time (sec) | 0.14 | 0.59 1.27 0.08 0.31 0.01 0.01 0 0 0

ioQuery Page Ins 5 509 317 243 256 168 91 66 60 44
Time (sec) | 0.07 | 0.52 1.01 0.46 0.38 0.21 0.09 0.19 0.13 0.16

Chamber (215K cells)
Isosurface ID 1 2 3 4 5 6 7 8 9 10
Active Cells 32 | 30733 | 38385 | 28552 | 21745 | 16608 | 12457 | 8698 | 6553 793
metaQuery | Page Ins 3 1003 | 1131 579 414 387 268 176 129 16
Time (sec) | 0.12 | 0.78 1.06 0.41 0.18 0.25 0.02 0.01 0.01 0
ioQuery Page Ins 4 632 879 632 489 342 287 205 159 18
Time (sec) | 0.06 | 0.62 0.67 0.52 0.27 0.21 0.12 0.38 0.05 0.08

Post (513K cells)

Isosurface ID 1 2 3 4 5 6 7 8 9 10
Active Cells 20 4606 | 30223 | 26192 | 23961 | 22193 | 20602 | 19352 | 18007 | 13012

metaQuery | Page Ins 3 432 588 497 770 422 422 552 604 307
Time (sec) | 0.05 | 0.29 0.68 0.72 0.53 0.34 0.21 0.41 0.43 0.43

ioQuery Page Ins 4 179 710 579 614 571 545 499 473 377
Time (sec) | 0.06 | 0.28 0.87 0.49 0.45 0.42 0.41 04 0.44 0.56

Delta (1,005K cells)

Isosurface ID 1 2 3 4 5 6 7 8 9 10
Active Cells 32 296 1150 | 1932 | 5238 | 24788 | 36738 | 55205 | 32677 | 8902
metaQuery | Page Ins 3 8 506 503 471 617 705 1270 | 1088 440
Time (sec) | 0.05 0 0.31 0.02 0.02 0.89 0.59 1.24 1.88 0.29

ioQuery Page Ins 6 31 35 46 158 578 888 1171 765 271
Time (sec) | 0.1 0.05 0.05 0.09 0.2 0.67 0.85 1.44 1.43 0.35

Table 4: Searching active cells on metablock tree (using metaQuery) and on interval tree (using
ioQuery) in a machine with 32M of main memory. This shows the performance of the query operations
of the two trees. (A “0” entry means “less than 0.01 before rounding”.)
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Figure 4: Running times for extracting isosurfaces using metaQuery (left column), ioQuery (middle
column), and vtkiso (right column) with 128M of main memory. Note that two costs of vtkiso are
not shown.



Isosurface Generation Times for Blunt Fin Isosurface Generation Times for Blunt Fin Isosurface Generation Times for Blunt Fin

32Mof RAM - metaQuery 32M of RAM-- ioQuery 32M of RAM - vikiso
28
T I T
i 24 — i
m m
e 2 e
i
n 16 n
. 12 R
¢ 08 - ‘
o o
n 04 n =
d d —_
- - e = . =
Isosurface Nurmber Isosurface Nurmber Isosurface Nurmber
W ome [ — Pl gt W omme [ — memm‘ . Aeom
Isosurface Generation Times for Combustion Chamber Isosurface Generation Times for Combustion Chamber Isosurface Generation Times for Combustion Chamber
32Mof RAM — metaQuery 32Mof RAM -- ioQuery 32M of RAM - viliso
T5 I T 45 | T 6
|45 4 i
m m
e 4 e 7
i, 3 i .4
"3 1 — n .
s s s
e 2 e
c ] c <2
o o
n i n g
d l - d d
s s
0 |om = N Om | s g
Isosurface Nurmber Isosurface Nurmber Isosuiface Nurmber
W o coytme I mrnce [0 Fleount | W o coprtne W ioarte W Fleount W e Fearma
Isosurface Generation Times for Liquid Oxygen Post Isosurface Generation Times for Liquid Oxygen Post Isosurface Generation Times for Liquid Oxygen Post
32Mof RAM — metaQuery 32Mof RAM -- ioQuery 32M of RAM - viliso
45 ‘ 45 | 20
T4 T4 ‘
moo35 moo35 160
e e
® | Lo
i i
N 25 — N n
s 2 I HE B B s ]
e e :
¢ ¢
o o o 40
n n i
d d .
s s 0
Isosurface Nurmber Isosurface Nurmber Isosuiface Nurmber
[ o coytme I mrnce [0 Fleount | [ o coytme I mrnce [0 Fleount | W o Fearma
Isosurface Generation Times for Delta Wing Isosurface Generation Times for Delta Wing Isosurface Generation Times for Delta Wing
32Mof RAM — metaQuery 32Mof RAM - ioQuery 32M of RAM - vikiso
112 I 112 I
i i
m 10 m 10
e e

©
©

6 6

. .
: :
c 4 c 4
: :
n 2 n 2
: Bs=ulls : RESHNs
s - s —

0 0

Isosurface Nurmber Isosurface Nurmber Isosurface Number
W ome [ — memm‘ W omme [ — memm‘ ‘ . Aeom ‘

Figure 5: Running times for extracting isosurfaces using metaQuery (left column), ioQuery (middle
column), and vtkiso (right column) with 32M of main memory. Note that two costs of vtkiso are
not shown.



Figure 6: Typical isosurfaces: The upper two are for the Blunt Fin dataset, and those in the bottom
are for the Combustion Chamber dataset.



